第三章 ZigBee 无线网络技术

合集下载

Zigbee无线通信技术详解

Zigbee无线通信技术详解
系系统统应应用用医院医疗监护医疗仪器数据采集三三zigbee技术应用范围技术应用范围3智能交通控制系统智能交通控制系统图一无线交通信号控制图一无线交通信号控制图二图二zigbee远程交通控制远程交通控制三三zigbee技术应用范围技术应用范围系系统统概概述述采用zigbee和太阳能结合的无线控制系统无须挖路布设控制线路各设备之间实现无线自动组网连接既降低了系统安装成本更重要的是避免了传统安装方式对交通干扰所带来的经济损失而且也避免了由于城市快速发展道路拓展等变化对原有预埋管线的干扰
2
一、Zigbee技术简介
二、ZigBee技术特点 • ZigBee 是一种新兴的短距离、低功耗、低数据速率 、低成本、低复杂度的无线网络技术; • ZigBee 采取了 IEEE 802.15.4 强有力的无线物理层 所规定的全部优点 :省电、简单、 成本又低的规格 ;ZigBee 增加了逻辑网络、网络安全和应用层; • ZigBee 的主要应用领域包括无线数据采集、无线工 业控制、消费性电子设备、汽车自动化、家庭和楼宇 自动化、医用设备控制、远程网络控制等场合;
工业控制命令、远程网络控制、家用电器控制 如鼠标键盘数据、操作杆的数据
间断性数据 反复性低反应时间数据

19
三、Zigbee技术应用范围
二、适合 ZigBee 技术的应用场合
• • • •
设备成本低、传输数据量小 设备体积小,不便放置较大的充电电池或者电源模块 没有充足的电源支持,只能使用一次性电池 需要较大范围的通信覆盖,网络中的设备非常多,但 仅仅用于监测或控制
20
三、Zigbee技术应用范围
三、Zigbee技术典型应用
• • • •
1、结合 Zigbee 和 GPRS 的无线数据传输 2、医疗监控系统 3、无线点餐系统 4、智能交通控制系统

Zigbee技术

Zigbee技术

WiFi的技术优势
覆盖范围 传输速率 组网方式
半径100m
IEEE802.11b:11Mb/s IEEE802.11a/g:54Mb/s
设置WiFi无线路由器,组网方便
无线网络标准的比较
提纲
1
无线传感网络概述
2
Zigbee协议
3
Z-Stack协议栈
4
Zigbee测试
ZigBee概述
ZigBee是一种短距离、低复杂度、低功耗、低数据率、 低成本的双向无线通讯技术,是一组基于IEEE 802.15.4无线 标准研制开发的有关组网、安全和应用软件方面的技术。
➢产生应用数据单元; ➢绑定及绑定服务; ➢AIB管理; ➢安全管理;
ZigBee网络设备类型
网络协调器:包含所有的网络消息,是3种设备类型中最复杂的一种,存储 容量最大、计算能力最强。发送网络信标、建立一个网络、管理网络节点、 存储网络节点信息、寻找一对节点间的路由消息、不断地接收信息。 全功能设备(FFD):可以担任网络协调者,形成网络,让其他的FFD或是 精简功能装置(RFD)连结,FFD具备控制器的功能,可提供信息双向传输。
UWB
调制方式 传输距离 传输速率 UWB技术标准 工作频段
MB-OFDM 10~20m <1Gbit/s IEEE 802.15.4a 3.1GHz和10.6GHz之间
Zigbee
什么是Zigbee技术? “Zig”的英文含义是“之字形” “Zag”的含义是“急转, 急变” “Zigzag”的含义是“之字形跳变”
zigbee无线网络技术总结六室2010712中科院微电子研究所提纲无线传感网络概述1zigbee协议2zstack协议栈3zigbee测试4无线传感网络概述无线传感器网络wirelesssensornetwork综合了微电子技术嵌入式计算技术现代网络及无线通信技术分布式信息处理技术等先进技术能够协同地实时监测感知和采集网络覆盖区域中各种环境或监测对象的信息并对其进行处理处理后的信息通过无线方式发送并以自组多跳的网络方式传送给观察者

