多边形的内角和与外角和说课稿
11.3.2多边形的内角和说课稿

11.3.2多边形的内角和说课稿一、说教材本文为《11.3.2多边形的内角和》,在初中数学课程中具有重要作用和地位。
它是学生在学习了三角形、四边形的内角和的基础上,对多边形内角和概念进行拓展和深化的内容。
本节主要内容包括:多边形内角和的定义、计算公式及其推导过程,通过实际操作和例题分析,让学生更好地理解多边形的内角和性质,提高学生的空间想象能力和逻辑思维能力。
(1)作用与地位:多边形的内角和是几何学中的基础概念,对于培养学生的空间观念和逻辑思维具有重要作用。
它是连接平面几何与立体几何的桥梁,为后续学习多面体的内角和、表面积和体积等内容打下基础。
(2)主要内容:本节课主要围绕多边形的内角和展开,包括以下小节内容:1. 多边形内角和的定义;2. 多边形内角和的计算公式;3. 多边形内角和的推导过程;4. 应用多边形内角和解决实际问题。
二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解多边形内角和的定义,掌握多边形内角和的计算公式;(2)通过实际操作和推导过程,培养学生的空间想象能力和逻辑思维能力;(3)能够运用多边形内角和的性质解决实际问题,提高学生的应用能力;(4)激发学生对几何学的兴趣,培养学生的探究精神。
三、说教学重难点(1)重点:多边形内角和的定义、计算公式及其推导过程。
(2)难点:多边形内角和的推导过程,以及运用多边形内角和解决实际问题。
在教学过程中,要注意引导学生理解多边形内角和的定义,突破推导过程的难点,同时注重培养学生的空间想象能力和逻辑思维能力,为解决实际问题打下基础。
四、说教法在教学《11.3.2多边形的内角和》这一课时,我计划采用以下几种教学方法,旨在提高学生的理解和应用能力,同时突出我的教学特色:1. 启发法:- 通过提出问题引导学生思考,例如:“一个三角形的内角和是多少?四边形的内角和又是多少?那么五边形、六边形呢?它们之间是否存在某种规律?”- 利用学生已知的三角形和四边形的内角和知识,启发学生发现多边形内角和的规律。
苏教版数学四年级下册《多边形内角和》说课稿(附反思、板书)课件

板块三、巩固新知,课堂练习 1、填空 1).四边形的内角和是(360 )度。 2). 五边形的内角和是(540)度。 3).多边形的内角和=(多边形的边数-2)×180度。
2、一个多边形每一个内角都是144 ,求这个多边形的边数? 让学生仿照例题编写题目利用多边形内角和公式求解: (1)一个多边形的内角和是900 ,求这个多边形的边数。 (2)一个多边形每个外角都是内角的 4 倍,求这个多边形的边 数。
板块二、探究新知 大家都知道三角形的内角和是180º ,那么四边形的内角和同学 们知道吗? 活动一:探究四边形内角和。 在独立探索的基础上,学生分组交流与研讨,并汇总解决问题 的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来, 发现内角和是360º。 方法二:把两个三角形纸板拼在一起构成四边形,发现两个三 角形内角和相加是360º。
六、说教学过程
板块一、导入新课 提问:一个三角形的内角和等于多少度?
长方形的内角和等于多少度? 正方形的内角和等于多少度?
