高考数学第二轮专题复习教案高三数学综合练习六

合集下载

高三数学二轮专题复习教案――数列.docx

高三数学二轮专题复习教案――数列.docx

高三数学二轮专题复习教案――数列一、本章知识结构:二、重点知识回顾1.数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.a n S1( n 1)a n S n S n Sn 1(n ≥ 2)(4)与的关系:.2.等差数列和等比数列的比较(1)定义:从第 2 项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2 项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列.(2)递推公式:a n1a n d, a n 1a n·q, q 0, n N .(3)通项公式:a n a1(n 1)d, a n a1q n 1, n N.(4)性质等差数列的主要性质:①单调性: d ≥0 时为递增数列, d ≤ 0 时为递减数列, d 0 时为常数列.②若mn p q ,则aman a p a q (m, n,p,qN ).特别地,当 m n 2 p时,有ama n2a p.③an a m(n m)d(m, n N ) .④Sk,S2kSk,S3 kS2k,成等差数列.等比数列的主要性质:,a10a1,a10a1 00①单调性:当0q 1 或 q 1时,为递增数列;当q,,或q1时,为1递减数列;当q0时,为摆动数列;当q1时,为常数列.②若m npa ·a a ·a (m,n,p,q N ).特别地,若mn 2 p ,q,则m n p q则a m·a n a p2.a n q n m ( m, n N , q 0)③am.④ S k, S2k S k, S3k S2k,,当 q1时为等比数列;当q1时,若 k 为偶数,不是等比数列.若k为奇数,是公比为1的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质例 1.( 2008 深圳模拟)已知数列{ a}的前 n项和 S12n n 2 .n n(1)求数列{ an}的通项公式;(2)求数列{| an|}的前 n项和 T n .解:( 1)当n1时, a1S112 11211 ;、当n时S nSn 1(12n n2)[12(n1)(n 1)2]132n. ,2 ,a na也符合132n的形式.所以 ,数列{ a}的通项公式为 an13 2n.1n、11( 2)令a n132n0, 又 n N * , 解得 n 6.n 6时,T n| a1 || a2|| a n| a1a2a n S n12n n 2;当当n6 ,T n| a1 | | a2 || a6 | | a7 || a n |a1 a2a6a7a8a n2S6S2(12 6 62 )(12 n n2 ) n 212n72. nT n 12n n 2 , n6,n212n 72, n 6.综上,点评:本题考查了数列的前n 项与数列的通项公式之间的关系,特别要注意n=1时情况,在解题时经常会忘记。

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。

新高考新教材高考数学二轮复习专题检测6函数与导数pptx课件

新高考新教材高考数学二轮复习专题检测6函数与导数pptx课件

却,经过10 min物体的温度为50 ℃,则若使物体的温度为20 ℃,需要冷却
( C )
A.17.5 min
B.25.5 min
C.30 min
D.32.5 min
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
解析 由题意得 50=10+(90-10)e
( D )
2.(2023 北京,4)下列函数中,在区间(0,+∞)上单调递增的是( C )
A.f(x)=-ln x
1
C.f(x)=
1
B.f(x)=2
D.f(x)=3|x-1|
解析 因为 y=ln x 在(0,+∞)上单调递增,所以 f(x)=-ln x 在(0,+∞)上单调递减,
故 A 错误;
3
3 +2
g(x)= ,则函数
3 +2
x≠0,所以-a=
.


f(x)存在 3 个零点等价于函数
y=-a 有三个不同的交点.
2(3 -1)
g'(x)= 2 .当

3 +2
g(x)= 的图象与直线
x>1 时,g'(x)>0,
函数 g(x)在(1,+∞)内单调递增,
当 x<1 且 x≠0 时,g'(x)<0,
专题检测六
函数与导数
单项选择题
lg, > 0,
1.(2023 广东高三学业考试)已知函数 f(x)=
若 a=f
2 , < 0,
A.-2
解析 a=f
B.-1

