随机信号处理

合集下载

(完整版)随机信号处理考题答案

(完整版)随机信号处理考题答案

填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。

1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。

3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。

4.冲激响应满足分析线性输出,其均值为_____________________。

5.偶函数的希尔伯特变换是奇函数。

6.窄带随机过程的互相关函数公式为P138。

1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。

随机信号处理教程第6章随机信号通过非线性系统

随机信号处理教程第6章随机信号通过非线性系统

信号的调制和解调
01
02
03
调制过程
在非线性系统中,输入信 号会受到调制,使得信号 的参数发生变化,如幅度、 频率或相位等。
解调过程
对调制后的信号进行解调, 恢复出原始的信号参数, 以便进一步处理或使用。
调频与调相
在非线性系统中,调制和 解调的方式可以是调频或 调相,具体取决于系统的 特性和应用需求。
音频处理中的非线性系统
音频压缩
音频压缩技术利用非线性系统来减小音频文件的大小,同时保持音频质量。压 缩算法通过非线性变换和量化过程来去除音频信号中的冗余信息。
音频特效
音频处理软件中的非线性系统用于创建各种音效和特效,如失真、混响、均衡 器和自动增益控制等。这些效果通过将音频信号通过非线性函数来实现。
应用实例
给出了随机信号通过非线性系统的应用实 例,如通信系统中的非线性失真、音频处 理中的压缩效应等。
非线性系统的发展趋势和未来展望
新技术与新方法
随着科学技术的不断发展,新的非线性系 统建模方法和分析技术将不断涌现,如深
度学习在非线性系统建模中的应用等。
跨学科融合
非线性系统理论与其他领域的交叉融合将 进一步加深,如与控制理论、人工智能等 领域的结合。
升级系统的硬件设备,提升性能表现。
系统集成优化
优化系统内部各模块之间的集成方式, 提高整体性能。
05
实际应用案例
通信系统中的非线性系统
数字信号处理
在通信系统中,数字信号经过非线性系统可能导致信号失真 ,如振幅压缩和频率偏移。这种失真可以通过数字信号处理 技术进行补偿和校正。
调制解调
在无线通信中,调制解调过程可能涉及非线性系统。例如,在 QAM(Quadrature Amplitude Modulation)调制中,信号 通过非线性调制器进行调制,然后通过非线性解调器进行解调。

《随机信号分析与处理》教学大纲

《随机信号分析与处理》教学大纲

《随机信号分析与处理》教学⼤纲《随机信号分析与处理》教学⼤纲(执笔⼈:罗鹏飞教授学院:电⼦科学与⼯程学院)课程编号:070504209英⽂名称:Random Signal Analysis and Processing预修课程:概率论与数理统计、信号与系统、数字信号处理学时安排:60学时,其中讲授54学时,实践6学时学分:3⼀、课程概述(⼀)课程性质地位本课程是电⼦⼯程、通信⼯程专业的⼀门学科基础课程。

该课程系统地介绍随机信号的基本概念、随机信号的统计特性分析⽅法以及随机信号通过系统的分析⽅法;介绍信号检测、估计、滤波等信号处理理论的基本原理和信息提取⽅法。

其⽬的是使学⽣通过本课程的学习,掌握随机信号分析与处理的基本概念、基本原理和基本⽅法,培养学⽣运⽤随机信号分析与处理的理论解决⼯程实际问题的能⼒,提⾼综合素质,为后续课程的学习打下必要的理论基础。

本课程是电⼦信息技术核⼼理论基础。

电⼦信息系统中的关键技术是信息获取、信息传输、信息处理,这些技术的理论基础就是随机信号的分析、检测、估计、滤波等理论,这正是本课程的主要内容。

因此,本课程内容是电⼦信息类应⽤型⼈才知识结构中不可或缺的必备知识。

⼆、课程⽬标(⼀)知识与技能通过本课程的学习,掌握随机信号分析与处理基本概念和基本分析⽅法。

内容包括:1.理解和掌握随机过程基本概念和统计描述;2.掌握随机过程通过线性和⾮线性系统分析⽅法3.理解和掌握典型随机过程的特点及分析⽅法;4.掌握参数估计的概念、规则和性能分析⽅法;5.掌握信号检测的概念、规则和性能分析⽅法;6.掌握⾼斯⽩噪声中最佳检测器的结构和性能分析。

