南昌大学电力电子技术实验报告
南昌大学 电子测试实验报告

实验报告实验课程:电子线路的设计与测试学生姓名:陈礼阳学号:6102113069专业班级:中兴通信131班2015年 5月 9日实验一、直流稳压电源设计一、实验目的1.学会选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源2.掌握直流稳压电源的调试及主要技术指标的测量方法设计任务:设计一直流稳压电源并进行仿真。
基本性能指标:(A1)输出直流电压+5V,负载电流200mA。
(B1) +3V~ +9V,连续可调;(B2) I Omax=200mA;(B3) 稳压系数S r≤5×10-3;(B4) △U O≤5mV。
扩展性能指标:扩展直流稳压电源的输出电流使10mA≤I O≤1.5A。
二、设计原理直流稳压电源设计框图和直流稳压电源基本电路分别如图1.1和图1.2所示:图1.1直流稳压电源框图图1.2直流稳压电源基本电路主要原理是:电源变压器将交流电网220V的电压降压为所需的交流电压,然后通过整流电路将交流电压变成单极性电压,再通过滤波电路加以滤除,得到平滑的直流电压。
但这样的电压还随电网电压波动(一般有±10%左右的波动)、负载和温度的变化而变化。
因而在整流、滤波电路之后,还需接稳压电路。
稳压电路的作用是当电网电压波动、负载和温度变化时,维持输出直流电压稳定。
稳压电源的性能指标:最大输出电流I Omax :电源的输出电压U O 应不随负载电流I OL 而变化,随着负载R L 阻值的减少,I OL 增大,U O 减小,当U O 的值下降5%时,此时流经负载的电流定义为I Omax (记下I Omax 后迅速增大R L ,以减小稳压电源的功耗)。
输出电压:指稳压电源的输出电压,也是稳压器的输出电压。
当输入电压为额定值时,可直接用电压表测量。
纹波电压:指叠加在输出电压U O 上的交流分量。
可用示波器观测其峰-峰值或者有效值。
稳压系数:指在负载电流、环境温度不变的情况下,输入电压的相对变化引起输出电压的相对变化,即O I O I r T O I U U S U U /|∆∆===常数常数输出电阻:稳压电路输入电压一定时,输出电压变化量△U O 与输出电流变化量△I O 之比,即OOo I U R ∆∆=(U I 为常数) 三、实验内容 1、变压模块:使用20:1的变压器将220V 的交流电降压为11V ,如图1.3所示:图1.3变压器2.整流电路:用4个二级管组成整流桥,将交流电的负半周期整流为正电压,如图1.4所示:图1.4 整流桥图1.5 输入电压图1.6输出电压经过二级管整流桥的作用后将交流电的负半周期转变为正的,如图1.5、1.6所示。
电力电子实验报告

电力电子实验报告电力电子实验报告引言:电力电子是现代电气工程领域中重要的研究方向之一,它涉及到电力的转换、控制和调节等方面。
本次实验旨在通过实际操作,加深对电力电子原理的理解,并掌握电力电子器件的使用和调试技巧。
一、实验目的本次实验的主要目的是通过搭建电力电子系统,实现对交流电的变换、控制和调节,掌握电力电子器件的使用和调试技巧,加深对电力电子原理的理解。
二、实验装置与方法实验装置包括交流电源、电力电子器件(如整流器、逆变器等)、控制电路以及负载等。
实验方法主要是通过搭建电路,调试参数和观察输出结果,来验证电力电子原理。
三、实验内容1. 整流器实验通过搭建单相半波整流电路,将交流电转换为直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
2. 逆变器实验通过搭建单相半桥逆变电路,将直流电转换为交流电。
调节输入电压和负载电阻,观察输出的交流电压波形和电压波动情况,并记录实验数据。
3. DC-DC变换器实验通过搭建DC-DC变换电路,将直流电转换为不同电压的直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
4. AC-DC变换器实验通过搭建AC-DC变换电路,将交流电转换为直流电。
调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。
四、实验结果与分析在整流器实验中,通过调节输入电压和负载电阻,可以得到稳定的直流输出电压。
而在逆变器实验中,通过调节输入电压和负载电阻,可以得到稳定的交流输出电压。
在DC-DC变换器和AC-DC变换器实验中,通过调节输入电压和负载电阻,可以得到不同电压的直流输出。
实验结果表明,电力电子器件能够有效地实现对电能的变换、控制和调节。
通过调整电路参数,可以实现不同电压、频率和波形的输出。
这为电力系统的稳定运行和能源的高效利用提供了技术支持。
五、实验总结通过本次实验,我深入了解了电力电子的基本原理和应用。
南昌大学工厂供电实验报告

