人教版高中数学必修一《函数的应用》期末练习题

合集下载

(必考题)高中数学必修一第四单元《函数应用》测试卷(含答案解析)(3)

(必考题)高中数学必修一第四单元《函数应用》测试卷(含答案解析)(3)

一、选择题1.已知关于x 的方程2(3)10ax a x +-+=在区间1(,)2+∞上存在两个实数根,则实数a 的取值范围是( ) A .2332a << B .213a < C .9aD .293a < 2.关于x 的方程x x a a -=有三个不同的实根,则实数a 的取值范围是( ) A .(0,4) B .(4,0)-C .(4,4)-D .(,4)(4,)-∞-⋃+∞3.若关于x 的一元二次方程(2)(3)x x m --=有实数根1x ,2x ,且12x x <,则下列结论中错误的是( )A .当0m =时,12x =,23x =B .14m ≥-C .当0m >时,1223x x <<<D .二次函数()()12y x x x x m =--+的图象与x 轴交点的坐标为()2,0和()3,0 4.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意R x ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点()1,0-的直线l 与函数()()4f x 的图象在[]0,2x ∈上恰有8个交点,在直线l 斜率k 的取值范围是( )A .80,11⎛⎫⎪⎝⎭B .110,8⎛⎫⎪⎝⎭C .80,19⎛⎫⎪⎝⎭D .190,8⎛⎫⎪⎝⎭5.已知函数22,()11,x x x af x x a x⎧--≤⎪=⎨->⎪⎩,若函数图象与x 轴有且仅有一个交点,则实数a的取值范围是( )A .(),1-∞-B .()[),11,2-∞-⋃C .[)1,2D .(]()1,12,-+∞6.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为( )A .4.25米B .4.5米C .3.9米D .4.05米7.激光多普勒测速仪(LaserDopplerVelocimetry ,LDV )的工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚后反射,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同;当横向速度不为零时,反射光相对探测光发生频移,频移()2sin 1/h p v f ϕλ=,其中v 为被测物体的横向速度,ϕ为两束探测光线夹角的一半,λ为激光波长.如图,用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,激光测速仪安装在距离高铁1m 处,发出的激光波长为()91560nm 1nm 10m -=,测得这时刻的频移为()98.72101/h ⨯,则该时刻高铁的速度约为( )A .320km/hB .330km/hC .340km/hD .350km/h8.函数()32xy x x =-的图象大致是( )A .B .C .D .9.有一组数据,如表所示:x 1 2 3 4 5y 3 5 6.99 9.01 11下列函数模型中,最接近地表示这组数据满足的规律的一个是( ). A .指数函数B .反比例函数C .一次函数D .二次函数10.已知函数,0()ln ,0x e x f x x x ⎧≤=⎨>⎩,若函数g (x )=f (x )+2x +ln a (a >0)有2个零点,则数a 的最小值是( ) A .1eB .12C .1D .e11.函数()xf x 2sinx =-在区间[]10π,10π-上的零点的个数是( ) A .10 B .20 C .30 D .4012.已知函数()22,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩若a b c <<,且满足()()()f a f b f c ==,则abc 的取值范围为( ) A .(],0-∞B .(],1-∞-C .[]2,0-D .[]4,0-二、填空题13.在用二分法求方程3210x x --=的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可以断定该根所在区间为___________.14.已知()()()23f x m x m x m =-++,()22xg x =-,若满足x R ∀∈,()0f x <和()0g x <至少有一个成立,则m 的取值范围是______.15.已知函数()333xxf x -=+-,若函数()()()log 2a g x f x x =-+ (0a >且1a ≠)在区间[]1,1-上有4个不同的零点,则实数a 的取值范围是__________.16.小菲在学校选修课中了解到艾宾浩斯记忆曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制散点图,拟合了记忆保持量与时间(天)之间的函数关系:()1271012019130.520x xf xx x,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩某同学根据小菲拟合后的信息得到以下结论:①随着时间的增加,小菲的单词记忆保持量降低;②9天后,小菲的单词记忆保持量低于40%;③26天后,小菲的单词记忆保持量不足20%.其中正确的结论序号有______.(注:请写出所有正确结论的序号)17.已知函数f(x)=若关于x的方程f(x)=k有三个不同的实根,则实数k 的取值范围是________.18.已知()f x是以2e为周期的R上的奇函数,当()0,x e∈,()lnf x x=,若在区间[],2e e-,关于x的方程()1f x kx=+恰好有4个不同的解,则k的取值集合是__________.19.已知函数1,0()ln,0ax xf xx x+≤⎧=⎨>⎩,给出下列三个结论:①当2a=-时,函数()f x的单调递减区间为(,1)-∞;②若函数()f x无最小值,则a的取值范围为(0,)+∞;③若1a<且0a≠,则b R∃∈,使得函数()y f x b=-.