学生思考并作答,并由教师评价。 那么一个多边形的内角和是多少呢?我们能不能算出来呢? 这就是本节课学习的内容。(揭示课题) 【设计意图:先回顾三角形、正方形和长方形的内角和,促使学生对新 问题进行思考与猜想】
数学教学活动必须建立在学生的认知发展水平和已有的知识 经验基础上。教师应激发学生的学习积极性,向学生提供充分 从事数学活动的机会,帮助他们在自主探索和合作交流的过程 中真正理解和掌握基本的数学知识与技能、数学思想和方法, 获得广泛的数学活动经验 。
在以后的教学中,我们要不断地去探索、去实践,争取逐步 提高自己的教学水平。
交流后,学生运用几何画板演示并验证得到的方法。 得到五边形的内角和之后,同学们又认真地讨论起六边形、十边 形的内角和。类比四边形、五边形的讨论方法最终得出,六边形 内角和是720º,十边形内角和是1440º。 。
《多边形的内角和》说课稿

《多边形的内角和》说课稿镇原县孟坝初级中学张新年各位领导、老师:你们好!我是孟坝初中的数学教师,张新年;很高兴能有机会参加这次教学研讨活动。
我的说课内容是《多边形内角和》,内容选自人教版七年级数学(下册)第七章第三节。
根据课程标准,我从以下几个方面说说本节课的教学设想:一、教材分析在新人教版教材中,《三角形》这一章章节结构是“与三角形有关的线段”、“与三角形有关的角”,“多边形内角和”,“课题学习镶嵌”。
新人教版教材对这部分内容是一种专题式设计,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样看来,“多边形内角和”在本章中就起到了承上启下的作用。
二、学生情况这节课是在学生学习了三角形这种特殊的多边形的相关内容以及多边形的定义之后安排的一节课,学生已经掌握了三角形和特殊的四边形内角和问题,对特殊的多边形内角和的问题已经有了一定的认识。
再者,七年级的学生具有好奇心、求知欲强的特点,互相评价、互相提问的积极性高。
学生具备学习本节内容的认知条件,具备参与课堂探索活动的热情,因此,把这节课设计成一节探索活动课,让学生自己去发现和总结新知识点是切实可行的。
三、教学目标及重点、难点的确定新课程标准注重学生所学内容与现实生活的联系,注重学生经历观察、操作、推理、想象等探索过程。
根据课标和本课的内容特点,我确定以下教学目标及重点、难点:【知识目标】知道多边形内角和公式与外角和,了解转化的数学思想.【能力目标】1.经历猜想、探索、推理、归纳等过程,发展学生合情的推理能力和语言表达能力,掌握化复杂为简单,化未知为已知的思想方法;2.通过化多边形为三角形,体会转化思想在几何中的运用,体会从特殊到一般的认知方法;3.通过探索多边形的内角和与外角和,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题.【情感目标】通过学生间交流、探索,进一步激发学生的学习热情、求知欲,养成良好的数学思维品质.【教学重点】探索多边形的内角和及外角和公式.【教学难点】推导多边形的内角和与外角和公式;灵活运用公式解决简单的实际问题.四、教法和学法本课是一节难得的探索活动课,按新课程理论和七年级学生的认知特点,我确定如下教与学策略:【课堂组织策略】利用学生的好奇心,设疑、解疑,组织有效的互动教学活动,鼓励学生积极参与、大胆猜想、积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。
《多边形的内角和与外角和》说课稿

《多边形的内角和与外角和》说课稿《多边形的内角和与外角和》说课稿(精选3篇)《多边形的内角和与外角和》说课稿1一,说教材分析从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。
在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。
二,说学生情况学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。
因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。
三,说教学目标及重点,难点的确定新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。
根据新课标和本节课的内容特点我确定以下教学目标及重点,难点【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
【教学重点】多边形内角和及外角和定理【教学难点】转化的数学思维方法四,说教法和学法本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。
初中数学多边形的内角和与外角和教案

初中数学多边形的内角和与外角和教案一、教学目标:知识与技能:1. 让学生掌握多边形的内角和定理,能够运用该定理计算任意多边形的内角和。