高考数学二轮复习专题教案2.doc

高考数学二轮复习专题教案2.doc

宿羊山高中校本数学二轮复习精品学案系列――第二课时 常用逻辑用语★高考趋势★考点1、命题的四种形式1、给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 .2、命题“,221a b a b >>-则”的否命题是____________________________________.3、给出下列四个命题,其中不正确命题的序号是 . (1) 若Z k k ∈=-=,2,cos cos πβαβα则; (2) 函数)32cos(2π+=x y 的图象关于x=12π对称; (3) 函数))(cos(sin R x x y ∈=为偶函数; (4) 函数||sin x y =是周期函数,且周期为2π; 考点2、必要条件、充分条件、充分必要条件4、命题:p 2{|0}a M x x x ∈=-<;命题:q {|||2}a N x x ∈=<,p 是q 的 条件. (从充分不必要、必要不充分、充要、既不充分也不必要选择)5、已知p :一4<x -a <4,q :(x 一2)(3一x)>0,若¬p 是¬q 的充分条件,则实数a 的取值范围是6、若f (x )是R 上的增函数,且f (-1)=-4, f (2)=2, 设(){}(){}|2,|4P x f x t Q x f x =+<<-=,若x P x Q ∈∈“”是“”的 充分不必要条件,则实数t 的取值范围是 . 考点3、简单的逻辑联结词7、条件P :21>+x ,条件Q :131>-x,则P ⌝是Q ⌝的 条件(从充分不必要、必要不充分、充要、既不充分也不必要选择)8、已知命题;2|2:|≥-x p 命题Z x q ∈:.如果”“”“q q p ⌝与且同时为假命题,则满足条件的x 的集合为 . 考点4、全称量词与存在量词9、若命题2:,210p x x ∀∈+>R ,则该命题的否定是10、若命题“x ∃∈R ,使得2(1)10x a x +-+<”是真命题,则实数a 的取值范围是 .二 感悟解答1、答:1;解析:设(),,m nf x x m n =其中都是整数且mn不可约,分别就正负与奇偶情况明确幂函数的单调性、奇偶性及图象所在限象,判断出原命题正确,可知它的逆否命题也正确;而其逆命题“若函数()y f x =的图象不过第四象限,则函数()y f x =是幂函数”为假,故其否命题亦假。

高三数学第二轮复习教案

高三数学第二轮复习教案

高三数学第二轮复习教案第5讲 解析几何问题的题型与方法(二)七、强化训练1、已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PF 21tan 21=∠F PF ,则椭圆的离心率为 ( )(A )21 (B )32 (C )31 (D )352、已知△ABC 的顶点A (3,-1),AB 边上的中线所在直线的方程为6x +10y -59=0,∠B 的平分线所在直线的方程为:x -4y +10=0,求边BC 所在直线的方程。

3、求直线l 2:7x -y +4=0到l 1:x +y -2=0的角平分线的方程。

4、已知三种食物P 、Q 、R 的维生素含量与成本如下表所示。

现在将xk g 的食物P 和yk g 的食物Q 及zk g 的食物R 混合,制成100k g 的混合物.如果这100k g 的混合物中至少含维生素A44 000单位与维生素B48 000单位,那么x ,y ,z 为何值时,混合物的成本最小?5、某人有楼房一幢,室内面积共180 m 2,拟分隔成两类房间作为旅游客房.大房间每间面积为18m 2,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15 m 2,可住游客3名,每名游客每天住宿费为50元.装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?6、已知△ABC 三边所在直线方程AB :x -6=0,BC :x -2y -8=0,CA :x +2y =0,求此三角形外接圆的方程。

7、已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,若过点A ,斜率为1的直线被椭圆截得的弦长为3134,求点A 的坐标。