恰有3个零点1x,2x,3x,且1231x x x=-.其中,所有正确结论的序号是______.20.用符号[]x表示不超过x的最大整数,例如:[]0.60=;[]2.32=;[]55=.设函数()()()()2222ln22ln2f x ax x ax x=-+-有三个零点1x,2x,3x()123x x x<<且[][][]1233x x x++=,则a的取值范围是_____________.三、解答题21.已知函数2()log(2)af x ax x=-,其中0a>且1a≠.(1)若函数()f x 在区间1(,1)2单调递增,求实数a 的取值范围;(2)当3a =时,若关于x 的方程3(3)log (3)xxf m x -=++恰有两个不同的解,求实数m 的取值范围.22.已知函数()221g x ax x b =-++,函数()g x 有两个零点分别是1-和3.(1)若存在[]01,3x ∈,使不等式()000g x mx ≥-成立,求实数m 的取值范围; (2)记()()32f x g x kx k =-+,若方程()210xf -=有三个不同的实数解,求实数k的取值范围.23.已知函数()()222f x ax a x =-++,()a R ∈.(1)()32f x x <-恒成立,求实数a 的取值范围; (2)当0a >时,求不等式()0f x ≥的解集; (3)若存在0m >使关于x 的方程()11f x m m=++有四个不同的实根,求实数a 的取值范围.24.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资80万元,根据行业规定,每个城市至少要投资20万元,由前期市场调研可知:甲城市收益1y 与投入x (单位:万元)满足145040,2040{25,4060x y x x -+≤<=≤≤,乙城市收益2y 与投入x (单位:万元)满足21202y x =+(1)当甲项目的投入为25万元时,求甲乙两个项目的总收益; (2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?25.某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,设比例系数为1k ,其关系如图1;B 产品的利润与投资的算术平方根成正比,设比例系数为2k ,其关系如图2.(注:利润和投资单位是万元)(1)分别将A ,B 两种产品的利润表示为投资的函数关系式;(2)该企业已筹集到20万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这万元资金,才能使该企业获得最大利润?其最大利润为多少万元?26.科学家发现一种可与污染液体发生化学反应的药剂,实验表明每投a (14a ≤≤且a R ∈)个单位的药剂,它在水中释放的浓度y (克/升)随着时间x (小时)化的函数关系式近似为()y a f x =⋅,其中()161,04815,4102x xf x x x ⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩,若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(1)若一次投放4个单位的药剂,则有效治污时间能持续多久?(2)若第一次投放2个单位的药剂,6小时后再投放1个单位的药剂,则在接下来的4小时内,什么时刻,水中药剂的浓度达到最小值?最小值为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1. B 解析:B 【分析】可设2()(3)1f x ax a x =+-+,0a ≠,讨论0a >,0a <,结合对称轴与区间的关系和1()2f 的符号、判别式的符号,解不等式可得所求范围. 【详解】解:方程有两个实数根,显然0a ≠,可设2()(3)1f x ax a x =+-+,对称轴是32ax a-=, 当0a >时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++>,且2(3)40a a ∆=--, 即为302a <<且23a >,且9a 或1a ,则213a <;当0a <时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++<,且2(3)40a a ∆=--, 即为302a <<且23<a ,且9a 或1a ,则a ∈∅.综上可得,a 的取值范围是213a <. 故选:B . 【点睛】本题解题关键是结合二次函数的图象特征研究二次方程根的分布,分类讨论借助图象准确列出不等关系,突破难点.2.D解析:D 【分析】画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得【详解】数形结合法:画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得由图可得:204a a <<解得4a > 或204a a >>-解得4a故选:D 【点睛】数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.3.C解析:C 【分析】画出函数()()23y x x =--的图像,然后对四个选项逐一分析,由此得出错误结论的选项. 【详解】画出二次函数()()23y x x =--的图像如下图所示,当0m =时,122,3x x ==成立,故A 选项结论正确. 根据二次函数图像的对称性可知, 当 2.5x =时,y 取得最小值为14-,要使()()23y x x m =--=有两个不相等的实数根, 则需14m >-,故B 选项结论正确. 当0m >时,根据图像可知122,3x x <>,故C 选项结论错误. 由()()23x x m --=展开得2560x x m -+-=, 根据韦达定理得12125,6x x x x m +=⋅=-. 