通过本课程的学习,要达到的能⼒⽬标是:1.具有正确地理解、阐述、解释⽣活中的随机现象的能⼒,即培养统计思维能⼒;2.运⽤概率、统计的数学⽅法和计算机⽅法分析和处理随机信号的能⼒;3.初步具备雷达、通信、导航等技术领域的信号处理系统的分析、设计、仿真的科学研究能⼒;4.培养⾃主学习能⼒;5.培养技术交流能⼒(包括论⽂写作和⼝头表达);6.培养协作学习的能⼒;(⼆)过程与⽅法依托“理论、实践、第⼆课堂”三个基本教学平台,通过课堂教学、概念测试、课堂研讨、案例研究、作业、实验、课程论⽂、⽹络教学等多种教学形式,采⽤研究型、案例式、互动研讨、基于团队学习、基于MATLAB的教学以及基于多媒体的教学等多种教学⽅法和⼿段,使学⽣加深对随机信号分析与处理的基本概念、基本原理以及应⽤的理解,并使学⽣通过⾃主学习、⼩组作业、案例研究、实验、课题论⽂等主动学习形式,培养⾃学能⼒和协同学习的能⼒,使学⽣不仅获得知识、综合素质得到提⾼。

随机信号分析与处理(第2版)

随机信号分析与处理(第2版)