2. 让学生理解多边形的外角和定理,能够运用该定理计算任意多边形的外角和。
过程与方法:1. 通过观察、操作、推理等过程,让学生发现多边形的内角和与外角和的规律。
2. 培养学生运用数学知识解决实际问题的能力。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。
2. 让学生感受数学在生活中的应用,培养学生的应用意识。
二、教学重点与难点:重点:1. 多边形的内角和定理。
2. 多边形的外角和定理。
难点:1. 理解并运用多边形的内角和定理计算任意多边形的内角和。
2. 理解并运用多边形的外角和定理计算任意多边形的外角和。
三、教学过程:1. 导入:通过展示一些多边形的图片,让学生观察并思考:多边形有什么特点?你能总结出多边形的内角和与外角和的规律吗?2. 新课讲解:(1)讲解多边形的内角和定理:n边形的内角和为(n-2)×180°。
(2)讲解多边形的外角和定理:n边形的外角和为360°。
3. 实例演示:教师展示几个简单多边形的内角和与外角和的计算过程,让学生跟随教师一起动手操作,加深对定理的理解。
4. 练习巩固:学生独立完成一些多边形的内角和与外角和的计算题目,教师巡回指导,解答学生的疑问。
5. 课堂小结:教师引导学生总结本节课所学内容,巩固多边形的内角和与外角和的定理。
四、课后作业:3. 请学生结合生活实际,找出一些多边形,并计算其内角和与外角和。
五、教学反思:本节课通过观察、操作、推理等过程,让学生掌握了多边形的内角和与外角和的定理,并能运用定理计算任意多边形的内角和与外角和。
在教学过程中,要注意引导学生积极参与,培养学生的动手操作能力和思维能力。
结合生活实际,让学生感受数学的应用,激发学生的学习兴趣。
六、教学评价:1. 学生能够熟练掌握多边形的内角和定理和外角和定理,并能够运用定理计算任意多边形的内角和与外角和。
《多边形的内角和外角和》教案

《多边形的内角和外角和》教案1教学目标:知识与技能:1.叙述多边形的定义.2.熟记多边形的内角和公式.过程与方法:1.经历探索多边形内角和公式的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力.情感、态度与价值观:1.通过师生共同活动,训练学生的发散性思维,培养学生的创新精神.2.使学生懂得数学内容普遍存在相互联系,相互转化的特点.教学重、难点:教学重点:多边形的内角和.教学难点:多边形的内角和的公式推导.教学过程:Ⅰ.巧设情景问题,引入课题.[师]前面我们学习了三角形、平行四边形,今天我们要学习什么内容呢?请看大屏幕(出示投影片:石英钟、六角螺母、地板砖等).[师]刚才大家看到许多实物图片,它与数学图形联系起来,你知道它们各是什么图形?[生]四边形、五边形、六边形、八边形.[师]对,这些在日常生活中经常看到的图形,就是我们这节课要研究的内容——多边形.Ⅱ.讲授新课.[师]什么叫多边形呢?多边形是由一些不在同一直线上的线段依次首尾相连组成的封闭图形.我们在初中阶段主要探讨的平面几何.所以现在定义的多边形应在同一平面内,即:在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形叫做多边形.在定义中应注意:①若干条;②首尾顺次相连,二者缺一不可.多边形有凸多边形和凹多边形之分,如图.把多边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的多边形叫做凸多边形(如图(2)).图(1)的多边形是凹多边形.我们探讨的一般都是凸多边形.多边形的边、内角、顶点、对角线、内角和的含义与三角形相同,即:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.对角线:在多边形中,连结不相邻两个顶点的线段叫做多边形的对角线.内角:多边形相邻两边组成的角叫多边形的内角.如图:多边形通常以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.多边形的表示方法与三角形、四边形类似.可以用表示它的顶点的字母来表示,如可顺时针方向表示,也可逆时针方向表示,如图(3),可表示为五边形ABCDE,也可表示为五边形EDCBA,还可以用下标表示为五边形A1A2A3A4A5,n边形可表示为n边形A1A2A3…A n(n≥3的自然数).三角形可用三条边来表示,四边形可用四条边来表示.n边形呢?要画多少条边来表示呢?我们可用虚线表示省略的边,其余的边用实线表示.如上图,就是n边形A1A2A3…A n.n边形有n条边,n个顶点,n个内角.好,我们了解了多边形的有关概念后,看一幅图及问题.(1)上图中广场中心的边缘是一个五边形,你能设法求出它的五个内角的和吗?与同伴交流.(2)小明、小亮分别利用下面的图形求出了该五边形的五个内角的和.