(新)高考中立体几何与三棱柱
2018-2022五年全国高考数学立体几何真题分类汇编(试卷版)

2018-2022五年全国各省份高考数学真题分类汇编专题21立体几何解答题一、解答题1.(2022高考北京卷·第17题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.2.(2022年高考全国甲卷数学(理)·第18题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥.(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.3.(2022年浙江省高考数学试题·第19题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022新高考全国II 卷·第20题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022新高考全国I 卷·第19题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.6.(2022年高考全国乙卷数学(理)·第18题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.-中,底面ABCD是平行四边7.(2021年高考浙江卷·第19题)如图,在四棱锥P ABCDBC PC的中点,形,120,1,4,∠=︒===M,N分别为,ABC AB BC PA⊥⊥.PD DC PM MD,(1)证明:AB PM⊥;(2)求直线AN与平面PDM所成角的正弦值.-中,底面ABCD是正方形,若8.(2021年新高考全国Ⅱ卷·第19题)在四棱锥Q ABCD===.AD QD QA QC2,3(1)证明:平面QAD⊥平面ABCD;--的平面角的余弦值.(2)求二面角B QD A9.(2021年新高考Ⅰ卷·第20题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.10.(2021年高考全国乙卷理科·第18题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.11.(2021年高考全国甲卷理科·第19题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?12.(2021高考北京·第17题)如图:在正方体1111ABCD A B C D -中,E 为11A D 中点,11B C 与平面CDE 交于点F.(1)求证:F 为11B C 的中点;(2)点M 是棱11A B 上一点,且二面角M FC E --的余弦值为53,求111A M A B 的值.13.(2020年高考课标Ⅰ卷理科·第18题)如图,D为圆锥的顶点,O是圆锥底面的圆心,=.ABC是底面的内接正三角形,P为DO上一点,AE为底面直径,AE ADPO=.(1)证明:PA⊥平面PBC;--的余弦值.(2)求二面角B PC E14.(2020年高考课标Ⅱ卷理科·第20题)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.15.(2020年高考课标Ⅲ卷理科·第19题)如图,在长方体1111ABCD A B C D -中,点,E F分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.16.(2020年新高考全国Ⅰ卷(山东)·第20题)如图,四棱锥P -ABCD 的底面为正方形,PD⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.17.(2020年新高考全国卷Ⅱ数学(海南)·第20题)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,QB,求PB与平面QCD所成角的正弦值.18.(2020年浙江省高考数学试卷·第19题)如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC=2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.19.(2020天津高考·第17题)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.20.(2020江苏高考·第24题)在三棱锥A BCD -中,已知CB CD ==,2BD =,O 为BD的中点,AO ⊥平面BCD ,2AO =,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足14BF BC =,设二面角F DE C --的大小为θ,求sin θ的值.21.(2020江苏高考·第15题)在三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,,E F分别是1,AC B C 的中点.(1)求证:EF 平面11AB C ;(2)求证:平面1AB C ⊥平面1ABB .22.(2020北京高考·第16题)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.23.(2019年高考浙江·第19题)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A A C AC ==,E ,F 分别是AC ,11A B 的中点.(Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.24.(2019年高考天津理·第17题)如图,AE ⊥平面ABCD ,//,//CF AE AD BC ,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.25.(2019年高考上海·第17题)如图,在长方体1111ABCD A BC D -中,M 为1BB 上一点,已知2BM =,4AD =,3CD =,15AA =.(1)求直线1AC 与平面ABCD 的夹角;(2)求点A 到平面1AMC 的距离.26.(2019年高考全国Ⅲ理·第19题)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B−CG−A 的大小.27.(2019年高考全国Ⅱ理·第17题)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.()1证明:BE ⊥平面11EB C ;()2若1AE A E =,求二面角1B EC C --的正弦值.28.(2019年高考全国Ⅰ理·第18题)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60,,,AA AB BAD E M N ==∠=︒分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.29.(2019年高考江苏·第16题)如图,在直三棱柱111ABC A B C -中,,D E 分别为BC ,AC 的中点,AB BC =.求证:(1)11A B ∥平面1DEC ;(2)1BE C E ⊥.30.(2019年高考北京理·第16题)如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD ⊥平面PAD ;(Ⅱ)求二面角F–AE–P 的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.31.(2018年高考数学江苏卷·第25题)(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.32.(2018年高考数学江苏卷·第15题)(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥;(2)111ABB A A BC ⊥平面平面.33.(2018年高考数学浙江卷·第19题)(本题满分15分)如图,已知多面体111ABCA B C ,111,,A A B B C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成角的正弦值.34.(2018年高考数学上海·第17题)(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P ,底面圆心为O ,半径为2,(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA OB 、是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.35.(2018年高考数学天津(理)·第17题)(本小题满分13分)如图,//AD BC 且2AD BC =,AD CD ⊥,//EG AD 且EG AD =,//CD FG ,且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ;(2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60︒,求线段DP 的长.36.(2018年高考数学课标Ⅲ卷(理)·第19题)(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在的平面垂直,M 是弧CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.37.(2018年高考数学课标Ⅱ卷(理)·第20题)(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.PAB M CO 38.(2018年高考数学课标卷Ⅰ(理)·第18题)(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DCF ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.39.(2018年高考数学北京(理)·第16题)(本小题14分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,,,,D E F G 分别为1111,,,AA AC A C BB 的中点,AB BC ==,12AC AA ==.(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角1B CD C --的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.。
2023年高考数学----两角相等(构造全等)的立体几何问题典型例题讲解

2023年高考数学----两角相等(构造全等)的立体几何问题典型例题讲解【规律方法】 构造垂直的全等关系 【典型例题】例1.如图,已知三棱柱−111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交A B 于E ,交A C 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.【解析】(1)证明:M Q ,N 分别为BC ,11B C 的中点,底面为正三角形, ∴=1B N BM ,四边形1BB NM 为矩形,⊥111A N B C ,∴1//BB MN ,11//AA BB Q ,∴1//AA MN , ⊥11MN B C Q ,⊥111A N B C ,⋂=1MN A N N , ∴⊥11B C 平面1A AMN ,⊂11B C Q 平面11EB C F , ∴平面⊥1A AMN 平面11EB C F ,综上,1//AA MN ,且平面⊥1A AMN 平面11EB C F .(2)解:Q 三棱柱上下底面平行,平面11EB C F 与上下底面分别交于11B C ,EF ,∴11////EF B C BC ,//AO Q 面11EB C F ,⊂AO 面1A MNA ,面⋂1AMNA 面=11EB C F PN ,∴//AO PN ,四边形APNO 为平行四边形, O Q 是正三角形的中心,=AO AB ,∴=13A N ON ,=3AM AP ,===113PN BC B C EF ,由(1)知直线1B E 在平面1A AMN 内的投影为PN ,直线1B E 与平面1A AMN 所成角即为等腰梯形11EFC B 中1B E 与PN 所成角, 在等腰梯形11EFC B 中,令=1EF ,过E 作⊥11EH B C 于H , 则===113PN B C EH ,=11B H,=1B E∠==111sin B H B EH B E, ∴直线1B E 与平面1A AMN.例2.如图,在锥体−P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB,==PA PD =2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角−−P AD B 的余弦值.【解析】(1)取AD 的中点G ,连接PG ,BG ,在∆ABG 中,根据余弦定理可以算出==BG ,发现+=222AG BG AB ,可以得出⊥AD BG ,又//DE BG ∴⊥DE AD ,又=PA PD ,可以得出⊥AD PG ,而⋂=PG BG G , ∴⊥AD 平面PBG ,而⊂PB 平面PBG , ∴⊥AD PB ,又//PB EF , ∴⊥AD EF .又⋂=EF DE E , ∴⊥AD 平面DEF .(2)由(1)知,⊥AD 平面PBG ,所以∠PGB 为二面角−−P AD B 的平面角,在∆PBG 中,==PG ,=BG ,=2PB ,由余弦定理得+−∠==⋅222cos 2PG BG PB PGB PG BG ,因此二面角−−P AD B 的余弦值为.本课结束。
2023年高考数学总复习《立体几何》附答案解析

所以 z1=0,
,故可取
, ,,
于是 < , >
,
设所成锐二面角为θ,所以 sinθ
,
所以平面 PAD 和平面 PBE 所成锐二面角的正弦值为 .
第3页共3页
第1页共3页
∴CF CC1 AA1 , ∵∠BAC=90°,
∴CD
,
在 Rt△FCD 中,tan∠FDC 맨
,
故直线 DF 与平面 ABC 所成角的正切值为 .
2.如图所示,四棱锥 P﹣ABCD 的底面 ABCD 是边长为 1 的菱形,∠BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2. (1)证明:平面 PBE⊥平面 PAB; (2)求平面 PAD 和平面 PBE 所成二面角(锐角)的正弦值.