8、已知椭圆12222=+by a x (a >b >0)上两点A 、B ,直线k x y l +=:上有两点C 、D ,且ABCD 是正方形。

高考数学第二轮教案模板

高考数学第二轮教案模板

高考数学第二轮教案模板教案标题:高考数学第二轮教案模板教学目标:1. 理解高考数学第二轮考试的要求和题型分布。

2. 熟悉解答高考数学第二轮考试中的各类题目的方法和技巧。

3. 提高学生的解题能力和应试水平。

教学内容:1. 复习和巩固高中数学重点知识点,包括概率、函数、三角函数、导数等内容。

2 了解高考数学第二轮考试的题型和难度分布。

3. 分析和掌握解答高考数学第二轮考试中的典型题目的解题方法和策略。

教学过程:一、导入(5分钟)通过复习一些基本的概念和方法引入今天的教学内容,让学生重新温习相关的知识点,并激发他们的学习兴趣。

二、介绍高考数学第二轮考试(10分钟)向学生介绍高考数学第二轮考试的大致分值分布和题型,以及这些题目所涉及的知识点和解题思路。

同时,解释考试中常见的易错点和解题陷阱,帮助学生避免在考试中犯类似错误。

三、讲解典型题目解题方法(30分钟)选择一些典型的高考数学第二轮考试题目进行详细的讲解和分析,包括题目的解题思路、关键步骤、常用方法和技巧等。

通过这些例题的讲解,帮助学生理解题目的解题思路和方法,并学会运用到实际的解题过程中。

四、练习与讨论(25分钟)组织学生进行相关的练习题目,在练习中学生可以自主解题,或小组合作解答。

鼓励学生互相讨论、交流解题思路,并引导他们思考不同解法的优缺点。

五、总结与反思(10分钟)针对今天的教学内容进行总结,帮助学生梳理重点和难点,回顾解题方法和策略。

同时,鼓励学生提出问题和疑惑,并进行解答和讨论,以加深学生对知识的理解和掌握。

六、作业布置(5分钟)布置与今天教学内容相关的作业,以巩固学生的学习成果和拓展他们的解题能力。

鼓励学生在独立完成作业的过程中,能够灵活运用所学的方法和技巧。

教学示范:教师在教学过程中可以通过多媒体、板书、讲解和讨论等方式进行教学。

在解题过程中,教师可以给学生提供一些提示和引导,使学生能够更好地理解和掌握解题方法。

教学评估:可以通过课堂练习和讨论中的学生表现来评估他们对教学内容的理解和掌握程度。

2012届高考数学第二轮考点专题复习教案

2012届高考数学第二轮考点专题复习教案

导数应用的题型与方法一.复习目标:1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, logx的a导数)。

掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。

能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。

4.了解复合函数的概念。

会将一个函数的复合过程进行分解或将几个函数进行复合。

掌握复合函数的求导法则,并会用法则解决一些简单问题。

二.考试要求:⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。

⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, logx的a导数)。

掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。

⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。

三.教学过程:(Ⅰ)基础知识详析导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。

高考数学二轮复习专题教案

高考数学二轮复习专题教案

集合与简易逻辑一、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。

二、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,...};②描述法。

2、两类关系:(1)元素与集合的关系,用或表示;(2)集合与集合的关系,用,,=表示,当AB时,称A是B的子集;当AB时,称A 是B的真子集。

3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题4、注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A≠两种可能,此时应分类讨论例1、下面四个命题正确的是(A)10以内的质数集合是{1,3,5,7} (B)方程x2-4x+4=0的解集是{2,2}(C)0与{0}表示同一个集合(D)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}解:选(D),最小的质数是2,不是1,故(A)错;由集合的定义可知(B)(C)都错。

例2、已知集合A=-1,3,2-1,集合B=3,.若BA,则实数=.解:由BA,且不可能等于-1,可知=2-1,解得:=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20课时 高三数学综合练习六
1、a =(0,-1),b =(2cos θ,2sin θ),θ∈(,2π
π)
,则a 与b 的夹角为__________ 2、若复数z 1=a+2i ,z 2=3-4i ,且z 1/z 2为纯虚数,则实数a 的值为__________
3、若a +b +c =0,且|a |=3,|b |=1,|c |=4,则a ·b +b ·c +c ·a =______
4、△ABC 的外接圆的圆心为O ,两条边上高的交点为H ,)(m ++=,则m=_________
5、△ABC 中,,,0CB a CA b a b ==⋅< ,S △ABC =4
15,|a |=3,|b |=5,则a 与b 的夹角为__________
6、平面直角坐标系中,已知A (3,1),B (-1,3),若点C 满足OB OA OC βα+=,其中α∈R ,β∈R ,且α+β=2,则点C 的轨迹方程为__________
7、若P 为△ABC 的外心,且PC PB PA =+,则△ABC 的内角C=__________
8、已知a =(2cos α,2sin α),b =(3cos β,3sin β),且a 与b 的夹角为60度,则直线xcos α-ysin α+21=0与圆(x-cos β)2+(y+sin β)2=2
1的位置关系为___________ 9、已知O 为△ABC 内一点,03=++OB OC OA ,则△AOB 与△AOC 的面积的比值为__________
10、a ,b ,c 是三个非零向量,a ⊥b ,x ∈R ,x 1,x 2是方程x 2a +x b +c =0的两根,则x 1与x 2的大小关系为__________
11、设a =(1+cos α,sin α),b =(1-cos β,sin β),c =(1,0),α,β∈(0,π),a 与c 的夹角θ1,b 与c 的夹角为θ2,且θ1-θ2=6
π,则sin 4βα+=__________ 12、已知a =(1,x),b =(x 2+x ,-x) ,m 为实数,求使m(a ·b )2-(m+1)a ·b +1<0成立的x 的取值范围。

13、△ABC 中,a ,b ,c 分别为A 、B 、C 的对边,且有sin2C+3cos(A+B)=0,
(1)a=4,c=13,求△ABC 的面积;
(2)若A=
3
π,cosB>cosC ,求⋅-⋅-⋅32的值。

14、在平面直角坐标系中,已知三个点列{An}、{Bn}、{Cn},其中An(n ,a n ),Bn(n ,b n ),Cn(n-1,0),满足向量1+n n A A 与向量n n C B 共线,且点{Bn}在方向向量为(1,6)的直线上,a 1=a ,b 1=-a 。

(1)试用a 与n 表示a n (n ≥2)。

(2)若a 6与a 7两项中至少有一项是a n 的最小项,试求a 的取值范围。

相关文档
最新文档