所以()()()2121212y x x x x m x x x x x x m =--+=-+++()()25623x x x x =-+=--,故()()12y x x x x m =--+与x 轴的交点坐标为()()2,0,3,0. 故选:C. 【点睛】思路点睛:一元二次方程根的分布,根据其有两个不等的实根,结合根与系数的关系、函数图象,判断各选项的正误.4.A解析:A 【分析】先由条件①②,得到函数()f x 是周期为4的周期函数;根据③求出函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,根据④得到()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象,结合图象,即可求出结果.【详解】因为函数()f x 是偶函数,由()()220f x f x +--=得()()()222f x f x f x +=-=-,即()()4f x f x +=,所以函数()f x 是周期为4的周期函数;若[]2,0x ∈-,则[]0,2x ∈;因为当[]0,2x ∈时,()f x x =, 所以[]0,2x -∈时,()f x x -=-,因为函数()f x 是偶函数,所以()()f x x f x -=-=, 即()f x x =-,[]2,0x ∈-,则函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,因为()()()12n n f x f x -=⋅,*n N ∈,所以函数()()()48f x f x =,*n N ∈,故()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象如图:易知过()1,0M -的直线l 斜率存在,设过点()1,0-的直线l 的方程为()1y k x =+, 则要使直线l 与()()4f x 的图象在[]0,2x ∈上恰有8个交点,则0MA k k <<,因为7,24A ⎛⎫⎪⎝⎭,所以20871114MA k -==+,故8011k <<. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于,根据条件,由函数基本性质,得到()()4f x 的图象,再由函数交点个数,利用数形结合的方法,即可求解.5.B解析:B 【分析】讨论a 的范围,分别确定x a ≤、x a >上与x 轴的交点情况,即可确定实数a 的取值范围. 【详解】∵当x a ≤时,()(2)(1)f x x x =-+, ∴当2a ≥时,()f x 在x a ≤与x 轴有2个交点; 当12a -≤<时,()f x 在x a ≤与x 轴有1个交点; 当1a <-时,()f x 在x a ≤与x 轴无交点;∵当x a >时,1(1)f x x=-,与x 轴有交点时交点为(1,0), ∴当1a ≥时,()f x 在x a >与x 轴无交点;当1a <时,()f x 在x a >与x 轴有1个交点;综上要使()f x 在R 上与x 轴有且仅有一个交点,即12a ≤<或1a <-,故选:B 【点睛】易错点睛:讨论不等式的参数时,要注意参数边界是否可以取等号.1x =时()f x 与x 轴有交点,要使()f x 在x a >与x 轴无交点则1a ≥.1x =-时()f x 与x 轴有交点,要使()f x 在x a ≤与x 轴无交点则1a <-.6.D解析:D 【分析】可设抛物线的方程为2(0)x ny n =<,将(5,5)-代入可得n ,可得抛物线的方程,再令3.5x =,求得y ,计算70.5y --,可得所求值.【详解】解:如右图,设抛物线的方程为2(0)x ny n =<,将点(5,5)-代入抛物线的方程可得,255n =-,解得5n =-, 即抛物线的方程为25x y =-,令 3.5x =,可得23.55y =-,解得 2.45y =-,则通过隧道的车辆限制高度为7 2.450.5 4.05--=(米). 故选:D .【点睛】利用坐标法思想,建立适当的直角坐标系,得到抛物线的方程,从而解决问题.7.C解析:C 【分析】先根据图象,求出sin ϕ的值,再根据公式即可计算出v 的值. 【详解】 解:332sin 1.00041(2010)ϕ--==+⨯,98.7210∴⨯=,即8.72=,340148.009v ∴=≈米/小时340/km h ≈,故该时刻高铁的速度约为340/km h .故选:C . 【点评】本题主要考查了函数的实际应用,考查了三角函数的实际应用,也考查了学生的计算能力,关键在于将生活中的数据转化为数学公式中的数据,属于中档题.8.B解析:B 【分析】先根据函数的奇偶性排除部分选项,然后令y =0,结合图象分析求解. 【详解】因为函数()32xy x x =-定义域为R ,且()()()()()()3322xxf x x x x x f x --=---=--=-,所以函数是奇函数,故排除C ,由()()()32112xxy x x x x x =-=-+,令y =0得x =-1,x =0,x =1,当01x <<时,0y <,当1x >时,0y >,排除AD故选:B 【点睛】本题主要考查函数图象的识别以及函数的奇偶性和零点的应用,还考查了数形结合的思想和分析求解问题的能力,属于中档题.9.C解析:C 【解析】随着自变量每增加1函数值大约增加2, 函数值的增量几乎是均匀的,故一次函数最接近地表示这组数据满足的规律. 故选C .10.A解析:A 【分析】令()0g x =,将问题转化为函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点来求解. 【详解】令()0g x =得()2ln f x x a =--,若()g x 有两个零点,则函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点.画出函数()f x 与函数()2ln 0y x a a =-->的图象如下图所示,当直线过点()0,1时,两个函数图象有两个交点,此时1120ln a a e=-⨯-⇒=.由图可知,当直线向下平移时,可使两个函数图象有两个交点,所以1ln 1a a e -≤⇒≥,所以a 的最小值为1e. 