【解答】(1)证明:如图所示,连接 BD,由 ABCD 是菱形且∠BCD=60°, 知△ABC 是等边三角形. ∵E 是 CD 的中点, ∴BE⊥CD,又 AB∥CD, ∴AB⊥BE,∴BE⊥平面 PAB, 又 BE⊂平面 PBE, ∴平面 PBE⊥平面 PAB. (2)解:在平面 ABCD 内,过点 A 作 AB 的垂线,如图所示,以 A 为原点建立空间直角
【解答】(1)证明:连接 DG、FG, 由直三棱柱的性质知,BB1∥CC1,且 BB1=CC1, ∵B1E=2EB,C1F=2FC, ∴EB∥FC,且 EB=FC, ∴四边形 BCFE 为平行四边形, ∴EF∥BC,EF=BC, ∵BD=2DA,CG=2GA, ∴GD∥BC,且 GD BC, ∴EF∥GD,且 GD EF, ∴四边形 DEFG 为梯形,即 D、E、F、G 四点共面, ∴点 G 在平面 EFD 内. (2)解:由直三棱柱的性质知,CC1⊥平面 ABC, ∵F 为 CC1 上一点, ∴点 F 在平面 ABC 上的投影为点 C, 连接 CD,则∠FDC 即为直线 DF 与平面 ABC 所成角. ∵点 D 在棱 AB 上,且 BD=2DA, ∴AD AB , ∵C1F=2FC,
高考立体几何知识点与题型精讲

高考立体几何知识点与题型精讲在高考数学中,立体几何是一个重要的板块,它不仅考查学生的空间想象能力,还对逻辑推理和数学运算能力有较高要求。
接下来,咱们就一起深入探讨一下高考立体几何的知识点和常见题型。
一、知识点梳理1、空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
(2)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。
(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
2、空间几何体的表面积和体积(1)圆柱的表面积:S =2πr² +2πrl (r 为底面半径,l 为母线长)。
体积:V =πr²h (h 为高)。
(2)圆锥的表面积:S =πr² +πrl 。
体积:V =1/3πr²h 。
(3)球的表面积:S =4πR² 。
体积:V =4/3πR³ 。
3、空间点、直线、平面之间的位置关系(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
(2)公理 2:过不在一条直线上的三点,有且只有一个平面。
(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
4、直线与平面平行的判定与性质(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
5、平面与平面平行的判定与性质(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
6、直线与平面垂直的判定与性质(1)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
(2)性质定理:垂直于同一个平面的两条直线平行。
7、平面与平面垂直的判定与性质(1)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
2024届新高考数学大题精选30题--立体几何(解析版)

大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1 设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM =0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m =sin α,-cos α,-sin α 设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM =0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n =sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解. (2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD =(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n =(x 1,y 1,z 1),则n ⋅AE =-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB >|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD -AA 1 ∴D 1P =D 1A +AP =1-λ AB +12λ-12 AD +λ-1 AA 1 ∴D 1P ⋅AC =1-λ AB +12λ-12 AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD 2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1 =81-λ +812λ-12 +4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0 AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P =0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n =0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m =0AC 1 ⋅m =0 ,即-2x +22y =0-322x +322y +hz =0 ,令x =22h ,则m =22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43 .将h =2代入,可得平面AMC 1的法向量m =42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m =x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1 =2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m =1,3,-2 ,又因为平面ABE 的法向量为n =0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22 ,A (-2,2,0),CM =-2,22,22 ,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD =2x =0n ⋅DP =-2y +2z =0,令y =1,得n =(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n ||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQ QC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG =12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MK CQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD =12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG =12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF =2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC =415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 12 2= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,则O 20,0,0 ,A 2,0,0 ,A 11,0,3 ,B 0,2,0 ,C -2,0,0 ,C 1-1,0,3 ,所以BC 1 =(-1,-2,3),BC =(-2,-2,0),AB =(-2,2,0),A 1B =(-1,2,-3).设平面A 1AB 的法向量为m =x ,y ,z ,则-2x +2y =0,-x +2y -3z =0,令y =1,得m =1,1,33 .设平面C 1CB 的法向量为n =a ,b ,c ,则-a -2b +3c =0,-2a -2b =0,令a =3,得n =(3,-3,-1).设平面A 1AB 与平面C 1CB 的夹角为θ,则cos θ=cos m ,n =m ⋅n m n =-3373×7=17.16(2024·广东深圳·二模)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C ⊥底面ABC ,且AB =AC ,A 1B =A 1C .(1)证明:AA 1⊥平面ABC ;(2)若AA 1=BC =2,∠BAC =90°,求平面A 1BC 与平面A 1BC 1夹角的余弦值.【答案】(1)证明见解析;(2)155.【分析】(1)取BC 的中点M ,连结MA 、MA 1,根据等腰三角形性质和线面垂直判定定理得BC ⊥平面A 1MA,进而由A 1A ∥B 1B 得B 1B ⊥BC ,再证明B 1B ⊥平面ABC 即可得证.(2)建立空间直角坐标系,用向量法求解即可;也可用垂面法作出垂直于A 1B 的垂面,从而得出二面角的平面角再进行求解即可.【详解】(1)取BC 的中点M ,连结MA 、MA 1.因为AB =AC ,A 1B =A 1C ,所以BC ⊥AM ,BC ⊥A 1M ,由于AM ,A 1M ⊂平面A 1MA ,且AM ∩A 1M =M ,因此BC ⊥平面A 1MA ,因为A 1A ⊂平面A 1MA ,所以BC ⊥A 1A ,又因为A 1A ∥B 1B ,所以B 1B ⊥BC ,因为平面BB 1C 1C ⊥平面ABC ,平面BB 1C 1C ∩平面ABC =BC ,且B 1B ⊂平面BB 1C 1C ,所以B 1B ⊥平面ABC ,因为A 1A ∥B 1B ,所以AA 1⊥平面ABC .(2)法一:因为∠BAC =90°,且BC =2,所以AB =AC =2.以AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A -xyz ,则A 10,0,2 ,B 2,0,0 ,C 0,2,0 ,C 10,2,2 .所以A 1B =2,0,-2 ,A 1C =0,2,-2 ,A 1C 1 =0,2,0 .设平面A 1BC 的法向量为m =x 1,y 1,z 1 ,则m ·A 1B =0m ·A 1C =0 ,可得2x 1-2z 1=02y 1-2z 1=0 ,令z 1=1,则m =2,2,1 ,设平面A 1BC 1的法向量为n =x 2,y 2,z 2 ,则n ⋅A 1B =0n ⋅A 1C 1 =0 ,可得2x 2-2z 2=02y 2=0 ,令z 2=1,则n =2,0,1 ,设平面A 1BC 与平面A 1BC 1夹角为θ,则cos θ=m ⋅n m n =35×3=155,所以平面A 1BC 与平面A 1BC 1夹角的余弦值为155.法二:将直三棱柱ABC -A 1B 1C 1补成长方体ABDC -A 1B 1D 1C 1.连接C 1D ,过点C 作CP ⊥C 1D ,垂足为P ,再过P 作PQ ⊥A 1B ,垂足为Q ,连接CQ ,因为BD ⊥平面CDD 1C 1,且CP ⊂平面CDD 1C 1,所以BD ⊥CP ,又因为CP ⊥C 1D ,由于BD ,C 1D ⊂平面A 1BDC 1,且BD ∩C 1D =D ,所以CP ⊥平面A 1BDC 1,则△CPQ 为直角三角形,由于A 1B ⊂平面A 1BDC 1,所以A 1B ⊥CP ,因为CP ,PQ ⊂平面CPQ ,且CP ∩PQ =P ,所以A 1B ⊥平面CPQ ,因为CQ ⊂平面CPQ ,所以CQ ⊥A 1B ,则∠CQP 为平面A 1BC 与平面A 1BC 1的夹角或补角,在△A 1BC 中,由等面积法可得CQ =303,因为PQ =A 1C 1=2,所以cos ∠CQP =PQ CQ=155,因此平面A 1BC 与平面A 1BC 1夹角的余弦值为155.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED,求二面角P -EF -B 的正弦值.【答案】(1)证明见解析;(2)31010【分析】(1)根据条件,利用线面平行的判定定理,得到AB ⎳平面PCD ,再线面平行的性质定理,得到AB ⎳CD ,再利用条件得到AC =4,结合AB =2,BC =23,即可证明结果;(2)建立空间直角坐标系,求出平面PCD 和平面ABE 的法向量,利用面面角的向量法,即可解决问题.【详解】(1)因为AB ⎳EF ,EF ⊂平面PCD ,AB ⊄平面PCD ,所以AB ⎳平面PCD ,因为AB ⊂平面ABCD ,平面ABCD ∩平面PCD =CD ,所以AB ⎳CD ,连接AC ,因为PA ⊥平面ABCD ,所以∠PCA 是PC 与平面ABCD 的夹角,则tan ∠PCA =PA AC =23AC=32,解得AC =4.因为AB =2,BC =23,所以AB 2+BC 2=AC 2,所以AB ⊥BC .又AB ≠CD ,所以四边形ABCD 是直角梯形.(2)取CD 的中点M ,连接AM ,以A 为坐标原点建立如图所示的空间直角坐标系,则P 0,0,23 ,D 23,-2,0 ,C 23,2,0 ,B 0,2,0 ,AB =0,2,0 ,PC =23,2,-23 ,PD=23,-2,-23 ,由PE =2ED ,得E 433,-43,233 ,则BE =433,-103,233,设平面PCD 的法向量为n=x ,y ,z ,则n ⋅PC=23x +2y -23z =0n ⋅PD=23x -2y -23z =0,取x =1,得到y =0,z =1,即n=1,0,1 ,设平面ABE 的一个法向量为m=x ,y ,z ,则由m ⋅AB =0m ⋅BE =0 ,得到2y =0433x -103y +233z =0,到x =1,得到y =0,z =-2,所以平面ABE 的一个法向量为m=1,0,-2 设二面角P -EF -B 的平面角为θ,则cos θ =cos n ,m =n ⋅m n m=1010,所以sin θ=1-10102=31010,故二面角P -EF -B 的正弦值为31010.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.【答案】(1)证明见解析(2)31010【分析】(1)借助圆锥的性质及面面垂直的判定定理计算即可得;(2)建立适当空间直角坐标系,借助空间向量计算即可得.