第三章 zigbee网络原理与开发PPT课件

第三章 zigbee网络原理与开发PPT课件

1.2 短距离无线网络的分类
1.2 短距离无线网络的分类
1.2 短距离无线网络的分类
1.2 短距离无线网络的分类
1.2 短距离无线网络的分类
1.2 短距离无线网络的分类
1.2 短距离无线网络的分类
1.2 短距离无线网络的分类
1.2 短距离无线网络的分类
1.3 ZIGBEE 版本介绍
1.1 无线网络数据传输协议对比
1.1 无线网络数据传输协议对比
Zigbee与现有标准传输协议的比较:
1.1 无线网络数据传输协议对比
因此:Zigbee数据 速率较低,不适 用于传输大数据 量的应用领域。
1.2 短距离无线网络的分类
1.2 短距离无线网络的分类
1.2 短距离无线网络的分类
1.3 一个例程
我们通过上面的点亮 LED例子来说明这个功能 的使用方法。
void main(void) { P1DIR = 0xFF; while(1)
首先修改工程的代码, {
在这里我们要实Βιβλιοθήκη 两个设#ifndef Blink_LED
备在一个工程中实现不同 的功能,两个模块的名称 分别定义为:Blink_LED 和Open_LED。实现的功
2007年底,ZigBee PRO推出。
目前已经吸引了一些最具创新性和在世界知名的组织,如华 为、罗格朗、施耐德、飞利浦、霍尼韦尔等知名企业,一个 由400多家企业和其他组织构成的非营利性开放联合体,
1.4 ZIGBEE无线网络通信信道分析
信道编号
中心频率/MHz 信道间隔/MHz 频率上限/MHz 频率下限/MHz
主要内容
3.1 Zigbee简介 3.2 Zigbee开发环境及调试 3.3 Zigbee 硬件简介 3.4 Zigbee无线传感器网络开发基础 3.5 Zigbee无线传感器网络高级开发 3.6 Zigbee无线传感器网络管理 3.7 Zigbee 无线传感器网络开发实例

ZigBee技术的无线传感网络研究

ZigBee技术的无线传感网络研究

ZigBee技术的无线传感网络研究一、引言随着物联网的迅速发展,无线传感网络技术正逐渐成为现代通信领域的研究热点。

作为无线传感网络技术的一种重要的代表,ZigBee技术以其低功耗、低成本、自组织以及可靠性高等特点,被广泛应用于家庭自动化、智能环境监测、工业控制、医疗健康等领域。

本文将对ZigBee技术的无线传感网络进行深入研究和探讨。

二、ZigBee技术的概述ZigBee技术是一种基于IEEE 802.15.4标准的低速、低功耗、短距离的无线通信技术。

与其他无线传感网络技术相比,ZigBee技术具有以下几个突出特点。

1. 低功耗:ZigBee技术采用了休眠唤醒技术,节点在不进行通信时会进入休眠状态,大大降低了能耗,因此非常适用于需要长时间运行的设备。

2. 低成本:ZigBee技术的硬件成本较低,且协议栈的内存要求也不高,这使得其在大规模部署中有着较大的优势。

3. 自组织性:ZigBee网络中的节点可以自动进行组网和组网优化,无需手动配置,降低了部署和维护的复杂性。

4. 可靠性高:ZigBee技术采用了AES-128位加密算法,保障了数据的安全性,同时还具备网络重组能力和自愈能力,保证了网络的高可靠性。

ZigBee技术适用于对功耗和成本要求较高,对数据传输距离较短,且对网络可靠性有一定要求的应用场景。

三、ZigBee技术的无线传感网络架构ZigBee技术中的无线传感网络通常由网络协调器(Coordinator)、路由器(Router)、终端设备(End Device)三种类型的节点组成。