故选:A【点睛】本小题主要考查函数零点问题的求解,考查数形结合的数学思想方法,属于中档题.11.A解析:A 【分析】画出函数x y 2=和y sinx =的图象,通过图象即得结果. 【详解】画出图象函数x y 2=和y sinx =的图象,根据图象可得函数()xf x 2sinx =-在区间[]10π,10π-上的零点的个数是10,故选A .【点睛】本题考查了函数的零点问题,考查数形结合思想,转化思想,是一道中档题.12.A解析:A【分析】画出()f x 的图象结合图象,求得1bc =、求得a 的取值范围,由此求得abc 的取值范围. 【详解】由函数()f x 的图象(如图),可知1022a b c ≤<≤<≤,由22log log b c =得22log log b c -=,所以1bc =,所以(],0abc a =∈-∞.故选:A【点睛】本小题主要考查分段函数的图象与性质,属于中档题.二、填空题13.【解析】试题分析:根据二分法取区间中点值而所以故判定根在区间考点:二分法【方法点睛】本题主要考察了二分法属于基础题型对于零点所在区间的问题不管怎么考察基本都要判断端点函数值的正负如果异号那零点必在此解析:3(,2)2【解析】试题分析:根据二分法,取区间中点值,而,,所以,故判定根在区间考点:二分法【方法点睛】本题主要考察了二分法,属于基础题型,对于零点所在区间的问题,不管怎么考察,基本都要判断端点函数值的正负,如果异号,那零点必在此区间,如果是几个零点,还要判定此区间的单调性,这个题考查的是二分法,所以要算区间的中点值,和两个端点值的符号,看是否异号.零点肯定在异号的区间.14.【分析】先判断函数的取值范围然后根据和至少有一个成立则可求得的取值范围【详解】解:当时又或在时恒成立即在时恒成立则二次函数图象开口只能向下且与轴交点都在的左侧即解得实数的取值范围是:故答案为:【点睛解析:()4,0-【分析】先判断函数()g x 的取值范围,然后根据()0f x <和()0<g x 至少有一个成立.则可求得m 的取值范围.【详解】 解:()22x g x =-,当1x 时,()0g x ,又x R ∀∈,()0f x <或()0<g x ,()(2)(3)0f x m x m x m ∴=-++<在1x 时恒成立,即(2)(3)0m x m x m -++<在1x 时恒成立,则二次函数(2)(3)y m x m x m =-++图象开口只能向下,且与x 轴交点都在(1,0)的左侧,∴03121m m m <⎧⎪--<⎨⎪<⎩,即0412m m m ⎧⎪<⎪>-⎨⎪⎪<⎩,解得40m -<<,∴实数m 的取值范围是:(4,0)-.故答案为:(4,0)-. 【点睛】利用指数函数和二次函数的图象和性质,根据条件确定()(2)(3)0f x m x m x m =-++<在1x 时恒成立是解决本题的关键,综合性较强,难度较大.15.【分析】将函数(且)在区间上有4个不同的零点转化为函数与函数的图象在区间上有4个不同的交点再根据函数的奇偶性和单调性作出函数的图象与函数的图象利用图象【详解】所以为偶函数设则因为所以即因为所以所以所 解析:27a ≥【分析】将函数()()()log 2a g x f x x =-+ (0a >且1a ≠)在区间[]1,1-上有4个不同的零点转化为函数|()|y f x =与函数log (2)a y x =+的图象在区间[]1,1-上有4个不同的交点,再根据函数()f x 的奇偶性和单调性作出函数|()|f x 的图象与函数log (2)a y x =+的图象,利用图象 【详解】()333()x x f x f x --=+-=,所以()f x 为偶函数,设120x x ≤<,则112212()()333333xx x x f x f x ---=+---+12121(33)(1)3x x x x +=--,因为12,x x <所以1233x x <,即12330x x -<,因为120x x ≤<,所以120x x +>,所以1231x x +>,所以121103x x +->,所以12())0(f x f x -<,即12()()f x f x <, 所以()f x 在[0,)+∞上递增,因为()f x 为偶函数,所以()f x 在(,0)-∞上递减, 所以当0x =时,()f x 取得最小值(0)1f =-,因为函数()()()log 2a g x f x x =-+ (0a >且1a ≠)在区间[]1,1-上有4个不同的零点,所以函数|()|y f x =与函数log (2)a y x =+的图象在区间[]1,1-上有4个不同的交点, 作出两个函数的图象如图:由图可知,log (02)(0)log (12)(1)1a a f f a ⎧+<⎪+≤⎨⎪>⎩,即log 211log 331a a a <⎧⎪⎪≤⎨⎪>⎪⎩,解得27a ≥.故答案为:27a ≥. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解16.①②【分析】由分段函数可得函数的单调性可判断①;由的值可判断②;由的值可判断③【详解】可得随着的增加而减少故①正确;当时9天后小菲的单词记忆保持量低于故②正确;故③错误故答案为①②【点睛】本题考查分解析:①② 【分析】由分段函数可得函数的单调性,可判断①;由()9f 的值可判断②;由()26f 的值可判断③.【详解】()1271012019130.520x x f x x x ,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩, 可得()f x 随着x 的增加而减少,故①正确;当130x <≤时,()1219520f x x -+=,()1219990.35520f -=+⋅=,9天后,小菲的单词记忆保持量低于40%,故②正确; ()1219126265205f -=+⋅>,故③错误,故答案为①②.【点睛】本题考查分段函数的图象和性质,主要是单调性和函数的取值范围的求法,考查判断能力和运算能力,属于基础题.17.