【详解】(1)如图,设AC 交BD 于点F ,连接EF ,在圆锥PO 中,PO ⊥底面圆O ,所以PO ⊥BD ,又等边三角形ABD 是圆锥底面圆O 的内接三角形,AC 为直径,所以BD ⊥AC ,所以AB =AC sin π3=23,所以AF =AB sin π3=3,可知OF =12OC =1,即F 是OC 的中点,又E 是母线PC 的中点,所以EF ⎳PO ,所以EF ⊥平面ABD ,又EF ⊂平面BED ,所以平面BED ⊥平面ABD ;(2)由(1)EF ⊥平面ABD ,BD ⊥AC ,以点F 为坐标原点,FA ,FB ,FE 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,在等腰三角形PAC 中AC =4,PO =2EF =6,OM =2,又AF =3,所以BF =DF =AF tan π6=3,所以A 3,0,0 ,B 0,3,0 ,D 0,-3,0 ,E 0,0,3 ,M 1,0,2 ,∴AB =-3,3,0 ,AE =-3,0,3 ,DM=1,3,2 ,设平面ABE 的法向量为n=x ,y ,z ,则AB ⋅n =0AE ⋅n =0,即-3x +3y =0-3x +3z =0 ,令x =1,则y =3,z =1,即n=1,3,1 ,设直线DM 与平面ABE 所成的角为θ,则sin θ=cos n ,DM =n ⋅DM n ⋅DM=1+3×3+21+3+1×1+3+4=31010.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC.(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.【答案】(1)证明见解析;(2)π6.【分析】(1)连结AC ,BD 交于点O ,由条件证明PO ⊥AC ,PO ⊥BD ,建立空间直角坐标系,利用向量方法证明PC ⊥DM ,PC ⊥BM ,结合线面垂直判定定理证明结论;(2)根据线面角的向量求法求出BE 与平面ABCD 所成角的正弦值,再求其最大值,由此可求线面角的最大值.【详解】(1)连结AC ,BD 交于点O ,连PO ,由PA =PC ,PB =PD =210知PO ⊥AC ,PO ⊥BD ,又AC ∩BD =O ,∴PO ⊥平面ABCD又底面ABCD 为菱形,所以AC ⊥BD以O 为坐标原点,OB ,OC ,OP分别为x ,y ,z 轴的正方向建立空间直角坐标系,如图所示∠DAB =60°,边长为4,则OD =OB =2,OA =OC =23在直角三角形BOP 中,PB =210所以OP =6所以点O (0,0,0),P (0,0,6),B (2,0,0),D (-2,0,0),C (0,23,0)PC =4MC ,则M 0,332,32所以PC =(0,23,-6),DM =2,332,32 ,BM =-2,332,32,所以PC ⋅DM =0×2+23×332+(-6)×32=0,PC ⋅BM =0×-2 +23×332+-6 ×32=0,所以PC ⊥DM ,PC ⊥BM ,所以PC ⊥DM ,PC ⊥BM ,又DM ∩BM =M ,DM ,BM ⊂平面BDM ,所以PC ⊥平面BDM ,(2)设DE =λDM ,所以DE =λDM =2λ,332λ,32λ ,故E 2λ-2,332λ,32λ ,所以BE =2λ-4,332λ,32λ 平面ABCD 的一个法向量是n=(0,0,1),设BE 与平面ABCD 所成角为θ,则sin θ=cos BE ,n =BE ⋅n BE ⋅n =32λ(2λ-4)2+332λ 2+32λ 2=32λ13λ2-16λ+16当λ=0时,BE ⊂平面ABCD ,θ=0;当λ≠0时,sin θ=32λ13λ2-16λ+16=3213-16λ+16λ2=3216×1λ-12 2+9≤12,当且仅当λ=12时取等号,又θ∈0,π2 所以θ≤π6,故BE 与平面ABCD 所成角的最大值为π620(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.【答案】(1)62;(2)π4.【分析】(1)连B 1D 1∩A 1C 1=O ,以O 为坐标原点,建立空间直角坐标系,借助向量垂直的坐标表示求出四棱柱的高,进而求出体积.(2)利用对称求出点E 的坐标,进而求出平面A 1C 1D 与平面α的法向量,再借助面面角的向量求法求得结果.【详解】(1)在直四棱柱ABCD -A 1B 1C 1D 1中,连B 1D 1∩A 1C 1=O ,由菱形A 1B 1C 1D 1,得OC 1⊥OD 1,令AA 1=a ,以O 为坐标原点,直线OC 1,OD 1分别为x ,y 轴,过O 平行于AA 1的直线为z 轴,建立空间直角坐标系,则点C 1(1,0,0),D 1(0,3,0),B (0,-3,a ),D (0,3,a ),BD 1 =(0,23,-a ),C 1D=(-1,3,a ),由BD 1⊥平面A 1C 1D ,C 1D ⊂平面A 1C 1D ,得BD 1⊥C 1D ,则BD 1 ⋅C 1D=6-a 2=0,解得a =6,所以四棱柱的体积V =S A 1B 1C 1D 1⋅AA 1=2S △A 1B 1C 1⋅a =2×34×22×6=6 2.(2)由(1)知,B (0,-3,6),BD 1=(0,23,-6),由BD 1⊥平面A 1C 1D ,点D 1关于平面A 1C 1D 的对称点为E ,则点E 在线段BD 1上,且C 1E =C 1D 1=2,设E x ,y ,z ,BE =λBD 1(0<λ<1),则x ,y +3,z -a =λ0,23,-a ,所以E 0,2λ-1 3,1-λ 6 ,C 1E=-1,32λ-1 ,61-λ ,于是C 1E 2=12+3(2λ-1)2+6(1-λ)2=4,解得λ=13,则E 0,-33,263,由点E 和点C 1关于平面α对称,得C 1E =-1,-33,263 是平面α的一个法向量,又BD 1=(0,23,-6)是平面A 1C 1D 的一个法向量,因此|cos ‹BD 1 ,C 1E ›|=|BD 1 ⋅C 1E ||BD 1 ||C 1E |=-33×23-6×263 32×2=22,所以平面A 1C 1D 和平面α所成锐二面角的大小为π4.21(2024·山东济南·二模)如图,在四棱锥P -ABCD 中,四边形ABCD 为直角梯形,AB ∥CD ,∠DAB =∠PCB =60°,CD =1,AB =3,PC =23,平面PCB ⊥平面ABCD ,F 为线段BC 的中点,E 为线段PF 上一点.(1)证明:PF ⊥AD ;(2)当EF 为何值时,直线BE 与平面PAD 夹角的正弦值为74.【答案】(1)证明见解析(2)2【分析】(1)过D 作DM ⊥AB ,垂足为M ,分析可知△PBC 为等边三角形,可得PF ⊥BC ,结合面面垂直的性质可得PF ⊥平面ABCD ,即可得结果;(2)取线段AD 的中点N ,连接NF ,建系,设E 0,0,a ,a ∈0,3 ,求平面PAD 的法向量,利用空间向量处理线面夹角的问题.【详解】(1)过D 作DM ⊥AB ,垂足为M ,由题意知:BCDM 为矩形,可得AM =2,BC =DM =AMtan60°=23,由PC =23,∠PCB =60°,则△PBC 为等边三角形,且F 为线段BC 的中点,则PF ⊥BC ,又因为平面PCB ⊥平面ABCD ,平面PCB ∩平面ABCD =BC ,PF ⊂平面PCB ,可得PF ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PF ⊥AD .(2)由(1)可知:PF ⊥平面ABCD ,取线段AD 的中点N ,连接NF ,则FN ∥AB ,FN =2,又因为AB ⊥BC ,可知NF ⊥BC ,以F 为坐标原点,NF ,FB ,FP 分别为x ,y ,z 轴,建立空间直角坐标系,则A 3,3,0 ,D 1,-3,0 ,P 0,0,3 ,B 0,3,0 ,因为E 为线段PF 上一点,设E 0,0,a ,a ∈0,3 ,可得DA =2,23,0 ,DP =-1,3,3 ,BE=0,-3,a ,设平面PAD 的法向量n=x ,y ,z ,则n ⋅DA=2x +23y =0n ⋅DP=-x +3y +3z =0,令x =-3,则y =3,z =-2,可得n=-3,3,-2 ,由题意可得:cos n ,BE =n ⋅BE n ⋅BE =2a +3 4×3+a2=74,整理得a 2-4a +4=0,解得a =2,所以当EF =2,直线BE 与平面PAD 夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD 中,AB =2BC =4,∠ABC =60°,E 为CD 的中点,将△ADE 沿AE 折起,连结BD ,CD ,且BD =4,如图2.(1)求证:图2中的平面ADE ⊥平面ABCE ;(2)在图2中,若点F 在棱BD 上,直线AF 与平面ABCE 所成的角的正弦值为3010,求点F 到平面DEC 的距离.【答案】(1)证明见解析(2)21515。
2023年高考数学试题分项版——立体几何(原卷版)

2023年高考数学试题分项版——立体几何(原卷版)一、选择题1.(多选)(2023·新高考Ⅰ卷,12)下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m 的球体B.所有棱长均为1.4m 的四面体C.底面直径为0.01m ,高为1.8m 的圆柱体D.底面直径为1.2m ,高为0.01m 的圆柱体2.(多选)(2023·新高考Ⅱ卷,9)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则()A.该圆锥的体积为πB.该圆锥的侧面积为C.AC = D.PAC △3.(2023·全国甲卷理,11)在四棱锥P ABCD -中,底面ABCD 为正方形,4,3,45AB PC PD PCA ===∠=︒,则PBC 的面积为()A. B.C. D.4.(2023·全国甲卷文,10)在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,PA PB PC ===)A.1B.C.2D.35.(2023·全国乙卷理,3)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.306.(2023·全国乙卷理,8)已知圆锥POO 为底面圆心,PA ,PB 为圆锥的母线,120AOB ∠=︒,若PAB 的面积等于4,则该圆锥的体积为()A.πB.C.3πD.7.(2023·全国乙卷理,9)已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D --为150︒,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.258.(2023·全国乙卷文,3)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.309.(2023·北京卷,9)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m,10m AB BC AD ===,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD 的夹角的正切值均为145,则该五面体的所有棱长之和为()A.102mB.112mC.117mD.125m10.(2023·天津卷,8)在三棱锥-P ABC 中,线段PC 上的点M 满足13PM PC =,线段PB上的点N 满足23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A.19B.29C.13D.49二、填空题1.(2023·新高考Ⅰ卷,14)在正四棱台1111ABCD A B C D -中,1112,1,AB A B AA ===则该棱台的体积为________.2.(2023·新高考Ⅱ卷,14)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.3.(2023·全国甲卷理,15)在正方体1111ABCD A B C D -中,E ,F 分别为CD ,11A B 的中点,则以EF 为直径的球面与正方体每条棱的交点总数为____________.4.(2023·全国甲卷文,16)在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.5.(2023·全国乙卷文,16)已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________.三、解答题1.(2023·新高考Ⅰ卷,18)如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上,22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P .2.(2023·新高考Ⅱ卷,20)如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,60ADB ADC ∠=∠= ,E 为BC 的中点.(1)证明:BC DA ⊥;(2)点F 满足EF DA =,求二面角D AB F --的正弦值.3.(2023·全国甲卷理,18)在三棱柱111ABC A B C -中,12AA =,1A C ⊥底面ABC ,90ACB ∠=︒,1A 到平面11BCC B 的距离为1.(1)求证:1AC A C =;(2)若直线1AA 与1BB 距离为2,求1AB 与平面11BCC B 所成角的正弦值.4.(2023·全国甲卷文,18)如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.5.(2023·全国乙卷理,19)如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的正弦值.6.(2023·全国乙卷文,19)如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥-P ABC 的体积.7.(2023·北京卷,16)如图,在三棱锥-P ABC 中,PA ⊥平面ABC ,1PA AB BC PC ====,(1)求证:BC ⊥平面PAB ;(2)求二面角A PC B --的大小.8.(2023·天津卷,17)三棱台111ABC A B C -中,若1A A ⊥面111,,2,1ABC AB AC AB AC AA AC ⊥====,,M N 分别是,BC BA 中点.(1)求证:1A N //平面1C MA ;(2)求平面1C MA 与平面11ACC A 所成夹角的余弦值;(3)求点C 到平面1C MA 的距离.。
2022高三高考数学知识点第7章 高考专题突破4 高考中的立体几何问题
跟踪训练3 (2020·宜昌一中模拟)如图,在四棱锥 P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC, AD=DC=AP=2,AB=1,点E为棱PC的中点. (1)证明:BE⊥PD;
解 依题意,以点A为原点,以AB,AD,AP为x轴、y轴、z轴建立空间 直角坐标系如图, 可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2). 由E为棱PC的中点,得E(1,1,1). 证明 向量B→E=(0,1,1),P→D=(0,2,-2), 故B→E·P→D=0,所以B→E⊥P→D,所以 BE⊥PD.