1. 网络协调器:网络协调器是ZigBee网络的核心,负责启动和维护网络,处理网络配置和管理,协调网络中其他节点的通信。

一个ZigBee网络中只能有一个网络协调器。

2. 路由器:路由器主要是用来转发数据包的中间节点,可以帮助网络协调器扩大网络范围,提升网络的容量和覆盖范围。

3. 终端设备:终端设备通常是网络中的传感器或执行器,负责采集数据或执行相应的动作,它们不能转发数据包,只能与网络协调器或路由器进行通信。

ZigBee无线网络原理

ZigBee无线网络原理

ZigBee无线网络原理
ZigBee无线网络是一种低功耗、低速率的无线网络通信协议,其原理基于IEEE 802.15.4标准。

它适用于需要将大量节点连
接到一个中心控制器的应用场景,具备自组织、自修复和自动路由等特性。

ZigBee网络由三种设备组成:协调器(Coordinator)、路由器(Router)和终端设备(End Device)。

协调器是网络的核心,负责管理网络配置和协调各个设备的通信。

路由器可以转发数据包,并帮助建立路由表,使数据传输更高效。

终端设备是最简单的节点,功能有限且通信范围较短。

这些设备可以通过无线信道进行通信,并使用MAC层和物理层协议来实现数据传输。

ZigBee网络采用星型、树型或网状拓扑结构,其中协调器处
于网络的根节点,其他设备通过与协调器的直接或间接连接来实现通信。

网络中的节点可以根据实际情况自动组建和拓扑重组,无需手动配置。

在数据传输过程中,ZigBee网络使用CSMA-CA(载波感知多路访问监听)机制来协调节点的发送行为,避免冲突和碰撞。

每个节点都有一个64位的唯一地址,用于标识设备和建立通
信连接。

节点之间可以通过短距离的无线信道进行通信,距离一般在几十米到几百米之间,受限于无线信号传播和环境干扰等因素。

ZigBee网络支持多种应用层协议和功能,例如家庭自动化、
工业控制、智能电网等。

它的低功耗特性使得它在电池供电设备、传感器网络等场景下得到广泛应用。

通过合理设计和优化网络结构和通信机制,ZigBee无线网络可以实现可靠的数据传输和灵活的网络管理。

Zigbee无线传输技术学习

Zigbee无线传输技术学习

目录第一章 ZIGBEE核心板(CC2530) (1)1、产品概述 (1)2、原理说明 (2)第二章 ZIGBEE节点 (4)1、产品概述 (4)2、通用节点原理 (4)3、传感器节点原理 (6)第三章 CC2530功能说明 (9)1、CC2530芯片概览 (9)2、CC2530重要寄存器 (11)第四章软件开发环境入门 (17)1、建立模板工程样例 (18)1)建立新工程 (18)2)添加工程文件 (21)3)配置工程选项 (23)4)编译和链接 (27)2、下载和调试 (28)1)安装仿真器驱动 (28)2)调试和运行 (30)第五章基础实验 (33)实验一、LED发光二极管实验 (33)实验二、串口收发数据实验 (35)实验三、按键控制实验 ............................. 错误!未定义书签。

实验四、液晶显示实验 ............................. 错误!未定义书签。

实验五、电池监测实验 ............................. 错误!未定义书签。

实验六、空气温湿度传感器实验 ..................... 错误!未定义书签。

实验七、三轴加速度传感器实验 ..................... 错误!未定义书签。

实验八、人体红外传感器实验 ....................... 错误!未定义书签。

实验九、可燃气体传感器实验 ....................... 错误!未定义书签。

实验十、干簧管与霍尔开关传感器实验 ............... 错误!未定义书签。

实验十一、接近开关与红外对射传感器实验 ........... 错误!未定义书签。

实验十二、声光传感器实验 ......................... 错误!未定义书签。

实验十三、按键实验............................... 错误!未定义书签。

Zigbee学习知识重点

Zigbee学习知识重点第一章Zigbee概述1、Zigbee是一种新兴的短距离、低速率无线网络技术,主要用于近距离无线连接。

2、Zigbee的特点是功耗低、成本低、时延短、网络容量大、可靠安全。

3、常见的Zigbee芯片有CC243X系列、MC1322X系列和CC253X系列。

4、常见的Zigbee协议栈有非开源(msstatePAN)协议栈、开源(freakz)协议栈和半开源(Zstack)协议栈。

5、Zigbee软件开发平台包括IAR、Zigbee Sniffer、物理地址修改软件以及其它辅助软件。

6、Zigbee硬件开发平台采用Altium Designer进行设计。

7、简述Zigbee的定义。

答:Zigbee是一种近距离、低复杂度、低功耗、低成本的双向无线通讯技术。

主要用于距离短、功耗低且传输速率不高的各种电子设备之间,进行数据传输(包括典型的周期性数据、间歇性数据和低反应时间数据)的应用。

(Zigbee的基础是IEEE802.15.4,但是IEEE802.15.4仅处理低级的MAC(媒体接入控制协议)层和物理层协议,Zigbee联盟对网络层协议和应用层进行了标准化。