你知道他们是怎么做的吗?(3)还有其他的方法吗?(学生讨论、画图、归纳).[生甲](1)求五边形的内角和可以利用量角器测每个内角的度数,然后求出这五个内角的和,即是五边形的内角和为540°.也可以把五边形分割成三角形,因为三角形的内角和是180°.[生乙]小明是直接把五边形的五个内角分割在3个三角形中(如图(1)),每个三角形的内角和是180°,所以五边形的内角和为3×180°=540°.小亮是在五边形内任意取一个点,然后把五边形分割成五个三角形(如图(2)),但从图中可以知道,这时多了一个周角,即360°.因此,五边形的内角和为:180°×5-360°=540°.[生丙]也可以在五边形的任一条边上取一个点,然后这个点与各顶点连结,这时五边形被分割成四个三角形(如图(3)),但多了一个平角,即180°,因此,五边形的内角和为:18 0°×4-180°=540°.[生丁]在五边形外任取一点,将这点与五边形的各顶点连结起来,这时五边形被分割成四个三角形,此时,从图中可以看出多出一个三角形.因此五边形的内角和为180°×4-1 80°=540°.[师]很不错,同学们回答得很好,在求五边形的内角和时,先把五边形转化成三角形.进而求出内角和,这种由未知转化为已知的方法是我们数学中一种非常重要的方法.下面大家来“想一想”1.按如下图(5)所示的方法,六边形能分成多少个三角形?n边形(n是大于或等于3的自然数)呢?2.你能确定n边形的内角和吗?[师]同学们可以多画几个边数不一样的多边形,来总结归纳分割多边形的方法.[生甲]如图(5),从五边形的一个顶点向和它不相邻的顶点引了两条对角线,这时五边形分成三个三角形;从六边形的一个顶点向和它不相邻的顶点引了三条对角线,这时六边形分成了四个三角形;从七边形的一个顶点向和它不相邻的顶点引四条对角线,这时七边形分成了五个三角形.……从n边形的一个顶点向和它不相邻的顶点引(n-3)条对角线,把n边形分成了(n-2)个三角形.[生乙]从n边形的一个顶点出发,向自身和相邻的两个顶点无法引对角线,向其他顶点共引(n-3)条对角线,这时n边形被分割成(n-2)个三角形,因为每个三角形的内角和是180°,所以n 边形的内角和为(n -2)·180°.[师]要求n 边形的内角和,关键是将n 边形分割转化为有公共顶点的三角形;由三角形的内角和得到n 边形的内角和.即:n 边形的内角和为(n -2)·180°.大家想一想,n 边形的内角和公式中,字母n 取值有没有范围?[生]有,必须是大于3的自然数.[师]对,同学们口答一下:12边形的内角和是多少呢?[生齐声]1800°.[师]很好,要求n 边形的内角和,只需把n 代入内角和公式:(n -2)·180°,即可算出.下面大家“想一想”.观察下图中的多边形,它们的边、角有什么特点?[生]这五个多边形,每个多边形的边都相等,内角也都相等.[师]很好,在平面内,内角都相等,边也都相等的多边形叫做正多边形,如上图中的多边形分别为:正三角形、正四边形即正方形、正五边形、正六边形、正八边形.正多边形都是轴对称图形,边数为偶数的正多边形是中心对称图形.下面大家想一想,议一议:1.一个多边形的边都相等,它的内角一定都相等吗?2.一个多边形的内角都相等,它的边一定都相等吗?3.正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角分别是多少度?[生甲]一个多边形的边都相等,它的内角也一定都相等,如正三角形、正方形. [生乙]错的.如菱形的四条边相等,但它的内角不一定都相等,所以应该说:一个多边形的边都相等,它的内角不一定都相等.[生丙]一个多边形的内角都相等,它的边不一定都相等,如:矩形的内角都是直角,但它的边未必都相等.[师]同学们从不同角度进行分析,得到了准确的答案,非常好,接下来看第(3)小题.[生丁]因为正多边形的每个内角都相等,且它的内角和为(n -2)·180°,所以,正n 边形的每个内角为:nn )2( ·180°.因此,正三角形的内角是:︒=︒⋅-603180)23(. 正方形的内角是:4)24(-·180°=90°. 正五边形的内角是:5)25(-·180°=108°. 正六边形的内角是:6)26(-·180°=120°. 正八边形的内角是:8)28(-·180°=135°. [师]很好,接下来我们做练习来巩固多边形的内角和公式.例1、如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD 的∠A +∠C =180º.求:∠B 与∠D 的关系.分析:本题要求∠B 与∠D 的关系,由于已知∠A +∠C =180º,所以可以从四边形的内角和入手,就可得到完满的答案.解:如图,四边形ABCD 中,∠A +∠C =180º.∵∠A +∠B +∠C +∠D =(4-2)×360º=180º,∴∠B +∠D =360º-(∠A +∠C )=180º.