【分析】问题等价于函数f(x)与函数y =k 的图象有三个不同的交点画出函数的图象然后结合图象求解即可【详解】关于x 的方程f(x)=k 有三个不同的实根等价于函数y=f(x)的图象与函数y =k 的图象有三个 解析:()1,0-【分析】问题等价于函数f(x)与函数y =k 的图象有三个不同的交点,画出函数()y f x =的图象,然后结合图象求解即可. 【详解】关于x 的方程f(x)=k 有三个不同的实根,等价于函数y=f(x)的图象与函数y =k 的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k 的取值范围是(-1,0). 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.18.【分析】先根据函数奇偶性作出一个周期上图象再根据周期得区间上图象最后结合图象确定与动直线恰有4个交点的情况再求出对应数值【详解】因为是以为周期的上的奇函数所以当所以当作出区间上图象如图则直线过或时恰 解析:11,2e e ⎧⎫--⎨⎬⎩⎭【分析】先根据函数奇偶性作出一个周期上图象,再根据周期得区间[],2e e -上图象,最后结合图象确定与动直线1y kx =+恰有4个交点的情况,再求出对应数值. 【详解】因为()f x 是以2e 为周期的R 上的奇函数,所以(0)0,()()()()()0f f e f e f e f e f e ==-=-∴=-=,当()0,x e ∈,()ln f x x =,所以当(),0x e ∈-,()()ln(-)f x f x x =--=-,作出区间[],2e e -上图象如图,则直线1y kx =+过(,0)A e 或(2,0)B e 时恰有4个交点,此时11,2k k e e=-=-故答案为:11,2e e ⎧⎫--⎨⎬⎩⎭【点睛】本题考查函数奇偶性、周期性以及根据图象研究函数零点,考查数形结合思想以及综合分析求解能力,属中档题.19.②③【分析】由题意结合函数单调性的概念举出反例可判断①;画出函数的图象数形结合即可判断②;由题意结合函数图象不妨设进而可得令验证后即可判断③;即可得解【详解】对于①当时由所以函数在区间不单调递减故①解析:②③ 【分析】由题意结合函数单调性的概念举出反例可判断①;画出函数的图象数形结合即可判断②;由题意结合函数图象不妨设12301x x x <<<<,进而可得11b x a-=,2bx e -=,3b x e =,令111b x a-==-验证后即可判断③;即可得解. 【详解】对于①,当2a =-时,由201e -<<,22(0)1()ln 2f f e e --=<==,所以函数()f x 在区间(,1)-∞不单调递减,故①错误;对于②,函数1,0()ln ,0ax x f x x x +≤⎧=⎨>⎩可转化为1,0()ln ,01ln ,1ax x f x x x x x +≤⎧⎪=-<≤⎨⎪>⎩,画出函数的图象,如图:由题意可得若函数()f x 无最小值,则a 的取值范围为(0,)+∞,故②正确;对于③,令()0y f x b =-=即()f x b =,结合函数图象不妨设12301x x x <<<<, 则1231ln ln ax x x b +=-==, 所以11b x a-=,2b x e -=,3bx e =,所以231b b x x e e -⋅=⋅=, 令111b x a-==-即1b a =-+, 当0a <时,11b a =-+>,()0y f x b =-=存在三个零点,且1231x x x =-,符合题意; 当01a <<时,011b a <=-+<,()0y f x b =-=存在三个零点,且1231x x x =-,符合题意; 故③正确. 故答案为:②③. 【点睛】本题考查了分段函数单调性、最值及函数零点的问题,考查了运算求解能力与数形结合思想,合理使用函数的图象是解题的关键,属于中档题.20.【分析】由题意可知得;令可知单调递增区间为单调递减为作出的草图由图可知所以而所以即可得由此即可求出结果【详解】因为所以①或②由①得由②得令则所以当时单调递增时单调递减事实上当时当时由图显然所以而所以解析:2ln 2,ln 69⎡⎫--⎪⎢⎣⎭【分析】由题意可知()()()21ln 22ln 20f x x ax x =-+=,得22ln 2x a x -=;令()22ln 2xg x x=,可知()g x 单调递增区间为0,e ⎛⎫⎪⎝⎭,()g x 单调递减为,e ⎛⎫+∞ ⎪ ⎪⎝⎭,作出()g x 的草图,由图可知()10,1x ∈,()21,22ex =∈,所以[]10x =,[]21x =,而[][][]1233x x x ++=,所以[]32x =,即[)32,3x ∈,可得()()23a g a g ⎧-≤⎪⎨->⎪⎩,由此即可求出结果.【详解】因为()()()2222ln22ln22ln 21ln22ln21ln2f x ax ax x x x ax x x x =-+-=-+-()()21ln 22ln 20x ax x =-+=,0x >,所以1ln 20x -=①或22ln 20ax x +=②. 由①得2e x =,由②得22ln 2x a x -=. 令()22ln 2x g x x =,则()()3212ln 20x g x x -'==,所以ex =. 当0,e x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增,,e x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0g x '<,()g x 单调递减.事实上,当102x <<时,()0g x <,当1x >时,()0g x >.由图显然()10,1x ∈,()21,22e x =∈,所以[]10x =,[]21x =, 而[][][]1233x x x ++=,所以[]32x =,即[)32,3x ∈.所以()()23a g a g ⎧-≤⎪⎨->⎪⎩,即2ln 4,42ln 6,9a a ⎧-≤⎪⎪⎨⎪->⎪⎩解得2ln 6ln 29a -≤<-. 故答案为:2ln 2,ln 69⎡⎫--⎪⎢⎣⎭. 【点睛】本题主要考查了导函数在函数零点中的应用,属于难题. 三、解答题21.(1)12a =或1a >;(2)146m -<<. 