)8、简述无线传感器网络与Zigbee之间的关系。

答:从协议标准来讲:目前大多数无线传感器网络的物理层和MAC层都采用IEEE802.15.4协议标准。

IEEE802.15.4描述了低速率无线个人局域网的物理层和媒体接入控制协议(MAC 层),属于IEEE802.15.4工作组。

而Zigbee技术是基于IEEE802.15.4标准的无线技术。

从应用上来讲:Zigbee适用于通信数据量不大,数据传输速率相对较低,成本较低的便携或移动设备。

这些设备只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另外一个传感器,并能实现传感器之间的组网,实现无线传感器网络分布式、自组织和低功耗的特点。

9、Zigbee技术特点:低功耗、低成本、大容量、可靠、时延短、灵活的网络拓扑结构。

什么是zigbee网络_它的工作原理及应用

什么是Zigbee网络: 它的工作原理及应用1. 简介Zigbee是一种无线通信协议,它是基于IEEE 802.15.4标准开发的,用于低功率无线传感器网络(LP-WAN)。

它的设计旨在为大规模的传感器网络提供低功耗、低数据传输速率和安全的通信解决方案。

目前,Zigbee已被广泛应用于物联网、家庭自动化和工业控制系统等领域。

2. Zigbee网络的工作原理Zigbee网络采用了星型拓扑结构,其中一个设备充当协调器的角色,其他设备连接到该协调器。

Zigbee设备之间通过无线信道进行通信,在工作过程中,协调器负责网络协议的管理和数据的传输。

Zigbee网络使用低功耗的射频技术进行通信,工作频率通常为2.4 GHz,传输距离一般在10-100米之间,但可以通过增加中继器来扩展覆盖范围。

3. Zigbee网络的应用Zigbee网络在多个领域有着广泛的应用,下面列举了一些主要的应用场景:• 3.1 物联网Zigbee作为物联网中的关键技术之一,广泛应用于智能家居、智能城市和智能农业等领域。

通过连接多个设备,如传感器、执行器和控制器,Zigbee网络可以实现远程监控、智能能源管理和自动化控制等功能。

• 3.2 家庭自动化Zigbee网络在家庭自动化中的应用越来越受欢迎。

它可以连接各种设备,如智能灯泡、智能插座和智能门锁等,通过无线通信实现对家居设备的远程控制和智能化管理。

• 3.3 工业控制系统Zigbee网络在工业控制系统中也有着广泛的应用。

它可以用于监测和控制各种设备,如温度传感器、湿度传感器和压力传感器等。

通过无线通信,工业系统可以实现实时监测和远程控制,提高生产效率和安全性。

• 3.4 智能健康监测Zigbee网络还可以应用于智能健康监测领域。

通过连接各种健康监测设备,如心率检测器、血压计和血糖仪等,Zigbee网络可以实时监测用户的健康状态,并将数据传输到医疗机构进行分析和处理。

• 3.5 环境监测Zigbee网络也被广泛应用于环境监测领域。

zigbee无线方案

zigbee无线方案Zigbee是一种广泛应用于物联网中的无线通信协议。

它基于IEEE 802.15.4标准,并专注于低功耗、低数据速率和短距离通信。

由于Zigbee的独特特性和诸多优势,它成为了许多智能家居、工业控制和传感器网络等领域的首选无线通信方案。

一、Zigbee无线方案简介Zigbee无线方案是一种基于Mesh(网状)拓扑结构的无线网络系统。

它由一个集中式的协调器(Coordinator)以及多个分布式的终端设备(End Device)组成。

协调器负责网络的管理和控制,而终端设备则具备传感数据采集和控制继电器等功能。

在Zigbee网络中,每个终端设备既可以是数据的源头,也可以是数据的转发节点。

这种多对多的网络拓扑结构使得Zigbee在大规模传感器网络中具有出色的灵活性和可扩展性。

二、Zigbee无线方案的优势1. 低功耗:Zigbee无线方案使用了低功率的射频技术,使得终端设备的电池寿命得以延长,适用于长期运行的物联网应用。

2. 高可靠性:Zigbee采用了自组织的Mesh网络结构,如果某个节点出现故障或中断,其他节点会自动找到新的路径,确保数据的可靠传输。

3. 强大的网络容量:Zigbee支持上千个终端设备同时连接到一个协调器,可以满足多种应用场景下的需求。

4. 快速响应时间:Zigbee网络使用分散式网络技术,具备较低的延迟,可以实现实时数据采集和迅速的控制指令传递。

5. 安全性:Zigbee采用了128位AES加密算法,确保数据的安全传输。