这就是说:如果四边形一组对角互补,那么另一组对角也互补.Ⅲ.课堂练习.1.如下图.(1)作多边形所有过顶点A 的对角线,并分别用字母表示出来.(2)求这个多边形的内角和.解:(1)如下图:过顶点A 的对角线是AC 、AD 、AE .(2)从(1)图中可知:这个六边形被过顶点A的对角线分割成四个三角形,所以,这个多边形的内角和为180°×4=720°.也可以利用多边形的内角和公式进行计算即:(6-2)×180°=720°.Ⅳ.课时小结.本节课我们研究了多边形的定义及其内角和公式,重点探讨了多边形的内角和公式.即:n边形的内角和等于(n-2)·180°,它揭示了多边形内角和与边数之间的关系.Ⅴ.课后作业.课本P145习题5.9的1、2、3.《多边形的内角和外角和》教案2教学目标:知识与技能:1.认识多边形的外角.2.熟记多边形的外角和公式.过程与方法:1.经历探索多边形的外角和公式的过程.进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并了解多边形的外角和公式,进一步发展学生的说理和简单推理的意识及能力.情感、态度与价值观:培养学生勇于实践、大胆创新的精神和积极探求客观真理的科学态度,渗透数学中普遍存在的相互联系、相互转化及数学来源实践,又反过来作用于实践的观点.教学重、难点:教学重点:多边形的外角和公式及其应用.教学难点:多边形的外角和公式的应用.教学过程:Ⅰ.巧设情景问题,引入课题.[师]大家清早跑步吗?小明每天坚持跑步,他怎样跑步呢?清晨,小明沿一个五边形广场周围的小跑,按逆时针方向跑步.(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们.(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5吗?你是怎样得到的?[师]同学们来分组讨论,演示一下.(学生6人一组,可实地做一做,让学生体会数学与现实生活的联系.)[生甲](1)小明每从一条街道转到下一街道时,身体转过的角(如图中)是∠1、∠2、∠3、∠4、∠5.(2)我们五个人做为五边形的顶点,围成一个五边形,由××伴为小明进行跑步,跑完一圈后,他的身体转过的角度之和是360°.(3)由上述知道:∠1,∠2,∠3,∠4,∠5分别是小明从一条街道转到下一条街道时,身体转过的角,而他跑一圈,身体转过的角度是360°,因此得:∠1+∠2+∠3+∠4+∠5=360°.[生乙]我们讨论的结果和甲同学的一样,只不过求∠1、∠2、∠3、∠4、∠5的和时,我们组是先画了一个如投影所示的五边形.然后把∠1、∠2、∠3、∠4、∠5这五个角剪下,将它们的顶点拼在一起,即各角的顶点重合,这时发现这五个角正好组成了一个周角.由此得到:∠1+∠2+∠3+∠4+∠5=360°.[师]很好,下面大家来看小亮的思考:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′、OB′、OC′、O D′、OE′,得到∠α、∠β、∠γ、∠δ、∠θ,其中:∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.∠α、∠β、∠γ、∠δ、∠θ恰好组成一个周角.这样,∠1、∠2、∠3、∠4、∠5的和等于360°.[师]小亮也验证了大家得到的结论,好,大家看图,∠1、∠2、∠3、∠4、∠5不是五边形的角,那是什么角呢?它们的和叫什么呢?[生]这五个角是五边形的外角,它们的和叫外角和.[师]很好,我们这节课就来探讨多边形的外角、外角和.Ⅱ.讲授新课.[师]那什么是多边形的外角、外角和呢?我们可类似三角形的外角定义来定义多边形的外角.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和.一般地,在多边形的任一顶点处按顺(逆)时针方向可作外角,n边形有n个外角.那多边形的外角和是多少呢?我们来回忆一下:三角形的外角和为多少?[生齐]360°.[师]好,刚才我们又研究了五边形的外角和,它为360°,那大家想一想如果广场的形状是六边形、八边形.它们的外角和也等于360°吗?(学生讨论,得出结论).[生甲]我们通过讨论,演示得到:六边形的外角和是360°,八边形的外角和是360°.[生乙]老师,能不能由此得出:多边形的外角和都等于360°呢?[师]谁来解决这个问题呢?[生丙]由五边形、六边形和八边形的外角和都等于360°,不能得出所有多边形的外角和都等于360°,只能是猜想:多边形的外角和都等于360°.[师]能得证吗?[生丁]因为多边形的外角与它相邻的内角是邻补角,所以,n边形的外角和加内角和等于n·180°,内角和为(n-2)·180°,因此,外角和为:n·180°-(n-2)·180°=360°.[师]很好,由此我们得到了多边形的外角和公式:多边形的外角和都等于360°.