随机信号分析与处理(第2版)概述本文档介绍了随机信号分析与处理(第2版)的主要内容。

随机信号是一种在时间上或空间上具有随机性质的信号,在诸多领域中都有广泛的应用,如通信、图像处理、控制系统等。

随机信号的分析和处理对于了解其性质、提取有用信息以及设计有效的处理算法都是必不可少的。

主要内容第一章:随机信号的基本概念本章介绍了随机信号的基本概念和特性,包括随机信号的定义、概率密度函数、均值、方差等。

通过对随机信号的特性分析,可以为后续的分析和处理提供基础。

第二章:随机过程本章讨论了随机过程的定义和性质。

随机过程是一类具有随机性质的信号集合,其在时间上的取值不确定,但具有统计规律性。

通过对随机过程的分析,可以了解其演化规律和统计性质。

本章介绍了随机信号的表示与分解方法。

随机信号可以通过不同的数学模型进行表示,如傅里叶级数、傅里叶变换、小波变换等。

通过将随机信号进行分解,可以提取出其中的有用信息。

第四章:随机信号的功率谱密度本章研究了随机信号的功率谱密度。

功率谱密度描述了随机信号在频率域上的分布,通过分析功率谱密度可以获得随机信号的频率特性和频谱信息。

第五章:随机信号的相关与协方差本章讨论了随机信号的相关与协方差。

相关是用来描述随机信号之间的依赖关系,协方差是用来描述随机信号之间的线性关系。

通过分析随机信号的相关与协方差,可以研究信号之间的相关性和相关结构。

本章介绍了随机信号的滤波和平均处理方法。

滤波是用来抑制或增强随机信号中的某些频率分量,平均则是通过对多次采样的随机信号进行求平均来减小随机性。

第七章:随机信号的参数估计本章研究了随机信号的参数估计方法。

参数估计是通过对随机信号进行采样和分析,通过估计参数来了解信号的统计性质和特征。

第八章:随机信号的检测和估计本章讨论了随机信号的检测和估计方法。

检测是用来判断随机信号的存在或不存在,估计是通过对随机信号的采样和分析来估计信号的参数。

第九章:随机信号的最优滤波本章研究了随机信号的最优滤波方法,最优滤波是通过优化设计滤波器来最小化系统误差或最大化输出信噪比。

随机信号分析与处理第一讲

随机信号分析与处理第一讲
0.5 0.4 0.3 0.2 0.1 0 0
1
2
3
4
5
6
7
8
9
10
27
对数正态分布概率密度
高分辨率雷达杂波分布
27
1.4多维随机变量及其分布
•二维分布函数 设(X,Y)为二维随机变量,x,y为实数,定义
F ( x, y) P{ X x, Y y}
为二维随机变量的的分布函数。
y
( x, y )
随机信号分析与处理
张文明
国防科技大学电子科学与工程学院
1
1
2
张文明,博士,综合信息系统研究所副教授。 主要研究方向为雷达数据处理、电子系统仿真。 办公室:实验大楼308 电话:73491-602
2
1、课程学习的必要性
从课程研究的对象分析 根据信号的取值是否确定,可以将信号分为确定信号和随 机信号。
•定义 X(e)的随机性在e中体现,对应不同的e, X(e)的取值不同
•设离散型随机变量X的所有可能取值为xk (k 1,...,n) ,其概率为
P( X xk ) pk
X pk
19
(k 1,2,....,n)
x2
p2
... ...
x1
p1
xn
pn
离散随机变量概率分布
19
•(0,1)分布 随机变量的可能取值为0和1两个值,其概率分布为
10
12
瑞利分布概率密度=2
25
指数分布(Exponential)
e x, x 0 f ( x) 0, x 0
1.5
1
0.5
0 0
1
2
3

随机信号分析与处理

随机信号分析与处理

一、基本概念1、随机过程随机信号是非确定性信号,不能用确定的数学关系式来描述,不能预测它未来任何瞬时的精确值,任一次观测值只代表在其变动范围内可能产生的结果之一,但其值的变动服从统计规律。

随机信号的描述必须采用概率和统计学的方法。

对随机信号按时间历程所作的各次长时间观测记录称为样本函数,记作x(t)。

在有限时间区间上的样本函数称为样本记录。

在同一试验条件下,全部样本函数的集合(总体)就是随机过程,以{x(t)}表示,即2、随机信号类型3、平稳随机过程平稳随机过程就是统计特征参数不随时间变化而改变的随机过程。

例如,对某一随机过程的全部样本函数的集合选取不同的时间t进行计算,得出的统计参数都相同,则称这样的随机过程为平稳随机过程,否则就是非平稳随机过程。

如采样记录的均值不随时间变化4、各态历经随机过程若从平稳随机过程中任取一样本函数,如果该单一样本在长时间内的平均统计参数(时间平均)和所有样本函数在某一时刻的平均统计参数(集合平均)是一致的,则称这样的平稳随机过程为各态历经随机过程。