【分析】(1)由复合函数的单调性和对数函数的定义域列出不等式组,解之可得;(2)把对数方程转化为指数方程,换元后转化为一元二次方程,再由二次方程根的分布知识得结论.【详解】解(1)由复合函数的单调性法则,以及()f x 的定义域可得 1104a a >⎧⎪⎨-≥⎪⎩或0112210a a a <<⎧⎪⎪≤⎨⎪⎪-≥⎩1a ⇒>或12a = (2)原方程2333log [63(3)]log (3)log (3)x x x xm -⇔⋅-=++ 233log [63(3)]log (31)x x x m ⇔⋅-=⋅+263(3)31x x x m ⇔⋅-=⋅+(其中036x <<),2(3)(6)310x x m ⇔+-⋅+=其中036x <<),令3(0,6)x t =∈,原条件⇔关于t 的方程2(6)10t m t +-⋅+=在区间(0,6)内有两个不同的根记2()(6)1g t t m t =+-+,由二次方程根的分布的求解方法可得2(6)406062(0)10(6)610m m g g m ⎧∆=-->⎪-⎪<<⎪⎨⎪=>⎪=+>⎪⎩146m ⇒-<<. 【点睛】关键点点睛:本题考查复合函数的单调性,对数方程解的问题.对数方程的解的个数问题的解题关键是进行转化,一是由对数方程转化为指数方程,二是指数方程转化为一元二次方程,最后由一元二次方程的根的分布知识可求解.22.(1)(],0-∞;(2)3,2⎛⎫+∞⎪⎝⎭. 【分析】(1)首先根据函数()g x 的零点得到()223g x x x =--,由题意知存在[]01,3x ∈,使不等式()00g x mx ≥成立,等价于32x m x--≥在[]01,3x ∈上有解,再根据()32u x x x=--的单调性即可得到答案; (2)令21x t =-,分析得出关于t 的方程()()232230t k t k -++-=有两解1t 、2t ,且101t <<,21t ≥或者10t =,201t <<,利用二次函数的零点分布可得出关于k 的不等式组,由此可解得实数k 的取值范围.【详解】(1)()10g -=,()03g =,所以,1x =-,3x =是方程2210ax x b -++=的两个根. 所以12122213x x a b x x a ⎧+==⎪⎪⎨+⎪⋅==-⎪⎩,解得14a b =⎧⎨=-⎩,()223g x x x ∴=--. ∵存在[]01,3x ∈,使不等式()00g x mx ≥成立,等价于32x m x --≥在[]1,3x ∈上有解,记()32u x x x =--,由于函数2y x =-、3y x=-在[]1,3上均为增函数, 所以,函数()u x 在[]1,3x ∈时单调递增,则()()max 30u x u ==,0m ∴≤, 因此,实数m 的取值范围为(],0-∞;(2)()()()2323223f x g x kx k x k x k =-+=-++-, 原方程可化为()()2213221230x x k k --+-+-=.函数21xy =-的图象如下图,当0x <时,()20,1x ∈,则()210,1x y =-∈,令21x t =-,当01t <<时,关于x 的方程21x t =-有两个根,当1t ≥或0t =时,关于x 的方程21x t =-只有一个根.要使()210x f -=有3个实数解,所以,关于t 的方程()()232230t k t k -++-=有两解1t 、2t ,且101t <<,21t ≥或者10t =,201t <<.则()()0230140f k f k ⎧=->⎪⎨=--<⎪⎩①,解得32k >. 或()()023*********f k f k k ⎧=->⎪⎪=--=⎨+⎪<<⎪⎩②,不等式组②无实数解. 或()()023*********f k f k k ⎧⎪=-=⎪=-->⎨⎪+⎪<<⎩③,不等式组③无实数解. 综上所述,实数k 的取值范围为3,2⎛⎫+∞ ⎪⎝⎭. 【点睛】方法点睛:本题考查利用二次函数的零点分布求参数,一般要分析以下几个要素: (1)二次项系数的符号;(2)判别式;(3)对称轴的位置;(4)区间端点函数值的符号.结合图象得出关于参数的不等式组求解.23.(1)(] 4,0-;(2)答案见解析;(3)(,423-∞--.【分析】(1)将()32f x x <-,x ∈R 恒成立,转化为210ax ax --<,x ∈R 恒成立求解. (2)由()()120x ax --≥,分02a <<,2a =, 2a >讨论求解.(3)由0m >时,得到11213t m m=+++=≥,令x s =,将问题转化为存在3t ≥,()2220as a s t -++-=有两个不等正根求解.【详解】(1)因为()32f x x <-,x ∈R 恒成立,所以210ax ax --<,x ∈R 恒成立;0a =时,10-<恒成立,满足题意;0a ≠时,只需0a <,∆<0,即40a ;综上,实数a 的取值范围是(] 4,0-;(2)()0f x ≥即()()120x ax --≥,当02a <<时,21>a ,不等式解集为(]2,1,a ⎡⎫-∞+∞⎪⎢⎣⎭; 当2a =时,21a ,不等式解集为R ; 当2a >时,21a <,不等式解集为[)2,1,a ⎛⎤-∞+∞ ⎥⎝⎦;(3)0m >时,令11213t m m =+++=≥, 则存在3t ≥,()fx t =有四个不等实根, 即()2220a x a x t -++-=有四个不等实根,令x s =,0s >时一个s 对应两个x ;0s =时一个x 对应一个x ;0s <时无x 与之对应;则存在3t ≥,()2220as a s t -++-=有两个不等正根, 则0a ≠,存在3t ≥,2020a a t a+⎧>⎪⎪⎨-⎪>⎪⎩, 即存在3t ≥,()()224202a a t a ⎧+-->⎪⎨<-⎪⎩, 即2a <-,且存在3t ≥,24440a a at -++>,0a <时,3t ≥时22441284a a a a a -++=++最大值为22441284a a a a a -++=++,则2840a a ++>,由2a <-可得4a <--所以实数a 的取值范围是(,4-∞--.