设直线AM与平面PBC所成的角为θ,
则
sin
θ=|cos〈m,A→M〉|=
→ |m·AM|
→
=
|m|·|AM|
23×1+12×0+
2×
7 4
23×1=
42 7.
∴直线 AM 与平面 PBC 所成角的正弦值为
42 7.
命题点3 二面角
例3 (2020·全国Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为
设平面QCD的一个法向量为n=(x,y,z),
[5分] [6分]
则DD→→CQ··nn==00,, 即ym=x+0,z=0,
令x=1,则z=-m, 所以平面QCD的一个法向量为n=(1,0,-m),
则 cos〈n,P→B〉=|nn|·|PP→→BB|=
1+0+m 3· m2+1.
[9分] [10分]
当且仅当m=1时取等号,
所以直线PB与平面QCD所成角的正弦值的最大值为
6 3
.
[12分]
答题模板
第一步:根据线面位置关系的相关定理,证明线面垂直. 第二步:建立空间直角坐标系,确定点的坐标. 第三步:求直线的方向向量和平面的法向量. 第四步:计算向量夹角(或函数值),借助基本不等式确定最值. 第五步:反思解题思路,检查易错点.
新高考2023版高考数学一轮总复习练案45高考大题规范解答系列四__立体几何
高考大题规范解答系列(四)——立体几何1.(2022·安徽黄山质检)如图,直三棱柱ABC-A1B1C1中,D是BC的中点,且AD⊥BC,四边形ABB1A1为正方形.(1)求证:A1C∥平面AB1D;(2)若∠BAC=60°,BC=4,求点A1到平面AB1D的距离.[解析] (1)连接BA1,交AB1于点E,再连接DE,由已知得,四边形ABB1A1为正方形,E为A1B的中点,∵D是BC的中点,∴DE∥A1C,又DE⊂平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(2)∵在直三棱柱ABC-A1B1C1中,平面BCC1B1⊥平面ABC,且BC为它们的交线,又AD⊥BC,∴AD⊥平面BCC1B1,又∵B1D⊂平面BCC1B1,∴AD⊥B1D,且AD=2,B1D=2.同理可得,过D作DG⊥AB,则DG⊥面ABB1A1,且DG=.设A1到平面AB1D的距离为h,由等体积法可得:VA1-AB1D=VD-AA1B1,即··AD·DB1·h=··AA1·A1B1·DG,即2×2·h=4×4×,∴h=.即点A1到平面AB1D的距离为.(注:本题也可建立空间直角坐标系用向量法求解.)2.(2022·陕西汉中质检)如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.(1)求证:平面PDE⊥平面APC;(2)求直线PC与平面PDE所成的角的正弦值.[解析] 如图所示,以点C为坐标原点,直线CD,CB,CP分别为x,y,z轴,建立空间直角坐标系C-xyz,则相关点的坐标为C(0,0,0),A(2,1,0),B(0,3,0),P(0,0,2),D(2,0,0),E(1,2,0).(1)由于DE=(-1,2,0),CA=(2,1,0),CP=(0,0,2),所以DE·CA=(-1,2,0)·(2,1,0)=0,DE·CP=(-1,2,0)·(0,0,2)=0,所以DE⊥CA,DE⊥CP,而CP∩CA=C,所以DE⊥平面PAC,∵DE⊂平面PDE,∴平面PDE⊥平面PAC.(2)设n=(x,y,z)是平面PDE的一个法向量,则n·DE=n·PE=0,由于DE=(-1,2,0),PE=(1,2,-2),所以有,令x=2,则y=1,z=2,即n=(2,1,2),再设直线PC与平面PDE所成的角为α,而PC=(0,0,-2),所以sin α=|cos〈n,PC〉|===,∴直线PC与平面PDE所成角的正弦值为.3.(2022·湖北百师联盟质检)斜三棱柱ABC-HDE中,平面ABC⊥平面BCD,△ABC为边长为1的等边三角形,DC⊥BC,且DC长为,设DC中点为M,F、G分别为CE、AD的中点.(1)证明:FG∥平面ABC;(2)求二面角B-AC-E的余弦值.[解析] (1)解法一:取BD中点N,连结GN,NF,易知N、M、F三点共线,由GN∥AB,且GN⊄平面ABC,AB⊂平面ABC,故GN∥平面ABC,同理可得NF∥平面ABC,因为GN∩NF=N,故平面GNF∥平面ABC.由FG⊂平面FGN,故FG∥平面ABC.解法二:取AB中点N,连结GN,NC,易知GN是△ABD的中位线,故GN∥BD,GN=BD,因为CE綊BD,F为CE的中点.所以CF綊GN.四边形FGNC是平行四边形,故FG∥CN,因为CN⊂平面ABC,FG⊄平面ABC,故FG∥平面ABC.(2)以BC中点O为坐标原点,以OC、ON、OA分别为x、y、z轴,建立空间直角坐标系O-xyz,由已知可得A,C,E,故CE=(1,,0),AC=,设m=(x,y,z)为平面ACE的法向量,则,解得m=(,-1,1),由于ON⊥平面ABC,不妨取平面ABC的法向量为n=(0,1,0).所以cos〈m,n〉==-.由图可知所求二面角为钝角,故二面角B-AC-E的余弦值为-.4.(2021·全国新高考)在四棱锥Q-ABCD中,底面ABCD是正方形,若AD=2,QD=QA=,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B-QD-A的平面角的余弦值.[解析] (1)取AD的中点为O,连接QO,CO.因为QA=QD,OA=OD,则QO⊥AD,而AD=2,QA=,故QO==2.在正方形ABCD中,因为AD=2,故DO=1,故CO=,因为QC=3,故QC2=QO2+OC2,故△QOC为直角三角形且QO⊥OC,因为OC∩AD=O,故QO⊥平面ABCD,因为QO⊂平面QAD,故平面QAD⊥平面ABCD.(2)在平面ABCD内,过O作OT∥CD,交BC于T,则OT⊥AD,结合(1)中的QO⊥平面ABCD,故可建如图所示的空间坐标系.则D(0,1,0),Q(0,0,2),B(2,-1,0),故BQ=(-2,1,2),BD=(-2,2,0).设平面QBD的法向量n=(x,y,z),则即,取x=1,则y=1,z=,故n=.而平面QAD的法向量为m=(1,0,0),故cos〈m,n〉==.二面角B-QD-A的平面角为锐角,故其余弦值为.5.(2021·安徽省淮北市一模)在直角梯形ABCD(如图1)中,∠ABC=90°,BC∥AD,AD=8,AB=BC=4,M为线段AD中点.将△ABC沿AC折起,使平面ABC⊥平面ACD,得到几何体B-ACD(如图2).(1)求证:CD⊥平面ABC;(2)求AB与平面BCM所成角θ的正弦值.[解析] (1)由题设可知AC=4,CD=4,AD=8,∴AD2=CD2+AC2,∴CD⊥AC,又∵平面ABC⊥平面ACD,平面ABC∩平面ACD=AC,∴CD⊥平面ABC.(2)解法一:等体积法取AC的中点O连接OB,由题设可知△ABC为等腰直角三角形,所以OB⊥面ACM,∵V B-ACM=V A-BCM且V B-ACM=S △ACM·BO=,而SΔBCM=4,∴A到面BCM的距离h=,所以sin θ==.解法二:向量法,取AC的中点O,连接OB,由题设可知△ABC为等腰直角三角形,所以OB⊥面ACM,连接OM,因为M、O分别为AD和AC的中点,所以OM∥CD,由(1)可知OM⊥AC,故以OM、OC、OB所在直线为x轴、y轴、z轴建立空间直角坐标系,如图所示.则A(0,-2,0),B(0,0,2),C(0,2,0),M(2,0,0),∴CB=(0,-2,2),CM=(2,-2,0),BA=(0,-2,-2),设平面BCM法向量n=(x,y,z)由得令y=1得n=(1,1,1)∴平面BCM的一个法向量n=(1,1,1),∴sin θ==.6.(2021·山东聊城三模)如图,在平面四边形ABCD中,BC=CD,BC⊥CD,AD⊥BD,以BD为折痕把△ABD折起,使点A到达点P的位置,且PC⊥BC.(1)证明:PD⊥CD;(2)若M为PB的中点,二面角P-BC-D的大小为60°,求直线PC与平面MCD所成角的正弦值.[解析] (1)证明:因为BC⊥CD,BC⊥PC,PC∩CD=C,所以BC⊥平面PCD,又因为PD⊂平面PCD,所以BC⊥PD,又因为PD⊥BD,BD∩BC=B,所以PD⊥平面BCD,又因为CD⊂平面BCD,所以PD⊥CD.(2)因为PC⊥BC,CD⊥BC,所以∠PCD是二面角P-BC-D的平面角,即∠PCD=60°,在Rt△PCD中,PD=CD tan 60°=CD,取BD的中点O,连接OM,OC,因为BC=CD,BC⊥CD,所以OC⊥BD,由(1)知,PD⊥平面BCD,OM为△PBD的中位线,所以OM⊥BD,OM⊥OC,即OM,OC,BD两两垂直,以O为原点,建立如图所示的空间直角坐标系O-xyz,设OB=1,则P(0,1,),C(1,0,0),D(0,1,0),M,CP=(-1,1,),CD=(-1,1,0),CM=,设平面MCD的一个法向量为n=(x,y,z),则由得令z=,得n=(,,),所以cos〈n,CP〉===,所以直线PC与平面MCD所成角的正弦值为.7.(开放题)(2022·云南昆明模拟)如图,在三棱锥A-BCD中,△BCD是边长为2的等边三角形,AB=AC,O是BC的中点,OA⊥CD.(1)证明:平面ABC⊥平面BCD;(2)若E是棱AC上的一点,从①CE=2EA;②二面角E-BD-C大小为60°;③A-BCD的体积为这三个论断中选取两个作为条件,证明另外一个成立.[证明] (1)因为AB=AC,O是BC的中点,所以OA⊥BC,又因为OA⊥CD,所以OA⊥平面BCD,因为OA⊂平面ABC,所以平面ABC⊥平面BCD.(2)连接OD,又因为△BCD是边长为2的等边三角形,所以DO⊥BC,由(1)知OA⊥平面BCD,所以AO,BC,DO两两互相垂直.以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴建立如图所示空间直角坐标系.设|OA|=m,则O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),D(0,,0),若选①②作为条件,证明③成立.因为CE=2EA,所以E,易知平面BCD的法向量为n=(0,0,1),BE=,BD=(-1,,0),设m=(x,y,z)是平面BDE的法向量,则,所以,可取m=,由二面角E-BD-C大小为60°可得cos θ===,解得m=3,所以A-BCD的体积为×2×××3=.若选①③作为条件,证明②成立.因为A-BCD的体积为,所以×2×××|OA|=,解得|OA|=3,又因为CE=2EA,所以E,易知平面BCD的法向量为n=(0,0,1),BE=,BD=,设m=(x,y,z)是平面BDE的法向量,则所以,可取m=,所以cos θ===,即二面角E-BD-C大小为60°.若选②③作为条件,证明①成立.因为A-BCD的体积为,所以×2×××|OA|=,解得|OA|=3,即A(0,0,3),AC=(-1,0,-3),不妨设AE=λAC(0≤λ≤1),所以E(-λ,0,-3λ+3),易知平面BCD的法向量为n=(0,0,1),BE=(-λ-1,0,-3λ+3),BD=(-1,,0),设m=(x,y,z)是平面BDE的法向量,取m=(3(1-λ),(1-λ),λ+1)cos θ===,解得λ=3(舍),λ=,所以CE=2EA.8.(2022·河北石家庄质检)如图,四棱锥P-ABCD中,底面ABCD为正方形,△PAB 为等边三角形,平面PAB⊥底面ABCD,E为AD的中点.(1)求证:CE⊥PD;(2)在线段BD(不包括端点)上是否存在点F,使直线AP与平面PEF所成角的正弦值为,若存在,确定点F的位置;若不存在,请说明理由.[解析] (1)证明:取AB的中点O,连结PO,OD,因为PA=PB,所以PO⊥AB,又因为平面PAB⊥平面ABCD,所以PO⊥底面ABCD,取CD的中点G,连结OG,则OB,OP,OG两两垂直,分别以OB,OG,OP所在直线为x轴,y轴,z轴建立空间直角坐标系(如图所示),设AB=2,则C(1,2,0),P(0,0,),E(-1,1,0),D(-1,2,0),所以CE=(-2,-1,0),PD=(-1,2,-),则CE·PD=2-2=0,故CE⊥PD,所以CE⊥PD.(2)由(1)可知,A(-1,0,0),B(1,0,0),所以PE=(-1,1,-),AP=(1,0,),BD=(-2,2,0),BE=(-2,1,0),设BF=λBD(0<λ<1),则BF=(-2λ,2λ,0),所以EF=BF-BE=(-2λ+2,2λ-1,0),设平面PEF的法向量为n=(x,y,z),令y=1,则x=,z=,故n=,所以|cos〈AP,n〉|===,整理可得9λ2-6λ+1=0,解得λ=,所以在BD上存在点F,使得直线AP与平面PEF所成角的正弦值为,此时点F为靠近点B的三等分点,即BF=BD.。