实验报告实验课程:工厂供电(一次二次实验)学生姓名:学号:专业班级:自动化12015年1 月5 日目录实验一:工厂供电一次二次实验实验1:工厂供电一次部分实验2:工厂供电二次部分实验二:电磁型电流继电器和电压继电器实验实验类型:□验证■综合□设计□创新实验日期:实验成绩:实验1:工厂供电一次控制实验一、实验目的通过电气一次及二次控制实验,达到加深对工厂电气设备的感性认识,熟悉工厂供电设备构成和运行方式。
二、实验的基本原理根据实际的高压开关柜和利用所学的工厂供电知识,结合主接线电气知识及工厂一次设备的构成,完成工厂供电系统的一次接线图。
高压开关柜是以断路器为主的电气设备。
它是生产厂家根据电气一次主接线图的要求,将有关的高低压电器(包括控制电器、保护电器、测量电器)以及母线、载流导体、绝缘子等装配在封闭的或敞开的金属柜体内,作为电力系统中接受和分配电能的装置。
按断路器安装方式可分为移动式(手车式)和固定式;按安装地点可分为户内式和户外式;按柜体结构可分为金属封闭铠装式、金属封闭间隔式、金属封闭箱式和敞开式开关柜。
常见的高压开关柜产品有KYN28A12、XGN37-12、XGN2-12及GG1A-12等。
高压开关柜的主要组成为进线柜、计量柜、过线柜及变压器控制保护2B等装置。
其中进线柜是高压室的电源线,主要由断路器、隔离开关和电流互感器组成。
计量柜是电能计量柜(箱)的简称,是对计费电力用户用电计量和管理的专用柜,可分为整体式电能计量柜和分体式电能计量柜,主要由熔断器、电流互感器、电压互感器和断路器组成。
过线柜是连接电源线与用户的通道。
避雷器是变电站保护设备免遭雷电冲击波袭击的设备。
当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。
其能释放雷电或兼能释放电力系统操作过电压能量,保护电工设备免受瞬时过电压危害,又能截断续流,不致引起系统接地短路。
南昌大学电力系统实验报告(打印上交)

电力系统分析实验报告学生姓名:学号:学院名称:专业班级:南昌大学实验报告学生姓名:学号:专业班级:实验类型:□验证□综合□设计□创新实验日期:实验成绩:一、实验项目名称电力网数学模型模拟实验二、实验目的与要求:本实验通过对电力网数学模型形成的计算机程序的编制与调试,获得形成电力网数学模型:节点导纳矩阵的计算机程序,使数学模型能够由计算机自行形成,即根据已知的电力网的接线图及各支路参数由计算程序运行形成该电力网的节点导纳矩阵。
通过实验教学加深学生对电力网数学模型概念的理解,学会运用数学知识建立电力系统的数学模型,掌握数学模型的形成过程及其特点,熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。
三、主要仪器设备及耗材计算机、软件(已安装,包括各类编程软件C语言、C++、VB、VC等、应用软件MA TLAB等)、移动存储设备(学生自备,软盘、U盘等)四、实验步骤1、将事先编制好的形成电力网数学模型的计算程序原代码由自备移动存储设备导入计算机。
2、在相应的编程环境下对程序进行组织调试。
3、应用计算例题验证程序的计算效果。
4、对调试正确的计算程序进行存储、打印。
5、完成本次实验的实验报告。
五、实验数据及处理结果运行自行设计的程序,把结果与手工计算结果相比较,验证所采用方法及所编制程序运行的正确性。
实验思路:为便于以后的研究,我首先建立了4个“万能函数”,分别为daona_daona、zukang_daona、daona_zukang和zukang_zukang,例如函数daona_zukang,只需将等值网络图中节点间阻抗和节点对地阻抗输入函数相应位置,便可得到节点导纳矩阵。
本次实验中只用到了函数daona_daona。
功能函数daona_daona.m:注释中带引号的““导纳矩阵””为对角元素是节点对地导纳,非对角元素是节点间导纳所形成的上三角矩阵;不带引号的“导纳矩阵”是课本定义的节点导纳矩阵。
电力电子技术认知实习报告

电力电子技术认知实习报告电力电子技术认知实习报告在生活中,报告使用的频率越来越高,通常情况下,报告的内容含量大、篇幅较长。
那么大家知道标准正式的报告格式吗?以下是店铺为大家收集的电力电子技术认知实习报告,仅供参考,欢迎大家阅读。
电力电子技术认知实习报告1一、实习时间二、实习地点三、实习目的将所学的理论知识与实践结合起来,培养勇于探索的创新精神、提高动手能力,加强社会活动能力,严肃认真的学习态度,为以后电子专业实习和走上工作岗位打下坚实的基础。
认识实习是教学计划的重要部分,它是培养学生的实践等解决实际问题的第二课堂,它是电子专业知识培养的摇篮,也是对工业生产流水线的直接认识与认知。
同时,经过一周的认识实习,也让我深刻的认识到在电子专业就业方向和前景都是一片明朗而且广阔的。
四、实习方式(1)报告学习在导师的详细讲解中,充分认识到电子专业的课程内容,就业前景,就业范围。
以及了到老师在学习当中分享到的学习经验以及学习方法。
(2)实验室参观在导师的讲解与带领下参观学习的实验室,从中能够对电工,电子以及机电的具体实习设备有进一步的了解。
为以后的实习奠定下认识的基础。