[师]由此可知,多边形的外角和与多边形的边数无关,它恒等于360°.下面大家来[师]好,学完了外角和公式,现在我们来应用一下,以熟悉巩固外角和公式.[例2]一个多边形的内角和等于它的外角和的3倍,它是几边形?分析:这是多边形的内角和公式与外角和公式的简单应用.根据题意,可列方程解答.(让学生动手解答).解:设这个多边形是n边形,则它的内角和是(n-2)·180°,外角和等于360°,所以:(n-2)·180°=3×360°.解得:n=8.这个多边形是八边形.[师]好,通过同学们的解答,知道大家基本掌握了多边形的外角和公式,接下来我们通过练习进一步巩固外角和公式.Ⅲ.课堂练习.1.一个多边形的外角都等于60°,这个多边形是n边形?解:因为多边形的外角和等于360°,所以根据题意,可知道这个多边形的边数是:360°÷60°=6.1?为什么?2.是否存在一个多边形,它的每个内角都等于相邻外角的5解:不存在,理由是:如果存在这样的多边形,设它的一个外角为α,则对应的内角为180°-α,于是:1×α=180°-α,解得α=150°.5这个多边形的边数为:360°÷150°=2.4,而边数应是整数,因此不存在这样的多边形.Ⅳ.课时小结.本节课我们探讨了多边形的外角及其外角和公式.知道多边形的外角和与多边形的边数无关,它恒等于360°,因而,求解有关多边形的角的计算题;有时直接应用外角和公式会比较简便.Ⅴ.课后作业.课本P147习题5.10的1、2.。
《多边形的内角和》的说课稿(精选9篇)

《多边形的内角和》的说课稿(精选9篇)《多边形的内角和》的篇1一、教材分析1、教学内容“多边形的内角和”一节包括的内容主要有多边形的有关概念以及多边形内角和公式的推导和运用。
2、本章及本节的地位与作用本章《多边形》,探索的是三角形和多边形的有关概念和性质,是学生在上学期初步认识和感受空间图形之后的延伸,也为今后进一步学习各种多边形打好基础。
本节课“多边形的内角和”作为本章的一个重点,是三角形有关知识的拓展,学习四边形的基础,公式的运用还充分地体现了图形与客观世界的密切联系。
3、重点与难点多边形内角和的公式及公式的推导和运用是本节课的重点;因为公式的得出可以用多种不同的方法推导,所以我确定本节课的难点是如何引导学生通过自主学习,探索多边形内角和的公式。
二、教学目标根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:①识别多边形的顶点、边、内角及对角线;②理解多边形内角和公式的推导过程;③掌握多边形内角和公式的内涵及其运用。
能力目标:①培养学生类比归纳、转化的能力;②培养学生观察分析、猜想和概括的能力。
思想情感目标:通过体会数学图形的美感,提高审美能力,树立认识数学来源于生活,又服务于实践的观点。
三、教法分析在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察————分析————猜想————概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。
学法指导是培养学生学习能力的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。
教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提高了课堂教学的效果。
四、过程设计1、创设问题情境,引入新课我是这样设计问题的:在一个平面内,把一个三角形的三个顶点固定,一边套上橡皮筋往外拉成一条折线,该折线与三角形的另外两边围成一个什么图形?再把橡皮筋的一边又往外拉,再固定,又围成什么图形?……不断地向外拉,结果围成什么图形?如果上述情况不是往外拉而是往里推,那是什么图形?在学生的回答中引出主题:今天我们来学习多边形的有关知识。
多边形的内角和教学设计及说课稿

多边形的内角和教学设计及说课稿这是多边形的内角和教学设计及说课稿,是优秀的数学教案文章,供老师家长们参考学习。
多边形的内角和教学设计及说课稿第1篇一、教学任务分析1、教学目标定位根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。
因此,确定如下教学目标:(1).知识技能目标让学生掌握多边形的内角和的公式并熟练应用。
(2).过程和方法目标让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。
(3).情感目标激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。
2、教学重、难点定位教学重点是多边形的内角和的得出和应用。
教学难点是探索和归纳多边形内角和的过程。
二、教学内容分析1、教材的地位与作用本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。