三、Zigbee无线方案的应用1. 智能家居:Zigbee无线方案可以实现智能灯光控制、门窗监测、智能家电控制等功能,提升家居的便利性和舒适度。

2. 工业控制:Zigbee无线方案广泛应用于工业自动化领域,可以进行设备状态监测、远程控制以及数据采集等任务。

3. 智能农业:结合传感器网络和Zigbee无线方案,可以实现对农田环境的实时监测和精细管理,提高农作物的产量和质量。

ZigBee技术

(4)对油气等生产、运输和勘测进行管理。 (5)家庭监控照明、安全和其他系统。 (6)对病患、设备及设施进行医疗和健康监控。 (7)军事应用,包括战场监视和军事机器人控制。 (8)汽车应用,即配合传感器网络报告汽车的所有的系统状态。 (9)消费电子应用,包括对玩具、游戏机、电视、立体音响、DVD播
放机和其他家电设备进行遥控。 (10)用于计算机外设,如键盘、鼠标、游戏控制器及打印机。 (11)有源RFID应用,如电池供电标签,可用于产品运输、产品跟踪、
交换数据的网络中的设备类型:协调器、路由器和终端设备。
与移动通信的CDMA或 GSM网络不同的是,ZigBee 网络主要是为工业现场自动 化控制数据传输而建立的, 因此它必须具有简单、使用 方便、工作可靠、价格低的 特点。
图4-3 ZigBee模块
ZigBee技术
三、ZigBee采用的自组织网通信方式
物联网
ZigBee技术
一、ZigBee概述
Zigbee是IEEE 802.15.4协议的代名词,根据这个协议规定的技术 是一种短距离、低功耗的无线通信技术。
ZigBee联盟是一个高速增长的非盈利业界组织
ZigBee联盟的主要目标是通过加入无线网络功能,为消费者提供 更富弹性、更易用的电子产品。
二、ZigBee无线数据传输网络描述
3)时延 由于ZigBee采用随机接入MAC层,且不支持时分复用的信道接
入方式,因此不能很好地支持一些实时的业务。 4)能耗特性(技术优势 )
ZigBee技术
5)组网和路由性(即网络层特性)
ZigBee具备大规模的组网能力,每个网络有60 000个节点; 而蓝牙为每个网络8个节点。
六、ZigBee自身的技术优势
举一个简单的例子就可以说明这个问题,当一队伞兵空降后,每人 持有一个ZigBee网络模块终端,降落到地面后,只要他们彼此间在网 络模块的通信范围内,通过彼此自动寻找,很快就可以形成一个互联 互通的ZigBee网络。而且,由于人员的移动,彼此间的联络还会发生 变化。因而,模块还可以通过重新寻找通信对象,确定彼此间的联络 ,对原有网络进行刷新。这就是自组织网。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章ZigBee 无线网络技术3.1 ZigBee无线网络技术的特点ZigBee技术主要用于无线个域网(WPAN),是基于IEEE802.15.4无线标准研制开发的。

IEEE802.15.4定义了两个底层,即物理层和媒体接入控制(Media Access Control,MAC)层;ZigBee联盟则在IEEE 802.15.4的基础上定义了网络层和应用层。

ZigBee联盟成立于2001年8月,该联盟由Invensys、三菱、摩托罗拉、飞利浦等公司组成,如今已经吸引了上百家芯片公司、无线设备公司和开发商的加入,其目标市场是工业、家庭以及医学等需要低功耗、低成本、对数据速率和QoS(服务质量)要求不高的无线通信应用场合。

ZigBee这个名字来源于蜂群的通信方式:蜜蜂之间通过跳Zigzag形状的舞蹈来交互消息,以便共享食物源的方向、位置和距离等信息。

与其它无线通信协议相比,ZigBee无线协议复杂性低、对资源要求少,主要有以下特点:(1)低功耗:这是ZigBee的一个显著特点。

由于工作周期短、传输速率低,发射功率仅为lmw,以及采用了休眠机制,因此ZigBee设备功耗很低,非常省电。

据估算,ZigBee设备仅靠两节5号电池就可以维持长达6个月到2年左右的使用时间,这是其它无线设备望尘莫及的。

(2)低成本:协议简单且所需的存储空间小,这极大降低了ZigBee的成本,每块芯片的价格仅2美元,而且ZigBee协议是免专利费的。

低成本对于ZigBee也是一个关键的因素。

(3)时延短:通信时延和从休眠状态激活的时延都非常短,典型的搜索设备时延为30ms,休眠激活的时延是15ms,活动设备信道接入的时延为15ms。

这样一方面节省了能量消耗,另一方面更适用于对时延敏感的场合,例如一些应用在工业上的传感器就需要以毫秒的速度获取信息,以及安装在厨房内的烟雾探测器也需要在尽量短的时间内获取信息并传输给网络控制者,从而阻止火灾的发生。