显然,各态历经随机过程必定是平稳随机过程,但是平稳随机过程不一定是各态历经的。

各态历经随机过程是随机过程中比较重要的一种,因为根据单个样本函数的时间平均可以描述整个随机过程的统计特性,从而简化了信号的分析和处理。

但是要判断随机过程是否各态历经的随机过程是相当困难的。

一般的做法是,先假定平稳随机过程是各态历经的,然后再根据测定的特性返回到实际中分析和检验原假定是否合理。

由大量事实证明,一般工程上遇到的平稳随机过程大多数是各态历经随机过程。

虽然有的不一定是严格的各态历经过程,但在精度许可的范围内,也可以当作各态历经随机过程来处理。

事实上,一般的随机过程需要足够多的样本(理论上应为无限多)才能描述它,而要进行大量的观测来获取足够多的样本函数是非常困难或做不到的。

在测试工作中常以一个或几个有限长度的样本记录来推断整个随机过程,以其时间平均来估计集合平均。

随机过程在随机信号处理中的应用

随机过程在随机信号处理中的应用

随机过程在随机信号处理中的应用随机过程在随机信号处理中的应用随机信号处理是一门研究随机信号的统计特性以及如何处理和分析随机信号的学科。

而随机过程是随机信号的数学模型,描述了随机信号在时间上的演变过程。

因此,随机过程在随机信号处理中扮演着重要的角色。

本文将介绍随机过程在随机信号处理中的应用。

一、时域随机过程的分析1. 自相关函数与互相关函数随机过程的自相关函数描述了信号在不同时间的相关性。

自相关函数可以通过计算信号在不同时间上的互积来得到,而随机过程的互相关函数则可以反映不同信号之间的相关性。

通过分析自相关函数和互相关函数,可以获得信号的周期性、相似性以及相关系数等信息。

2. 平均功率和功率谱密度随机过程的平均功率可以表示信号在统计意义上的能量大小。

对于平稳随机过程,其平均功率是一个常数。

而功率谱密度则是描述信号能量在频域上的分布情况。

通过分析功率谱密度,可以了解信号的频率成分以及频率成分的强弱程度。

二、频域随机过程的分析1. 傅立叶变换傅立叶变换是一种常用的频域分析方法,可以将信号从时域转换到频域。

对于随机过程而言,可以通过傅立叶变换来得到频域上的信号表示。

通过分析信号在频域上的特性,可以获得信号的频谱信息。

2. 相位谱相位谱是频域随机过程中的一个重要概念,表示了信号在频域上各个分量的相位关系。

相位谱可以用于分析信号的相位变化情况,帮助理解信号的时序特性。

三、随机过程模型1. 平稳随机过程平稳随机过程是指在时间上统计特性保持不变的随机过程。

平稳随机过程常用于建立信号的数学模型,通过分析其统计特性,可以对信号的未来变化进行预测。

2. 马尔可夫随机过程马尔可夫随机过程是一种特殊的随机过程,具有“无记忆性”的特点。

在随机信号处理中,马尔可夫随机过程常用于建立信号的模型,通过分析其状态转移概率,可以对信号的未来状态进行推测。

四、应用实例1. 语音处理语音信号是一种典型的随机信号,可以通过随机过程的分析方法来进行语音信号的降噪、增强、识别等处理。

随机信号处理

随机信号处理

随机信号的处理1.信号的概念及分类确定信号是指能用明确的数学关系式表达的信号。

确定信号可分为周期信号和非周期信号两类。

当信号按一定时间间隔周而复始重复出现时称为周期信号,否则称为非周期信号。

频率单一的正弦或余弦信号称为谐波信号。

一般周期信号是由多个乃至无穷多个频率成分(频率不同的谐波分量)叠加所组成,叠加后存在公共周期。

准周期信号也是由多个频率成分叠加的信号,但叠加后不存在公共周期。

一般周期信号是在有限时间段存在,或随时间的增加而幅值衰减至零的信号,又称为瞬变非周期信号。

随机信号又称为非确定性信号,是无法用明确的数学关系式表达的信号。

如加工零件的尺寸、机械振动、环境的噪声等,这类信号需要采用数理统计理论来描述,无法准确预见某一瞬时的信号幅值。

随机信号是工程中经常遇到的一种信号,其特点为:时间函数不能用精确的数学关系式来描述;不能预测它未来任何时刻的准确值; 对这种信号的每次观测结果都不同。

但大量地重复试验可以看到它具有统计规律性,因而可用概率统计方法来描述和研究。

根据是否满足平稳随机过程的条件,又可以分为平稳随机信号和非平稳随机信号。

平稳随机信号又可分为各态历经和非各态历经两类。

2.随机信号的分析与处理由于测试系统内部和外部各种因素的影响,必然在输出信号中混有噪声。

有时由于干扰信号的作用,使有用信息甚至难于识别和利用,必须对所得的信号进行必要地分析和处理,才能准确地提取它所包含的有用信息。

信号分析和处理的目的是:(1)、剔除信号中的噪声和干扰,即提高信噪比;(2)、消除测量系统误差,修正畸变的波形;(3)、强化、突出有用信息,消弱信号中的无用部分;(4)、将信号加工、处理、变换,以便更容易识别和分析信号的特征,解释被测对象所变现的各种物理现象。

2.1 随机信号的时域分析随机信号通常是从一个做随机运动的随机信源产生的。

每一个记录是随机信号的一个实现,称为它的一个样本函数。

所有时间连续的样本函数的总集组成连续随机信号{}{}()()(),1,2,3,i x t x t i ==⋅⋅⋅对连续随机信号做等时距采样可得到离散随机信号{}(1)(2)(3)(),(),(),(),x n x n x n x n =⋅⋅⋅需要从统计意义上对离散随机信号进行描述,概率描述是一种最基本的统计描述方法,实际上更常用的方法:求出一些时域量或频域量的统计平均值,由此把握离散随机信号所遵循的统计规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机信号处理大作业学院:电子工程学院、马尔可夫过程概述摘要:叙述了随机过程中的某一种--马尔可夫过程的基本定义 ,特点,以及它的应用领域;通过对离散时间马尔可夫链进行仿真分析,掌握马尔可夫的特点。

1. 随机过程发展简述在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。

一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。

虽然如此,随机过程一般理论的研究通常认为开始于30年代。

1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。

这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。

稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。

1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。

1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。

60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。

2. 马尔可夫过程发展2.1 马尔可夫过程简介马尔科夫过程(MarKov Process)是一个典型的随机过程。

设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。

无后效的随机过程称为马尔科夫过程。

马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。

我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。

马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。

2.2 马尔可夫过程的发展20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。

1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。

出于扩大极限定理应用范围的目的,马尔科夫在20世纪初开始考虑相依随机变量序列的规律,并从中选出了最重要的一类加以研究。

1906年他在《大数定律关于相依变量的扩展》一文中,第一次提到这种如同锁链般环环相扣的随机变量序列,其中某个变量各以多大的概率取什么值,完全由它前面的一个变量来决定,而与它更前面的那些变量无关。