【点睛】方法点睛:含有参数的不等式的解法:,往往需要比较(相应方程)根的大小,对参数进行分类讨论:(1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便写出解集.24.(1)1392万元 (2)甲城市的投入为30万元,乙城市的投入为50万元 【分析】(1)当甲城市的投入为25万元时,则乙城市的投入为802555-=万元,直接分别代入对应的收益表达式中,得出答案.(2)设甲城市的投入为x 万元,则乙城市的投入为80x -万元,分2040x ≤<和4060x ≤≤分别求出甲、乙两个城市的投资的总收益,再分别求出其最大值,再比较得出答案.【详解】(1)当甲城市的投入为25万元时,则乙城市的投入为802555-=万元 则甲城市收益1450402225y =-+=万元 乙城市收益2195552022y =⨯+= 所以甲、乙两个城市的投资的总收益为951392222+=万元 (2)设甲城市的投入为x 万元,则乙城市的投入为80x -万元当2040x ≤<时,甲、乙两个城市的投资的总收益为()45014080202y x x =-++⨯-+即4501100100702y x x ⎛⎫=-+≤-=⎪⎝⎭,当且仅当45012x x =即30x =时,取等号.当4060x ≤≤时,甲、乙两个城市的投资的总收益为()12580202y x =+⨯-+ 即()112580208522y x x =+⨯-+=- 当40x =时,1852y x =-有最小值65综上,当30x =时,甲、乙两个城市的投资的总收益最大.所以甲城市的投入为30万元,乙城市的投入为50万元,甲、乙两个城市的投资的总收益最大【点睛】关键点睛:本题考查函数的实际应用问题,解答的关键是分段得出甲、乙两个城市的投资的总收益的表达式,当2040x ≤<时,甲、乙两个城市的投资的总收益为()45014080202y x x =-++⨯-+,当4060x ≤≤时,甲、乙两个城市的投资的总收益为()12580202y x =+⨯-+,分别求出最大值,从而可解,属于中档题. 25.(1)A 产品函数关系式是1(),4f x x =(0)x ≥,B 产品函数关系式是()g x =(0)x ≥;(2)当A 产品投入4万元,B 产品投入16万元时,企业获得最大利润为9万元.【分析】(1)由已知给出的函数模型设出解析式,代入已知数据求参数,即得结果;(2)设A 产品投入x 万元,则B 产品投入20x -万元,设企业的利润为y 万元.则有 ()(20)y f x g x =+-,(020)x ≤≤,用换元法转化为求二次函数在给定区间上最值问题,即得结果.【详解】解:(1)设投资额为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元,依题意,设1()f x k x =,()g x k =, 由图知1(1)4f =,所以114k =,又2(4)24g k ==,所以22k =,所以1(),4f x x =(0)x ≥,()g x =(0)x ≥; (2)设A 产品投入x 万元,则B 产品投入20x -万元,设企业的利润为y 万元. 1()(20)4y f x g x x =+-=+(020)x ≤≤,t =,则220x t =-,故()2220124944t y t t -=+=--+(0t ≤≤. 所以当4t =时,max 9y =,此时20164x =-=,此时2016x -=.∴当A 产品投入4万元,B 产品投入16万元时,企业获得最大利润为9万元.【点睛】本题解题关键是利用函数模型构建函数关系后,能利用换元法将问题转化成二次函数最值问题来解决.26.(1)8小时;(2)10小时时浓度达到最小值3【分析】。

高中数学 人教A版 必修1 第三章 函数的应用 高考复习习题(选择题201-300)含答案解析

高中数学 人教A版 必修1 第三章 函数的应用 高考复习习题(选择题201-300)含答案解析

高中数学 人教A 版 必修1 第三章 函数的应用 高考复习习题(选择题201-300)含答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知函数f(x)=|lnx|,g(x){0,0<x ≤1|x 2−4|−2,x >1,则方程|f(x)−g(x)|=2的实根个数为( )A . 1B . 2C . 3D . 4 2,方程()0f x a -=有四个不同的根,记最大的根的所有取值为集合D ,若函数()()F x f x kx =- ()x D ∈有零点,则k 的取值范围是( )A . B.C . D. 3.已知函数()22,{52,x x af x x x x a+>=++≤,若函数恰有三个不同的零点,则实数的取值范围是( )A . [-1,1)B . [-1,2)C . [-2,2)D . [0,2]4函数()()g x f x m =-,则下列说法错误的是( )A . ,则函数()g x 无零点B . ,则函数()g x 有零点C .,则函数()g x 有一个零点,则函数()g x 有两个零点5,则实数m 的取值范围( ) A .B .C . (),16-∞D .6.已知函如果存在实数,s t ,其中s t <,使得()()f s f t =,则t s -的取值范围是( )A . [)32ln2,2-B . []32ln2,1e --C . []1,2e -D . [)0,1e + 7.设[]x 表示不超过x 的最大整数,如[][]11,0.50==,已知函数,若方程()0fx =有且仅有3个实根,则实数k 的取值范围是( )A .B .C .D . 8.已知函数f(x)=ln |x |−2ax 3+x 2,若f(x)有三个零点,则实数a 的取值范围是 A . (−12,0)∪(0,12) B . (−∞,−12)∪(12,+∞)C . (−1,0)∪(0,1)D . [−1,0)∪(0,1] 9()()2h x f x mx =-+有三个不同的零点,则实数m 的取值范围是() A .B .C .D . 10与直线y x =的交点的横坐标是0x ,则0x 的取值范围是( )A.()1,2 D .()2,3 11.