(4)传输范围小:在不使用功率放大器的前提下,ZigBee节点的有效传输范围一般为10-75m,能覆盖普通的家庭和办公场所。

(5)网络容量大:根据ZigBee协议的16位短地址定义,一个ZigBee网络最多可以容纳65535个节点,而且还可以通过64位的IEEE地址进行扩展,因此ZigBee网络的容量是相当大的。

(6)数据传输速率低:2.4GHz频段为250kb/s,915MHz频段为40kb/s,868MHz频段只有20kb/s。

(7)可靠:采取了免冲撞机制,同时为需要固定带宽的通信业务预留了专用时隙,避开了发送数据的竞争和冲突。

媒体接入控制子层采用了完全确认的数据传输模式,每个发送的数据包都必须等待接收方的确认信息。

如果传输过程中出现问题可以进行重发。

(8)安全:ZigBee提供了基于循环冗余校验的数据包完整性检查功能,支持鉴权和认证,采用高级加密标准(Advanced Encryption standard,AES)进行加密,各个应用可以灵活确定其安全属性。

3.2 ZigBee协议栈结构ZigBee协议栈结构(图)是基于标准OSI七层模型的,包括高层应用规范、应用汇聚层、网络层、媒体接入层和物理层。

图ZigBee 协议栈IEEE802.15.4定义了两个物理层标准,分别是2.4GHz物理层和868/915MHz物理层。

两者均基于直接序列扩频(DirectSequenceSpread Spectrum,DSSS)技术。

868MHz只有一个信道,传输速率为20kb/s;902MHz~928MHZ频段有10个信道,信道间隔为2MHz,传输速率为40kb/s。

以上这两个频段都采用BPSK调制。

2.4GHz~2.4835 GHz频段有16个信道,信道间隔为5MHz,能够提供250kb/s的传输速率,采用O-QPSK调制。

为了提高传输数据的可靠性,IEEE 802.15.4定义的媒体接入控制(MAC)层采用了CSMA-CA和时隙CSMA-CA信道接入方式和完全握手协议。

应用汇聚层主要负责把不同的应用映射到ZigBee 网络上,主要包括安全与鉴权、多个业务数据流的会聚、设备发现和业务发现。

物理层物理层提供的服务是由硬件和软件共同实现的,定义了物理无线信道(对于2.4GHz频段,有16个信道,编号为11-26)和MAC子层之间的接IZl,提供物理层数据服务(PLDE)和物理层管理服务(PLME)。

通过该接1:3可以唤醒层管理服务功能,同时也负责维护与物理层相关的一些管理对象的数据库(PIB)。

物理层通过物理层数据服务接入点(PD.SAP)和物理层管理实服务接入点fPLME.SAP)与MAC层通信,PD.SAP支持在对等的MAC层实体间进行MAC协议数据单元传送,PLME.SAP则在MAC层管理实体之间提供管理命令的传送。

物理层主要完成如下任务:1.无线收发机的激活与关闭:2.当前信道的能量检澳1](Energy Detect,ED);3.接受数据包的链路质量标识(LQI);4.为载波侦听多路访问/冲突防_flz(CSMS.CA)提供空闲信道评估(CCA):5.工作信道选择;6.数据发送和接收。

信道能量检测为网络层提供信道选择依据,其值取值范围是0x00.0xFF。

它主要测量目标信道中接受信号的功率强度,链路质量标识为网络层或应用层提供接受数据帧无线信号的强度和质量信息。

MAC层与物理层类似,MAC层也包括管理实体(MLME)和数据实体(MLDE)。

MAC层管理实体提供可以唤醒MAC层管理服务的服务接口,同时也维护一个与MAC层相关的管理对象数据库(MIB)。

MAC层与物理层之间通过PLME.SAP和PD.SAP进行通信,通过MAC数据实体服务点(MLDE.SAP)和MAC层管理实体服务接入点(MLME.SAP)向qlt务相关子层提供MAC层数据和管理服务。