五、实习内容1、电子技术专业介绍(1)专业定义该专业培养具备电子信息科学与技术的基本理论和基本知识,受到严格的科学实验训练和科学研究初步训练,能在电子信息科学与技术、计算机科学与技术及相关领域和行政部门从事科学研究、教学、科技开发、产品设计、生产技术管理工作的电子信息科学与技术高级专门人才。
(2)专业基础课程及技术电路——由金属导线和电气、电子部件组成的导电回路,称为电路讯号与系统——连续信号的时域,频域数字讯号处理——离散信号系统分析,信号的数字变换,数字滤波器高频电子线路——介绍无线通信系统主要原件(3)现阶段电子技术的发展状况主要技术(一)数字信号处理器DSP(DigitalSignalProcessor)是在模拟信号变换成数字信号以后进行高速实时处理的专用处理器,其处理速度比最快的CPU还快10—50倍。
南昌大学电子线路设计测试实验报告

实验报告实验课程:电子线路设计与测试学生姓名:学号:专业班级:通信工程2014年 5月目录信号发生器设计直流稳压电源设计音频功率放大电路设计温度控制电路设计信号发生器设计一、实验任务设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。
二、实验要求基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p=6V,正弦波U p-p>1V。
扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。
三、实验方案信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。
图1 信号发生器组成框图主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。
方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。
图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。
其工作原理如图3所示。
图2 方波和三角波产生电路图3 比较器传输特性和波形利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。
其基本工作原理如图5所示。
为了使输出波形更接近正弦波,设计时需注意:应接近差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值Vm晶体管的截止电压值。
图4 三角波→正弦波变换电路图5 三角波→正弦波变换关系在图4中,RP1调节三角波的幅度,RP2调整电路的对称性,并联电阻RE2用来减小差分放大器的线性区。
C1、C2、C3为隔直电容,C4为滤波电容,以滤除谐波分量,改善输出波形。
波形发生器的性能指标:①输出波形种类:基本波形为正弦波、方波和三角波。
电力电子大实验报告
一、实验目的1. 熟悉电力电子实验的基本流程和操作规范。
2. 掌握电力电子器件的工作原理和特性。
3. 了解电力电子电路的设计与调试方法。
4. 培养实际动手能力和团队协作精神。
二、实验内容1. 电力电子器件实验(1)实验原理:通过实验观察电力电子器件(如二极管、晶闸管、GTR、MOSFET 等)在电路中的工作状态和特性。
(2)实验步骤:a. 根据实验要求,搭建实验电路。
b. 测量并记录器件的静态特性,如正向导通电压、反向阻断电压、开通和关断时间等。
c. 通过实验观察器件在不同工作状态下的表现。
2. 电力电子电路实验(1)实验原理:通过实验了解电力电子电路(如整流电路、逆变电路、变频电路等)的工作原理和特性。
(2)实验步骤:a. 根据实验要求,搭建实验电路。
b. 测量并记录电路的静态特性,如输出电压、电流、功率等。
c. 通过实验观察电路在不同工作状态下的表现。
3. 电力电子电路控制实验(1)实验原理:通过实验了解电力电子电路的控制方法,如PWM控制、斩波控制等。
(2)实验步骤:a. 根据实验要求,搭建实验电路。
b. 利用控制信号对电力电子器件进行控制,观察控制效果。
c. 分析控制信号的时序和波形,优化控制策略。
三、实验结果与分析1. 电力电子器件实验结果与分析(1)实验结果:通过实验观察,二极管、晶闸管、GTR、MOSFET等器件在电路中的工作状态和特性符合理论分析。
(2)实验分析:实验结果验证了电力电子器件的基本特性和工作原理。
2. 电力电子电路实验结果与分析(1)实验结果:通过实验观察,整流电路、逆变电路、变频电路等电力电子电路在不同工作状态下的表现符合理论分析。
(2)实验分析:实验结果验证了电力电子电路的基本工作原理和特性。
3. 电力电子电路控制实验结果与分析(1)实验结果:通过实验观察,利用PWM控制、斩波控制等控制方法对电力电子器件进行控制,实现了电路的稳定运行。
(2)实验分析:实验结果验证了电力电子电路控制方法的有效性。