新课标2023版高考数学一轮总复习第6章立体几何第1节空间几何体教师用书
第一节 空间几何体考试要求:1.认识柱、锥、台及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能用斜二测画法画出简单空间图形(长方体、球、圆锥、棱柱及其简易组合)的直观图.3.知道棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题.一、教材概念·结论·性质重现1.多面体的结构特征互相平行且全等多边形互相平行平行且相等相交于一点但不一定相等延长线交于一点平行四边形三角形梯形相互平行且相等并垂直于底相交于一点延长线交于一圆空间几何体的直观图常用斜二测画法来画,其规则是:(1)“斜”:在直观图中,x′轴、y′轴的夹角为45°或135°.(2)“二测”:图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线,在直观图中长度为原来的一半.画直观图要注意平行,还要注意长度及角度两个要素.4.圆柱、圆锥、圆台的侧面展开图及侧面积公式S圆柱侧=2πrl S圆锥侧=πrl圆台侧=π(r1+.空间几何体的表面积与体积公式名称表面积体积几何体柱体(棱柱和圆柱)S表面积=S侧+2S底V=S 底·h锥体(棱锥和圆锥)S表面积=S侧+S底V=S底·h台体(棱台和圆台)S表面积=S侧+S上+S下V=(S上+S下+)h球S=4πR2V=πR3(1)求棱柱、棱锥、棱台与球的表面积时,要结合它们的结构特点与平面几何知识来解6.常用结论几个与球有关的切、接常用结论:(1)正方体的棱长为a,球的半径为R.①若球为正方体的外接球,则2R=a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.(3)正四面体的外接球与内切球的半径之比为3∶1.解决与球“外接”问题的关键:二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( √ )(4)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × ) 2.如图,长方体ABCD A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是( )A.棱台 B.四棱柱C.五棱柱 D.简单组合体C 解析:由几何体的结构特征知,剩下的几何体为五棱柱.3.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D. cmB 解析:S表=πr2+πrl=πr2+πr·2r=3πr2=12π,所以r2=4,所以r=2 cm.4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12π B.C.8π D.4πA 解析:由题意可知正方体的棱长为2,其体对角线为2即为球的直径,所以球的表面积为4πR2=(2R)2π=12π.故选A.5.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系xOy中,四边形ABCO为__________,面积为________cm2.矩形 8 解析:由斜二测画法的规则可知,在平面直角坐标系xOy中,四边形ABCO是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.考点1 空间几何体的结构特征与直观图——基础性1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A.圆柱B.圆锥C.球D.圆柱、圆锥、球体的组合体C 解析:截面是任意的,且都是圆面,则该几何体为球体.2.下列命题正确的是( )A.以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥B.以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.一个平面截圆锥,得到一个圆锥和一个圆台C 解析:由圆锥、圆台、圆柱的定义可知A,B错误,C正确.对于D,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,D不正确.3.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,C ′D′=2 cm,则原图形是( )A.正方形 B.矩形C.菱形 D.一般的平行四边形C 解析:如图,在原图形OABC中,应有OD=2O′D′=2×2=4(cm),CD=C′D′=2 cm.所以OC===6(cm),所以OA=OC,所以四边形OABC是菱形.4.(多选题)下列命题中正确的是( )A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱C.存在每个面都是直角三角形的四面体D.棱台的上、下底面可以不相似,但侧棱长一定相等BC 解析:A不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;B正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;C正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1 ABC,四个面都是直角三角形;D不正确棱台的上、下底面相似且是对应边平行的多边形,各侧棱的延长线交于一点,但是侧棱长不一定相等.1.解决空间几何体的结构特征的判断问题主要方法是定义法,即紧考点2 空间几何体的表面积与体积——综合性考向1 空间几何体的表面积问题(1)(2021·新高考全国Ⅰ卷)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2 B.2 C.4 D.4B 解析:由题意知圆锥的底面周长为2π.设圆锥的母线长为l,则πl=2π,即l=2.故选B.(2)如图,在三棱柱ABCA1B1C1中,AA1⊥底面ABC,AB⊥BC,AA1=AC=2,直线A 1C 与侧面AA 1B 1B 所成的角为30°,则该三棱柱的侧面积为()A .4+4B .4+4C .12D .8+4A 解析:连接A 1B .因为AA 1⊥底面ABC ,则AA 1⊥BC ,又AB ⊥BC ,AA 1∩AB =A ,所以BC ⊥平面AA 1B 1B ,所以直线A 1C 与侧面AA 1B 1B 所成的角为∠CA 1B =30°.又AA 1=AC =2,所以A 1C =2,所以BC =.又AB ⊥BC ,则AB =,则该三棱柱的侧面积为2×2+2×2=4+4.(3)在如图所示的斜截圆柱中,已知圆柱底面的直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S = cm 2.2 600π 解析:将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =×(50+80)×(π×40)=2 600π(cm 2).求解几何体表面积的类型及求法求多面体的表面积只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积1.一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为_________.12 解析:设正六棱锥的高为h,侧面的斜高为h′.由题意,得×6××2××h=2,所以h=1,所以斜高h′==2,所以S侧=6××2×2=12.2.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,书中将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.已知一个堑堵的底面积为6,体积为的球与其各面均相切,则该堑堵的表面积为________.36 解析:设球的半径为r,底面三角形的周长为l,由已知得r=1,所以堑堵的高为2.则lr=6,l=12,所以表面积S=12×2+6×2=36.考向2 空间几何体的体积问题(1)如图所示,已知三棱柱ABCA1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1ABC1的体积为( )A. B.C. D.A 解析:易知三棱锥B1ABC1的体积等于三棱锥AB1BC1的体积,又三棱锥AB1BC1的高为,底面积为,故其体积为××=.(2)(2021·八省联考)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________.61π 解析:圆台的下底面半径为5,故下底面在外接球的大圆上,如图,设球的球心为O,圆台上底面的圆心为O′,则圆台的高OO′===3.据此可得圆台的体积V=π×3×(52+5×4+42)=61π.求空间几何体的体积的常用方法公式法对于规则几何体的体积问题,可以直接利用公式进行求解割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积等体积法一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.通过选择合适的底面来求几何体体积,主要用来解决有关锥体的体积,特别是三棱锥的体积1.(2021·全国甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.39π 解析:设圆锥的高为h ,母线长为l ,则圆锥的体积V =×π×62×h =30π,解得h =.所以l ===,故圆锥的侧面积S =πrl =π×6×=39π.2.如图,已知体积为V 的三棱柱ABCA 1B 1C 1,P 是棱B 1B 上除B 1,B 以外的任意一点,则四棱锥PAA 1C 1C 的体积_________. 解析:如图,把三棱柱ABCA 1B 1C 1补成平行六面体A 1D 1B 1C 1ADBC .设点P 到平面AA 1C 1C 的距离为h ,则V =S ·h =V =·2V=.考点3 与球有关的切、接问题——综合性考向1 “相切”问题已知正四面体PABC 的表面积为S 1,此四面体的内切球的表面积为S 2,则=________. 解析:设正四面体的棱长为a,则正四面体的表面积为S1=4××a2=a2,其内切球半径r为正四面体高的,即r=×a=a,因此内切球表面积为S2=4πr2=,则==.考向2 “相接”问题已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )A. B. 2C. D.3C 解析:如图所示,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=BC=,OM=AA1=6,所以球O的半径R=OA==.1.已知三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,PA⊥PB,则三棱锥PABC的外接球的体积为( )A.π B.π C.27π D.27πB 解析:因为三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,所以△PAB≌△PBC≌△PAC.因为PA⊥PB,所以PA⊥PC,PC⊥PB.以PA,PB,PC为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥PABC的外接球.因为正方体的体对角线长为=3,所以其外接球半径R=.因此三棱锥PABC的外接球的体积V=×=π.2.(2020·全国Ⅲ卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.π 解析:方法一:如图,在圆锥的轴截面ABC中,CD⊥AB,BD=1,BC=3,圆O内切于△ABC,E为切点,连接OE,则OE⊥BC.在Rt△BCD中,CD==2.易知BE =BD=1,则CE=2.设圆锥的内切球半径为R,则OC=2-R,在Rt△COE中,OC2-OE2=CE2,即(2-R)2-R2=4,所以R=,圆锥内半径最大的球的体积为πR3=π.方法二:如图,记圆锥的轴截面为△ABC,其中AC=BC=3,AB=2,CD⊥AB,在Rt△BCD中,CD==2,则S△ABC=2.设△ABC的内切圆O的半径为R,则R==,所以圆锥内半径最大的球的体积为πR3=π.。