另外,MAC层能支持多种LLC标准,通过业务相关会聚子层(SSCS)协议承载802.2类型的LLC标准。

MAC层功能如下:1.当节点为网络协调器时,产生信标(beacon)帧;2.在信标帧之间进行同步;3.支持个人区域网(PAN)的关联与解关联;4.支持节点安全机制;5.对信道接入使用CSMA.CA机制;6.处理和维护有保证的时隙(GTS)机制;7.在两个对等的MAC实体问提供可靠的链接。

Zigbee中的MAC和物理层协议是网状网络的应用基础,高容错和低功耗的特点能保证网状网络所必须考虑基于拓扑控制和功率控制的网络白组特性。

而且对于经典的隐藏终端和暴露终端问题、协议的接入公平性问题、服务质量问题等都有良好的解决。

在网状网络中,MAC层的传输调度策略会影响数据包延迟、带宽等性能,影响网络层路由性能,所以网络层必须感知MAC层性能的变化,才可以自适应的方式改变路由,改善网络性能。

网络层网络层对于Zigbee协议栈非常重要,每一个Zigbee节点都包含网络层,Zigbee网络层主要实现组建网络,为新加入网络访分配地址、路由发现、路由维护等。

另外网络层还提供一些必要的函数,确保ZigBee的MAC层正常工作,并且为应用层提供合适的服务接口,这种结构使得网状网络的应用基本能够实现。

为了向应用层提供其接口,网络层提供了两个必须的功能服务实体,它们分别为网络数据服务实体(NLDE)和管理服务实体(NLME)。

NLDE通过网络层数据服务实体服务接入点(NLME.SAP)提供数据传输服务,网络层管理实体(NLME)通过网络层管理实体服务接入点(NLME.SAP)提供网络管理服务。

网络层管理实体利用网络层数据实体完成一些网络的管理工作,并且,网络层管理实体完成对网络信息庠(NIBl的维护和管理。

应用层ZigBee 应用层由三个部分组成:应用子层(APS)、ZDO(包含ZDO管理寸骨)和制造商定义的应用对象(App Obj)。

APS通过蚓络层和安全服务提供层与端点相接,并为数据传送、安全午口绑定提供服务,可以适配不同但兼容的霄点,并且提供了这样的接口:在NWK层和APL 层之间,从ZDO到供应商的应用对象的通用服务集。

ZigBee中的应_|{}j框架(APL Framework)是为驻扎在zigBee节点巾的应用对象提供活动的环境。

最多可以定义240个相对独立的应用程序对象(ZDO),任何个对象的端点编号从l到240,端点号0固定用于ZDO数据接口,应用程序可以通过这个端点与ZigBee怫议栈的其它层通信:另外一个端点255固定用于所有应用对象广播数数据的数据接口功能。

端点241.254保留(给为了扩展使片),用户不能使用1451。

3.2.2 ZigBee 网络拓扑结构IEEE802.15.4和ZigBee协议中明确定义了三种拓扑结构:星型结构(Star)、网状结构(Mesh)和簇树结构(ClusterTrec),如图2.2所示。

在星型网络结构中,ZigBee协调器负责整个网络的控制,无其它路由节点,ZigBee终端设备直接与zigBe。

协调器通信,终端设备间的通信则需通过协调器转发。

这是最简单的拓扑结构,网络通信范围十分有限,单独使用这种拓扑结构的情况很少。

在网状网络和簇树型网络中,ZigBee协调器负责网络的建立和初始参数设定,网络都可以通过ZigBee路由器进行扩展。

但是,在簇树型网络中,路由器采用分级路由策略传送数据和控制信息,并且通常是基于信标(Beacon)的通信模式。

而在网状网中则是完全对等的点对点通信,路由器不会定期发送信标,仅在网内设备要求时对其单播信标。

对于簇树型网络,其通信路由相对单一,骨干网络中一旦有路由节点瘫痪,则相应区域就进入通信瘫痪状态,要等待该部分网络重组后,才能恢复通信。

但是,簇树型网定期发送信标,使网内节点能做到很好的同步,便于节点定期进入休眠状态,降低功耗,延长网络寿命。

在网状网中情况则恰好相反,完全的点对点通信使路由有多种选择,提高了网络的容错性,但是不定期发送信标使网络中节点很难达到同步,必须采取别的手段来实现,如广播。

因此,网状结构与簇树结构的层次融合,必定是zigBee网络拓扑结构的一个发展方向。

CC2430通信模块。

相关文档
最新文档