电力电子技术实验报告
电力电子技术实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。
二、实验所需挂件及附件三、实验线路图图三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。
(2)研究三相半波可控整流电路带电阻电感性负载。
五、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗答:三相触发脉冲应该与电源电压同步,每相相差120°;主电路输出的三相相序不能任意改变。
三相触发脉冲的相序和触发脉冲的电路及主电源变压器时钟(钟点数)有关。
(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流答:晶闸管的额定工作电流可作为整流电路的最大输出电流。
六、实验结果(1)三相半波可控整流电路带电阻性负载按图3-10接线,将电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到170°范围内调节,用示波器观察并纪录α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT的波形,并纪录相应的电源电压U2及U d的数值于下表中dU d=[1+cos(a+π/6))] (30°~150°)(2)三相半波整流带电阻电感性负载将DJK02上700mH 的电抗器与负载电阻R 串联后接入主电路,观察不同移相角α时Ud 、Id的输出波形,并记录相应的电源电压U2及Ud、Id值,画出α=90°时的Ud及Id波形图。
七、1)整流输出电压Ud和晶闸管两端电压UVT的波形(2)绘出当α=90°时,整流电路供电给电阻性负载、电阻电感性负载时的U d及I d的波形,并进行分析讨论。
电力电子技术实验报告-三相半波可控整流电路实验等
实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。
二、实验所需挂件及附件三、实验线路及原理三相半波可控整流电路用了三只晶闸管,与单相电路比较,其输出电压脉动小,输出功率大。
不足之处是晶闸管电流即变压器的副边电流在一个周期内只有1/3 时间有电流流过,变压器利用率较低。
图3.1中晶闸管用DJK02 正桥组的三个,电阻R 用D42 三相可调电阻,将两个900Ω接成并联形式,L d电感用DJK02面板上的700mH,其三相触发信号由DJK02-1 内部提供,只需在其外加一个给定电压接到Uct端即可。
直流电压、电流表由DJK02 获得。
图3.1 三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。
(2)研究三相半波可控整流电路带电阻电感性负载。
五、预习要求阅读电力电子技术教材中有关三相半波整流电路的内容。
六、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?七、实验方法(1)DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。
②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。
③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。
④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。
⑤将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=170°。
电力电子技术实验报告
电力电子技术实验报告实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验一、实验目的(1)掌握各种电力电子器件的工作特性。
(2)掌握各器件对触发信号的要求。
二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2 DJK06 给定及实验器件该挂件包含“二极管”等几个模块。
3 DJK07 新器件特性实验 4 DJK09 单相调压与可调负载5 万用表自备三、实验线路及原理将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。
实验线路的具体接线如下图所示:四、实验内容(1)晶闸管(SCR)特性实验。
(2)可关断晶闸管(GTO)特性实验。
(3)功率场效应管(MOSFET)特性实验。
(4)大功率晶体管(GTR)特性实验。
(5)绝缘双极性晶体管(IGBT)特性实验。
五、实验方法(1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压Ug 调节第1页(共13页)过程中回路电流Id以及器件的管压降Uv。