这就是被后人称作马尔科夫链的著名概率模型。

也是在这篇论文里,马尔科夫建立了这种链的大数定律。

用一个通俗的比喻来形容,一只被切除了大脑的白鼠在若干个洞穴间的蹿动就构成一个马尔科夫链。

因为这只白鼠已没有了记忆,瞬间而生的念头决定了它从一个洞穴蹿到另一个洞穴;当其所在位置确定时,它下一步蹿往何处与它以往经过的路径无关。

这一模型的哲学意义是十分明显的,用前苏联数学家辛钦(1894-1959〕的话来说,就是承认客观世界中有这样一种现象,其未来由现在决定的程度,使得我们关于过去的知识丝毫不影响这种决定性。

这种在已知“现在”的条件下,“未来”与“过去”彼此独立的特性就被称为马尔科夫性,具有这种性质的随机过程就叫做马尔科夫过程,其最原始的模型就是马尔科夫链。

这既是对荷兰数学家惠更斯(Ch. Huygens, 1629-1659)提出的无后效原理的概率推广,也是对法国数学家拉普拉斯(P. S. Laplace, 1749-1827)机械决定论的否定。

这里应该指出,尽管拉普拉斯对概率论的早期发展作出过重大贡献,但是他的部分哲学观点是不利于这门学科的深入发展的。

十八世纪以来,随着牛顿力学的彻底胜利,一种机械唯物主义的决定论思潮开始在欧洲科学界蔓延,鼓吹最力者就是拉普拉斯。

1759年他在巴黎高等师范学院发表了一篇题为《概率论的哲学探讨》的演讲,淋漓尽致地表达出了这种思想。

他说:“假如有人知道了某一时刻支配自然的一切力,以及它的一切组成部分的相对位置,又假如他的智力充分发达,能把这一切数据加以充分的分析,把整个宇宙中从最巨大的天体到最微小的原子的一切运动完全包括在一个公式里面,这样对他就没有什么东西是不确定的了,未来也好,过去也好,他都能纵览无遗。

”1812年,拉普拉斯又进一步提出“神圣计算者”的观念,认为这个理想的数学家只须知道世界某一时刻的初始状态,就可以从一个无所不包的微分方程中算出过去和未来的一切状态。

换句话说,他认为任意系统在t > t0时的状态x可由其初始时刻t0和初始状态x0唯一决定。

这可真是笔判终身、细评流年,数学家可以摆个卦摊了。

马尔科夫的概率模型从根本上否定了系统中任一状态x与其初始状态x0之间的因果必然性,从而也否定了“神圣计算者”的神话。

还应该指出,马尔科夫所建立的概率模型不但具有深刻的哲学意义,而且具有真实的物质背景,在他的工作之前或同时,一些马尔科夫链或更复杂的随机过程的例子已出现在某些人的研究中,只不过这些人没有自觉地认识到这类模型的普遍意义或用精确的数学语言表述出来罢了。

例如苏格兰植物学家布朗( R. Brown, 1773-1858) 于1827年发现的悬浮微粒的无规则运动、英格兰遗传学家高尔顿(F.Galton, 1822-1911) 于1889年提出的家族遗传规律、荷兰物理学家埃伦费斯特( P. Ehrenfest, 1880-1933) 于1907年关于容器中分子扩散的实验,以及传染病感染的人数,谣言的传播,原子核中自由电子的跃迁,人口增长的过程等等,都可用马尔科夫链或过程来描述。

也正是在统计物理、量子力学、遗传学以及社会科学的若干新课题、新事实面前,决定论的方法显得百孔千疮、踵决肘见。

有趣的是,马尔科夫本人没有提到他的概率模型在物理世界的应用,但是他利用了语言文学方面的材料来说明链的性质。

在《概率演算》第四版中,他统计了长诗《叶甫盖尼·奥涅金》中元音字母和辅音字母交替变化的规律:这是长诗开头的两句,意为:“我不想取悦骄狂的人生,只希望博得朋友的欣赏。