押新高考第19题 立体几何(新高考)(解析版)
立体几何对于立体几何的解答题,在高考中常借助柱、锥体考查线面、平行与垂直,考查利用空间向量求二面角、线面角、线线角的大小,考查利用空间向量探索存在性问题及位置关系等,难度中等偏上.1.用向量法求异面直线所成的角 (1)建立空间直角坐标系; (2)求出两条直线的方向向量;(3)代入公式求解,一般地,异面直线AC ,BD 的夹角β的余弦值为||cos ||||AC BD AC BD β⋅=.2.用向量法求直线与平面所成的角(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 3.用向量法求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 4.平面,αβ所成的二面角为θ,则0πθ≤≤,如图①,AB ,C D 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=,〈〉AB CD .如图②③,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=1212n n n n ,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).1.(2021·湖南·高考真题)如图,四棱锥中,底面ABCD 是矩形,平面ABCD ,E 为PD 的中点.(1)证明:平面ACE ;(2)设,,直线PB 与平面ABCD 所成的角为,求四棱锥的体积.【详解】 (1)连接交于点,连接. 在中,因为,所以,因为平面,平面,则平面.(2)因为平面ABCD ,所以就是直线PB 与平面ABCD 所成的角,所以,又,,所以,所以四棱锥的体积,所以四棱锥的体积为.2.(2021·天津·高考真题)如图,在棱长为2的正方体中,E为棱BC的中点,F为棱CD 的中点.(I)求证:平面;(II)求直线与平面所成角的正弦值.(III)求二面角的正弦值.【详解】(I)以为原点,分别为轴,建立如图空间直角坐标系,则,,,,,,,因为E为棱BC的中点,F为棱CD的中点,所以,,所以,,,设平面的一个法向量为,则,令,则,因为,所以,因为平面,所以平面;(II)由(1)得,,设直线与平面所成角为,则;(III)由正方体的特征可得,平面的一个法向量为,则,所以二面角的正弦值为.3.(2021·浙江·高考真题)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,. (1)证明:;(2)求直线与平面所成角的正弦值.【详解】(1)在中,,,,由余弦定理可得,所以,.由题意且,平面,而平面,所以,又,所以.(2)由,,而与相交,所以平面,因为,所以,取中点,连接,则两两垂直,以点为坐标原点,如图所示,建立空间直角坐标系, 则,又为中点,所以.由(1)得平面,所以平面的一个法向量从而直线与平面所成角的正弦值为.4.(2021·北京·高考真题)如图:在正方体中,为中点,与平面交于点.(1)求证:为的中点;(2)点是棱上一点,且二面角的余弦值为,求的值.【详解】(1)如图所示,取的中点,连结,由于为正方体,为中点,故,从而四点共面,即平面CDE即平面,据此可得:直线交平面于点,当直线与平面相交时只有唯一的交点,故点与点重合,即点为中点.(2)以点为坐标原点,方向分别为轴,轴,轴正方向,建立空间直角坐标系,不妨设正方体的棱长为2,设,则:,从而:,设平面的法向量为:,则:,令可得:,设平面的法向量为:,则:,令可得:,从而:,则:,整理可得:,故(舍去).5.(2021·全国·高考真题)在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.【详解】(1)取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.(2)在平面内,过作,交于,则,结合(1)中的平面,故可建如图所示的空间坐标系.则,故.设平面的法向量, 则即,取,则,故. 而平面的法向量为,故.二面角的平面角为锐角,故其余弦值为.1.(2022·河北秦皇岛·二模)如图,在四棱锥P ABCD -中,PA AB ⊥,PC CD ⊥,BC AD ∥,23πBAD ∠=, 2PA AB BC ===,4=AD .(1)证明:PA ⊥平面ABCD .(2)若M 为PD 的中点,求二面角M AC D --的大小. 【解析】 (1)证明:由题可知ABC 为等边三角形,所以2AC =,3π∠=CAD .在ACD △中,由余弦定理得2224224cos 233CD π=+-⨯⨯=,所以222AC CD AD +=,所以CD AC ⊥. 因为CD PC ⊥,且ACPC C =,所以CD ⊥平面PAC .因为PA ⊂平面PAC ,所以CD PA ⊥. 因为PA AB ⊥,且,AB CD 相交, 所以PA ⊥平面ABCD . (2)以A 为坐标原点,以AD ,AP 的方向分别为y ,z 轴的正方向,建立如图所示的空间直角坐标系A xyz -则()3,1,0C,()0,2,1M .设平面MAC 的法向量为(),,n x y z =,则30,20,n AC x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩令1x =,得()1,3,23n =-. 取平面ACD 的一个法向量为()0,0,1m =, 则233cos ,142⋅<>===⨯m n m n m n. 由图可知二面角M AC D --为锐角,所以二面角M AC D --的大小为6π.2.(2022·湖南永州·三模)如图,在三棱柱111ABC A B C -中,112AB AA AC BC ====.(1)求证:11A B B C ⊥;(2)若2AC =,160ABB ∠=,点M 满足132AM MC =,求二面角11A A B M --的余弦值. 【解析】 (1)连接11,A B AB 交于点O ,连接OC ,四边形11ABB A 为菱形,11A B AB ∴⊥,O 为1A B 中点, 又1CA CB =,1A B OC ∴⊥, 1AB OC O =,1,AB CO ⊂平面1ACB ,1A B ∴⊥平面1ACB ,又1B C ⊂平面1ACB ,11A B B C ∴⊥. (2)160ABB ∠=,12AB AA ==,3OB ∴=,1OA =,在Rt OBC 中,222OC BC OB =-,1OC ∴=, 在OAC 中,有222OA OC AC +=,OC OA ∴⊥,又OA OB O =,,OA OB ⊂平面11ABB A ,OC ∴⊥平面11ABB A ,则以O 为坐标原点,,,OA OB OC 为,,x y z 轴可建立如图所示空间直角坐标系,则()1,0,0A ,()10,3,0A -,()11,0,0B -,()0,0,1C ,()11,3,1C --,()12,3,1AC ∴=--,设(),,M x y z ,则()1,,AM x y z =-,()11,3,1MC x y z =---,132AM MC =,()()()()3121323321x x y y z z ⎧-=--⎪⎪∴=-⎨⎪=-⎪⎩,解得:152325x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,1232,55M ⎛⎫∴ ⎪ ⎪⎝⎭,1133255A M ⎛⎫∴= ⎪ ⎪⎝⎭,()113,0A B =-,设平面11MA B 的法向量(),,n a b c =,1111332055530A M n a c A B n a b ⎧⋅=++=⎪∴⎨⎪⋅=-+=⎩,令1b =,解得:3a =3c =-(3,1,23n ∴=-;又OC ⊥平面11ABB A ,则平面11AA B 的一个法向量为()0,0,1m =,3cos ,2m n m n m n⋅∴<>==⋅,又二面角11A A B M --为锐二面角,∴二面角11A A B M --的余弦值为32. 3.(2022·江苏·南京市第一中学三模)在正三棱柱111ABC A B C -中,122AA AB ==.D 为1CC 中点,E 为1B D 上一点.(1)求四棱锥11A BB C C -的体积;(2)若1B E CE CD +=,求三棱锥1D AEC -的体积. 【解析】 (1)解:取BC 的中点为O ,因为三棱柱111ABC A B C -为正三棱柱,所以ABC 为正三角形,四边形11BB C C 为矩形,且1C C ⊥平面ABC , 所以1C C AO ⊥,AO BC ⊥,又1BC CC C =, 所以AO ⊥平面11BB C C ,即为四棱锥11A BB C C -的高, 又122AA AB ==,所以32AO =, 所以四棱锥11A BB C C -的体积11111133123323A BBC C BB C C V S AO -=⋅=⨯⨯⨯=;(2)解:因为1B E CE CD +=,即1B E CD CE ED =-=,所以E 为1B D 的中点,所以11111111111111133112223232224E ADC B ADC A B C D D AEC B C DV V V V SAO ----====⨯⨯=⨯⨯⨯⨯⨯=. 4.(2022·广东汕头·二模)如图所示,C 为半圆锥顶点,O 为圆锥底面圆心,BD 为底面直径,A 为弧BD 中点.BCD △是边长为2的等边三角形,弦AD 上点E 使得二面角E BC D --的大小为30°,且AE t AD =.(1)求t 的值;(2)对于平面ACD 内的动点P 总有OP //平面BEC ,请指出P 的轨迹,并说明该轨迹上任意点P 都使得OP //平面BEC 的理由. 