本节课作为第七章第三节,起着承上启下的作用。
在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。
2、联系及应用本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。
因此多边形的边、内角、内角和等等都可以同三角形类比。
通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。
而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。
三、教学诊断分析学生对三角形的知识都已经掌握。
让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。
由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《多边形的内角和与外角和》说课稿
谢锦塔
我的教学设计是华师大版七年级数学(下)第八章第三节“多边形的内角和与外角和”。
根据新的课程标准,我从以下七个方面说一下本节课的教学设想:
一、教材分析
从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些“想一想”“试一试”“做一做”等内容,体现了课改的精神。
在编写意图上,编者有意从简单的几何图形入手,让学生经历探索、猜想、归纳等过程,发展了学生的合情推理能力。
二、学生分析
学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心、求知欲强、互相评价互相提问的积极性高。
因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。
三、教学目标及重点、难点的确定
新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察、操作、推理、想象等探索过程。
根据新课标和本节课的内容特点我确定以下教学目标及重点、难点
【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想
【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
【教学重点】多边形内角和及外角和定理
【教学难点】转化的数学思维方法
四、教法和学法
本次课改很大程度上借鉴了美国教育家杜威的“在做中学”的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索、实践、交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”及初一学生的特点,我确定如下教法和学法。
【课堂组织策略】利用学生的好奇心,设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与、大胆猜想、积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。
【学生学习策略】明确学习目标,在教师的组织、引导、点拨下进行主动探索、实践、交流等活动。
【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法、归纳法、讨论法、分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。
五、教学过程设计
整个教学过程分五步完成。
1、创设情景、引入新课
首先解决四边形内角的问题,通过转化为三角形问题来解决。
2、合作交流,探索新知。
更进一步解决五边形内角和,乃至六边形、七边形直到N边形的内角和,都能用同样的方法解决。
学生分组讨论。
3、归纳总结、建构体系。
多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。
4、实际应用、提高能力。
“木工师傅可以用边角余料铺地板的原因是什么?”这既是对本节所学知识在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫
5、分组竞赛、升华情感
四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。
六、板书设计
板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理
七、创意说明
本节课在知识上由简单到复杂,学生经历质疑、猜想、验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。
这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。