”诗人那火一般的诗篇在数学家那里变成了一条冷冰冰的锁链:在这条锁链上只有两种链环,C代表辅音、代表元音(为了使问题简化起见,不仿把两个无音字母算作辅音)。

马尔科夫分别统计了在C后面出现C和的概率p和1-p,以及在后出现C和的概率q和1-q,把结果与按照俄语拼音规则计算出的结果进行比较,证实了语言文字中随机的(从概率的意义上讲)字母序列符合他所建立的概率模型。

完成了关于链的大数定律的证明之后,马尔科夫又开始在一系列论文中研究链的中心极限定理。

1907年他在《一种不平常的相依试验》中证明了齐次马尔科夫链的渐近正态性;1908年在《一个链中变量和的概率计算的极限定理推广》中作了进一步的推广;1910年他发表了重要的论文《成连锁的试验》,在其中证明了两种情况的非齐次马尔科夫链的中心极限定理。

与此同时他在一些假定的前提下证明了模型的各态历经性,成为在统计物理中具有重要作用的遍历理论中第一个被严格证明的结果。

遍历理论亦称ergodic理论, 是奥地利物理学家玻耳兹曼(L. Boltzmann, 1844-1906) 于1781年提出来的,其大意是:一个系统必将经过或已经经过其总能量与当时状态相同的另外的任何状态。

马尔科夫链的引入,在物理、化学、天文、生物、经济、军事等科学领域都产生了连锁性的反应,很快地涌现出一系列新的课题、新的理论和新的学科,并揭开了概率论中一个重要分支--随机过程理论蓬勃发展的序幕。

3 马尔可夫过程的应用3.1 马尔可夫应用概述马尔可夫随机过程的发展史说明了理论与实际之间的密切关系。

许多研究方向的提出,归根到底是有其实际背景的。

反过来,当这些方向被深入研究后,又可指导实践,进一步扩大和深化应用范围。

下面简略介绍一下马尔可夫随机过程本身在各方面的应用情况。

在物理学方面,高能电子或核子穿过吸收体时,产生级联(或倍增)现象,在研究电了-光子级联过程的起伏问题时,要用到随机过程,常以泊松过程、弗瑞过程或波伊亚过程作为实际级联的近似,有时还要用到更新过程(见点过程)的概念。

当核子穿到吸收体的某一深度时,则可用扩散方程来计算核子的概率分布。

物理学中的放射性衰变,粒子计数器,原子核照相乳胶中的径迹理论和原子核反应堆中的问题等的研究,都要用到泊松过程和更新理论。

湍流理论以及天文学中的星云密度起伏、辐射传递等研究要用到随机场的理论。

探讨太阳黑子的规律及其预测时,时间序列方法非常有用。

化学反应动力学中,研究化学反应的时变率及影响这些时变率的因素问题,自动催化反应,单分子反应,双分子反应及一些连锁反应的动力学模型等,都要以生灭过程(见马尔可夫过程)来描述。

随机过程理论所提供的方法对于生物数学具有很大的重要性,许多研究工作者以此来构造生物现象的模型。

研究群体的增长问题时,提出了生灭型随机模型,两性增长模型,群体间竞争与生尅模型,群体迁移模型,增长过程的扩散模型等等。

有些生物现象还可以利用时间序列模型来进行预报。

传染病流行问题要用到具有有限个状态的多变量非线性生灭过程。

在遗传问题中,着重研究群体经过多少代遗传后,进入某一固定类和首次进入此固定类的时间,以及最大基因频率的分布等。

许多服务系统,如电话通信,船舶装卸,机器损修,病人候诊,红绿灯交换,存货控制,水库调度,购货排队,等等,都可用一类概率模型来描述。

这类概率模型涉及的过程叫排队过程,它是点过程的特例。

排队过程一般不是马尔可夫型的。

当把顾客到达和服务所需时间的统计规律研究清楚后,就可以合理安排服务点。

在通信、雷达探测、地震探测等领域中,都有传递信号与接收信号的问题。

传递信号时会受到噪声的干扰,为了准确地传递和接收信号,就要把干扰的性质分析清楚,然后采取办法消除干扰。

这是信息论的主要目的。

噪声本身是随机的,所以概率论是信息论研究中必不可少的工具。

相关文档
最新文档