【解析】 (1)易知OC ⊥面ABD ,OA BD ⊥,以,,OD OA OC 所在直线为,,x y z 轴建立如图的空间直角坐标系,则(0,1,0),(1,0,0),(1,0,0),3)A B D C -,(1,0,3),(1,1,0),(1,1,0)BC AD BA ==-=,()1,1,0(1,1,0)(1,1,0)BE BA AE BA t AD t t t =+=+=+-=+-,易知面BCD 的一个法向量为(0,1,0)OA =,设面BCE 的法向量为(,,)n x y z =,则30(1)(1)0n BC x z n BE t x t y ⎧⋅=+=⎪⎨⋅=++-=⎪⎩,令1x =,则13(1,,)13t n t +=--, 可得222131cos30213113t OA n t OA nt t +⋅-===⋅⎛⎫+⎛⎫++- ⎪ ⎪-⎝⎭⎝⎭,解得13t =或3,又点E 在弦AD 上,故13t =. (2)P 的轨迹为过AD 靠近D 的三等分点及CD 中点的直线,证明如下: 取AD 靠近D 的三等分点即DE 中点M ,CD 中点N ,连接,,MN OM ON , 由O 为BD 中点,易知ON BC ∥,又ON ⊄面BEC ,BC ⊂面BEC , 所以ON //平面BEC ,又MN EC ∥,MN ⊄面BEC ,CE ⊂面BEC ,所以MN //平面BEC , 又ON MN N ⋂=,所以面OMN //平面BEC ,即O 和MN 所在直线上任意一点连线都平行于平面BEC , 又MN ⊂面ACD ,故P 的轨迹即为MN 所在直线, 即过AD 靠近D 的三等分点及CD 中点的直线.5.(2022·福建·模拟预测)如图,在四棱锥P ABCD -中,四边形ABCD 是菱形,60BAD BPD ∠=∠=︒,2PB PD ==.(1)证明:平面PAC ⊥平面ABCD ;(2)若二面角P BD A --的余弦值为13,求二面角B PA D --的正弦值.【解析】 (1) 设ACBD O =,连接PO ,在菱形ABCD 中,O 为BD 中点,且BD AC ⊥, 因为PB PD =,所以BD PO ⊥, 又因为POAC O =,且PO ,AC ⊂平面PAC ,所以BD ⊥平面PAC ,因为BD ⊂平面ABCD ,所以平面PAC ⊥平面ABCD ; (2)作OM ⊥平面ABCD ,以{},,OA OB OM 为x ,y ,z 轴,建立空间直角坐标系,易知2PB PD BD AB AD =====,则3OA OP ==,1OB =, 因为OA BD ⊥,OP BD ⊥,所以POA ∠为二面角P BD A --的平面角,所以1cos 3POA ∠=,则326,0,33P ⎛⎫ ⎪ ⎪⎝⎭,()3,0,0A ,()0,1,0B ,()0,1,0D -,所以()3,1,0AD =--,()3,1,0AB =-,2326,0,33AP ⎛⎫=- ⎪ ⎪⎝⎭, 设平面PAB 的法向量为()111,,m x y z =,由00m AB m AP ⎧⋅=⎨⋅=⎩,得1111302326033x y x z ⎧-+=⎪⎨-+=⎪⎩ 取11z =,则12x =,16y =,所以()2,6,1m =,设平面PAD 的法向量为()222,,n x y z =,由00n AD n AP ⎧⋅=⎨⋅=⎩,得2222302326033x y x z ⎧--=⎪⎨-+=⎪⎩ 取21z =,则22x =,26y =-,所以()2,6,1n =-,设二面角B PA D --为θ,则2611cos 3261261m n m nθ⋅-+===++⋅++⋅,又[]0,πθ∈,则222sin 1cos 3θθ=-=.(限时:30分钟)1.如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M ,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①7AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由; (2)求二面角A MN B --的正弦值.【详解】(1)若选①:7AD =在Rt BCD 中,2BC =,1CD =,3BD =,2AB =, 可得222AB BD AD +=,所以AB BD ⊥, 又由AB BC ⊥,且BCBD B =,,BC BD ⊂平面CBD ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 又因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,可得CD AD ⊥, 又由CD BD ⊥,且ADBD D =,,AD BD ⊂平面ABD ,所以CD ⊥平面ABD ,因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选③:平面ABC ⊥平面BCD ,平面ABC 平面BCD BC =,因为AB BC ⊥,且AB平面ABC ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . (2)以D 为原点,射线OB 为y 轴建立如图直角坐标系,则()3,2A ,()3,0B ,()1,0,0C -,13,,122M ⎛⎫- ⎪ ⎪⎝⎭,30,2N ⎛⎫⎪ ⎪⎝⎭可得1,0,02MN ⎛⎫= ⎪⎝⎭,30,1AN ⎛⎫=- ⎪ ⎪⎝⎭,30,BN ⎛⎫= ⎪ ⎪⎝⎭ 设平面AMN 的法向量为()111,,m x y z =,则111102302m MN x m AN y z ⎧⋅==⎪⎪⎨⎪⋅=--=⎪⎩,取13y =1130,2x z ==-,所以30,3,2m ⎛⎫=- ⎪⎝⎭设平面BMN 的法向量为()222,,n x y z =,则222102302n MN x n BN y z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩, 取23y =,可得30,3,2n ⎛⎫= ⎪⎝⎭,所以9314cos ,9734m n m n m n -⋅===⋅+,故二面角A MN B --的正弦值437.2.如图,在三棱锥A BCD -中,ABC 是边长为3的等边三角形,CD CB =,CD ⊥平面ABC ,点M 、N 分别为AC 、CD 的中点,点P 为线段BD 上一点,且//BM 平面APN .(1)求证:BM AN ⊥;(2)求平面APN 与平面ABC 所成角的正弦值. 【详解】(1)证明:因为CD ⊥面ABC ,BM ⊂面ABC ,所以CD BM ⊥.又∵正ABC 中,AM MC BM AC =⇒⊥,∴BM CDBM AC BM CD AC C ⊥⎫⎪⊥⇒⊥⎬⎪⋂=⎭面ACD , ∴BM AN ⊥.(2)解:连接MD 交AN 于G 点,连接PG ,因为//BM平面APN ,所以//BM PG ,由重心性质知P 为靠近B 点的三等分点.∴()0,0,0C ,3330,,22A ⎛⎫ ⎪ ⎪⎝⎭,()0,3,0B ,()1,2,0P ,3,0,02N ⎛⎫⎪⎝⎭, 设面APN 的法向量为(),,n x y z =,0AP n ⋅=,0AN n ⋅=,∴13302233330222x y z x y z ⎧+-=⎪⎪⎨⎪--=⎪⎩,令4x =,则1,3y z == ∴()4,1,3n =,平面ABC 的法向量为()1,0,0u =,425cos ,51613u v ==++, ∴平面APN 与平面ABC 所成角的正弦值为55.3.如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M ,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①7AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由;(2)求三棱锥A MNB -的体积.【详解】(1)若选①:7AD =Rt BCD 中,2BC =,1CD =,可得3BD =,又由2AB =,所以222AB BD AD +=,所以AB BD ⊥,因为AB BC ⊥,且BC BD B =,,BC BC ⊂平面CBD ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,AB BD B =且,AB BD ⊂平面ABD ,所以CD ⊥平面ABD ,又因为M ,N 分别为AC ,AD 中点,所以//MN CD ,所以MN ⊥平面ABD .若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,CD AD ⊥,因为CD BD ⊥,可证得CD ⊥平面ABD ,又M ,N 分别为AC ,AD 中点,//MN CD ,所以MN ⊥平面ABD .若选③:平面ABC ⊥平面BCD ,平面ABC平面BCD BC =, 因为AB BC ⊥,且AB 平面ABC ,所以AB ⊥平面CBD ,又由CD ⊂平面CBD ,所以AB CD ⊥,因为CD BD ⊥,AB BD B =且,AB BD ⊂平面ABD ,所以CD ⊥平面ABD ,又因为M ,N 分别为AC ,AD 中点,//MN CD ,所以MN ⊥平面ABD .(2)由(1)知MN ⊥平面ABD ,其中ABD △为直角三角形, 可得3122ANB ADB S S ==△△,1122MN CD ==, 故三棱锥A MNB -的体积为131332A MNB M ABN V V --===.4.如图,在四棱锥P ABCD -中,//AB CD ,AB ⊥平面PAD ,24PA AD DC AB ====,27PD =,M 是PC 的中点.(1)证明:平面ABM ⊥平面PCD ;(2)求三棱锥M PAB -的体积.【详解】(1)取PD 中点N ,连接MN ,AN ,因为PA AD =,所以AN PD ⊥,由AB ⊥平面PAD ,PD ⊂平面PAD ,所以AB PD ⊥,又由AN AB A =,且,AN AB ⊂平面ABN ,所以PD ⊥平面ABN ,因为MN 是PCD ∆中位线,所以////AB CD MN ,四边形ABMN 是平行四边形,于是PD ⊥平而ABM ,PD ⊂平面PCD ,所以平面ABM ⊥平面PCD .(2)由(1)可得//MN AB ,且AB平面PAB ,所以//MN 平面PAB , 所以AB M P N PAB B NAP V V V ---==,因为AB ⊥平面PAD ,可得13B NAP NAP V S AB -∆=⨯, 又由4AP =,7=PN ,AN PD ⊥, 所以2473AN -=,137732NAP S ∆== 所以137273B NAP V -==5.如图,三棱柱111ABC A B C -中,13AA AB ==,2BC =,E ,P 分别是11B C 和1CC 的中点,点F 在棱11A B 上,且12B F =.(1)证明:1//A P 平面EFC ;(2)若1AA ⊥底面ABC ,AB BC ⊥,求二面角P CF E --的余弦值.【详解】(1)证明:如图,连接1PB 交CE 于点D ,连接DF ,EP ,1CB .因为E ,P 分别是11B C 和1CC 的中点, 故11//2EP CB ,故112PD DB =. 又12B F =,113A B =,故1112A F FB =,故1//FD A P . 又FD ⊂平面EFC ,所以1//A P 平面EFC . (2)由题意知AB ,BC ,1BB 两两垂直,以B 为坐标原点,以1BB 的方向为z 轴正方向,分别以BA ,BC 为x 轴和y 轴的正方向,建立如图所示空间直角坐标系B xyz -.则()0,2,0C ,()10,0,3B ,()2,0,3F ,()0,1,3E ,30,2,2P ⎛⎫ ⎪⎝⎭. 设()111,,n x y z =为平面EFC 的法向量, 则00n EF n EC ⎧⋅=⎨⋅=⎩,即11112030x y y z -=⎧⎨-=⎩,可取3,3,12n ⎛⎫= ⎪⎝⎭. 设()222,,m x y z =为平面PFC 的法向量,则00m PF m PC ⎧⋅=⎨⋅=⎩,即222232202302x y z z ⎧-+=⎪⎪⎨⎪=⎪⎩,可取()1,1,0m =.所以233922cos ,14391112n m n m n m +⋅===⎛⎫++⨯+ ⎪⎝⎭. 由题意知二面角P CF E --为锐角, 所以二面角P CF E --的余弦值为214.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B 1C BADC 1A 11.【2012高考重庆文20】(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分) 已知直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点。
(Ⅰ)求异面直线1CC 和AB 的距离;(Ⅱ)若11AB A C ⊥,求二面角11A CD B --的平面角的余弦值。
【解析】(Ⅰ)如答(20)图1,因AC=BC , D 为AB 的中点,故CD ⊥AB 。
又直三棱柱中,1CC ⊥ 面ABC ,故1CD CC ⊥ ,所以异面直线1CC 和AB 的距离为225BC BD -=(Ⅱ):由1CD ,CD ,AB BB ⊥⊥故CD ⊥ 面11A ABB ,从而1CD DA ⊥ ,1CD DB ⊥故11A DB ∠ 为所求的二面角11A CD B --的平面角。
因1A D 是1A C 在面11A ABB 上的射影,又已知11C,AB A ⊥ 由三垂线定理的逆定理得11D,AB A ⊥从而11A AB ∠,1A DA ∠都与1B AB ∠互余,因此111A AB A DA ∠=∠,所以1Rt A AD ≌11Rt B A A ,因此1111AA A B AD AA =得21118AA AD A B =⋅= 从而22111123,23A D AA AD B D A D +===所以在11A DB 中,由余弦定理得222111111111cos 23A D DB A B A DB A D DB +-==⋅2.【2012高考新课标文19】(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 【答案】3.【2012高考陕西文18】(本小题满分12分) 直三棱柱ABC- A 1B 1C 1中,AB=A A 1 ,CAB ∠=2π(Ⅰ)证明11B A C B ⊥;(Ⅱ)已知AB=2,BC=5,求三棱锥11C A AB - 的体积 【答案】4.【2012高考辽宁文18】(本小题满分12分)如图,直三棱柱///ABC A B C -,90BAC ∠=,2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。
(Ⅰ)证明:MN ∥平面//A ACC ; (Ⅱ)求三棱锥/A MNC -的体积。
(椎体体积公式V=13Sh,其中S 为地面面积,h 为高)5.【2012高考江苏16】(14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .【答案】证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC 。
又∵AD ⊂平面ABC ,∴1CC AD ⊥。
又∵1AD DE CC DE ⊥⊂,,平面111BCC B CC DE E =,,∴AD ⊥平面11BCC B 。
BC C 1B 1又∵AD ⊂平面ADE ,∴平面ADE ⊥平面11BCC B 。
(2)∵1111A B AC =,F 为11B C 的中点,∴111A F B C ⊥。
又∵1CC ⊥平面111A B C ,且1A F ⊂平面111A B C ,∴11CC A F ⊥。
又∵111 CC B C ⊂,平面11BCC B ,1111CC B C C =,∴1A F ⊥平面111A B C 。
由(1)知,AD ⊥平面11BCC B ,∴1A F ∥AD 。
又∵AD ⊂平面1, ADE A F ∉平面ADE ,∴直线1//A F 平面ADE 6. (2013新课标Ⅱ)18.(本小题满分12分)如图,直棱柱111ABC A B C -中,,D E 分别是1,AB BB 的中点,122AA AC CB AB ===. (Ⅰ)证明:1//BC 平面1A CD ; (Ⅱ)求二面角1D A C E --的正弦值.7. (2013新课标1卷18)如图,三棱柱111C B A ABC -中,CB CA =,1AA AB =,0160=∠BAACB1A 1(1)证明:C A AB 1⊥;(2)若平面ABC ⊥平面B B AA 11,CB AB =,求直线C A 1与平面C C BB 11所成角的正弦值解:(Ⅰ)取AB 中点E ,连结CE ,1A B ,1A E , ∵AB=1AA ,1BAA ∠=060,∴1BAA ∆是正三角形, ∴1A E ⊥AB , ∵CA=CB , ∴CE ⊥AB , ∵1CE A E ⋂=E ,∴AB ⊥面1CEA , ∴AB ⊥1AC ; ……6分 (Ⅱ)由(Ⅰ)知EC ⊥AB ,1EA ⊥AB ,又∵面ABC ⊥面11ABB A ,面ABC ∩面11ABB A =AB ,∴EC ⊥面11ABB A ,∴EC ⊥1EA , ∴EA ,EC ,1EA 两两相互垂直,以E 为坐标原点,EA 的方向为x 轴正方向,|EA |为单位长度,建立如图所示空间直角坐标系O xyz -, 有题设知A(1,0,0),1A (0,3,0),C(0,0,3),B(-1,0,0),则BC =(1,0,3),1BB =1AA =(-31AC =(0,33), ……9分设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧•=⎪⎨•=⎪⎩n n ,即3030x z x ⎧=⎪⎨=⎪⎩,可取n =3,1,-1), ∴1cos ,A C n =11|A C A C •n |n ||10∴直线A 1C 与平面BB 1C 1C 所成角的正弦值为10……12分 8.(2013北京卷理17)如图,在三棱柱111C B A ABC -中,C C AA 11是边长为4的正方形,平面⊥ABC 平面C C AA 11,5,3==BC AB . (1)求证:⊥1AA 平面ABC ;(2)求二面角111B BC A --的余弦值;(3)证明:在线段1BC 上存在点D ,使得B A AD 1⊥,并求1BC BD的值。
解:(I )因为AA 1C 1C 为正方形,所以AA 1 ⊥AC.因为平面ABC ⊥平面AA 1C 1C,且AA 1垂直于这两个平面的交线AC,所以AA 1⊥平面ABC.(II)由(I )知AA 1 ⊥AC ,AA 1 ⊥AB. 由题知AB=3,BC=5,AC=4,所以AB ⊥AC. 如图,以A 为原点建立空间直角坐标系A -xyz ,则B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),设平面A 1BC 1的法向量为,,)x y z n =(,则11100A B A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,即34040y z x -=⎧⎨=⎩,令3z =,则0x =,4y =,所以(0,4,3)n =.同理可得,平面BB 1C 1的法向量为(3,4,0)m =,所以16cos 25⋅==n m n,m |n ||m |. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (III)设D (,,)x y z 是直线BC1上一点,且1BD BC λ=. 所以(,3,)(4,3,4)x y z λ-=-.解得4x λ=,33y λ=-,4z λ=.所以(4,33,4)AD λλλ=-.由1·0AD A B =,即9250λ-=.解得925λ=. 因为9[0,1]25∈,所以在线段BC 1上存在点D , 使得AD ⊥A 1B. 此时,1925BD BC λ==. 9.(2013四川卷理19)如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.DC 1A P解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1A BC 外,。
BC 在平面1A BC 内,由直线与平面平行的判定定理可知,l //平面1A BC .由已知,AB AC =,D 是BC 的中点,所以,BC AD ⊥,则直线l AD ⊥.因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面11ADD A 内,且AD 与1AA 相交,所以直线平面11ADD A . …………………………………………………………………………….6分()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF A M ⊥于F ,连接AF . 由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN . 所以AE ⊥平面1A MN ,则1A M AE ⊥. 所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A A M N --的平面角(设为θ).设11AA =,则由12AB AC AA ==,120BAC ∠=,有60BAD ∠=,2,1AB AD ==. 又P 为AD 的中点,所以M 为AB 的中点,且1,12AP AM ==, 在1Rt AA P 中, 15A P =;在1Rt A AM 中, 12AM =从而,115AA AP AE A P •==,112AA AM AF A M •==,所以2sin 5AE AF θ==. 所以22215cos 1sin 15θθ⎛⎫=-=-= ⎪ ⎪⎝⎭. 故二面角1A A M N --15………………12分 解法二:设11AA =.如图,过1A 作1A E 平行于11B C ,以1A 为坐标原点,分别以111,AE AD ,1AA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点1A 重合). 则()10,0,0A ,()0,0,1A .因为P 为AD 的中点,所以,M N 分别为,AB AC 的中点,故11,1,,12222M N ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以131,12A M ⎛⎫= ⎪⎪⎝⎭,()10,0,1A A =,()3,0,0NM =.设平面1AA M 的一个法向量为()1111,,n x y z =,则1111,,n A M n A A ⎧⊥⎪⎨⊥⎪⎩即11110,0,n A M n A A ⎧•=⎪⎨•=⎪⎩故有 ()()()1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫•=⎪ ⎪ ⎪⎨⎝⎭⎪•=⎩ 从而111110,220.x y z z ++=⎪⎨⎪=⎩取11x =,则1y =所以()11,n =. 设平面1A MN 的一个法向量为()2222,,n x y z =,则212,,n A M n NM ⎧⊥⎪⎨⊥⎪⎩即2120,0,n A M n NM ⎧•=⎪⎨•=⎪⎩故有()())2222221,,,10,2,,0,x y z x y z ⎧⎫•=⎪⎪⎪⎪⎝⎭⎨⎪•=⎪⎩ 从而222210,20.y z ++=⎨⎪=⎩取22y =,则21z =-,所以()20,2,1n =-. 设二面角1A A M N --的平面角为θ,又θ为锐角,则1212cos 5n n n n θ•===•.1B 11EA 1C 1A C故二面角1A A M N -- ………………12分 10. (2013湖南卷文17)如图,在直棱柱111C B A ABC -中,090=∠BAC ,2==AC AB ,31=AA ,D 是BC 中点,点E 在棱1BB 上运动。