已知函数()2221,2,{ 2,2,x x x x f x x --++<=≥且存在三个不同的实数123,,x x x ,使得()()()123f x f x f x ==,则123x x x ++的取值范围为( )A . ()4,5B . [)4,5C . (]4,5D . []4,512 ()()g x f x a =-,若函数()g x 有四个零点,则a 的取值范围( ).A . ()0,1B . (]0,2C . []0,1D . (]0,113.设f(x)=(12)x −x 3,已知0<a <b <c ,且f(a)·f(b)·f(c)<0,若x 0是函数f(x)的一个零点,则下列不等式不可能成立的是( )A . x 0<aB . 0<x 0<1C . b <x 0<cD . a <x 0<b14.已知函数f (x )={−x 2+4x, x ≤0ln (x +1), x >0 ,若|f (x )|≥ax ,则实数a 的取值范围为A . [−2,1]B . [−4,1]C . [−2,0]D . [−4,0]15.函数f(x)按照下述方式定义,当x ≤2时,f(x)=−x 2+2x ;当x >2时,f(x)=12f(x −3),方程f(x)=15的所有实数根之和是( )A . 8B . 12C . 18D . 2416.已知函数()f x 是R 上的奇函数,当0x >时,函数()()1g x xf x =-在[)7,-+∞上的所有零点之和为( ) A . 0 B . 4 C . 8 D . 1617.已知(),,0,a b c ∈+∞且a b c ≥≥, 12a b c ++=, 45ab bc ca ++=,则a 的最小值为( )A . 5B . 10C . 15D . 2018.已知函数()cos f x x =,,,a b c 分别为ABC ∆的内角,,A B C 所对的边,且222334a b c ab +-=,则下列不等式一定成立的是( )A .()()sin cos f A fB ≤ B .()()sin sin f A f B ≤420C .()()cos sin f A f B ≤D .()()cos cos f A f B ≤19,则方程()()330f f x e -=的根的个数为( )A . 1B . 2C . 3D . 420.已知函数f(x)={x 2−2x,x ≥0e −x ,x <0,若方程|f(x)|=mx 有3个根,则m 的取值范围是( )A . 0<m <2B . m <−2或0<m <2C . −e <m ≤2D . m <−e 或0<m <221.已知函数若函数()()g x f x k =-有2个零点,则实数k 的取值范围为( )A . ()0,+∞B . [)1,+∞ C . ()0,1 D . ()1,+∞ 22.已知M 是函数在()0,x ∈+∞上的所有零点之和,则M 的值为( )A . 3B . 6C . 9D . 1223且()()1f x f x =, ()()()1n n f x f f x -=,1,2,3,n =….则满足方程()n f x x =的根的个数为( ). A . 2n 个 B . 22n 个 C . 2n个 D . ()221n -个 24.将函图象按向量()1,0a =平移,得到的函数图象与函数()2sin 24y x x π=-≤≤的图象的所有交点的横坐标之和等于( )A . 2B . 4C . 6D . 825.已知函数f(x)=x −√x(x >0),g(x)=x +e x ,ℎ(x)=x +lnx 的零点分别为x 1,x 2,x 3,则A . x 1<x 2<x 3B . x 2<x 1<x 3C . x 2<x 3<x 1D . x 3<x 1<x 2 26.R 上的偶函数()f x 满足()()11f x f x -=+,当01x ≤≤时, ()2f x x =,则)A . 4B . 8C . 5D . 1027.3个零点,则实数a 的取值范围为( ) A . B . C . D .28.已知函数f(x)是定义在R 上的单调递增函数,且满足对任意实数x 都有f[f(x)−2x ]=3,当x ≥0时,函数g(x)=f(x)−31sinπx −1零点的个数为 A . 4 B . 5 C . 6 D . 7 29.已知函数f (x )=e x x,若关于x 的方程f 2(x )+2a 2=3a |f (x )|有且仅有4个不等实根,则实数a 的取值范围为( )A . (0,e2) B . (e2,e) C . (0,e ) D . (0,+∞)302个不同的零点,则实数k 的取值范围是( )A . (-4,0)B . (-4,0]C . (-∞,0]D . (-∞,0)31.把函数y =sin (4x −π6)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数f (x )的图象,已知函数g (x )={f (x ),−11π12≤x ≤a 3x 2−2x −1,a <x ≤13π12 ,则当函数g (x )有4个零点时a 的取值集合为( ) A . (−5π12,−13)∪(π12,1)∪(7π12,13π12) B . [−5π12,−13)∪[π12,1)∪[7π12,13π12)C . [−5π12,−13)∪[7π12,13π12) D . [−5π12,−13)∪[π12,1) 32.已知函数()()sin 1f x x ϕ=--(()f x 的一个零点是( )A.B . C. D. 33.设函数()()()2ln 1f x x a x x =++-,若()f x 在区间()0+∞,上无零点,则实数a 的取值范围是( )A . []01,B . []10-,C . []02,D . []11-,34.已知二次函数f(x)=x 2+bx +c(b ∈R,c ∈R),M,N 分别是函数f(x)在区间[−1,1]上的最大值和最小值,则M −N 的最小值 A . 2 B . 1 C . 12 D . 1435.定义在R 上的奇函数f(x),当x≥0时,f(x)则关于x 的函数g(x)=f(x)+a(0<a<2)的所有零点之和为( ) A . 10 B . 1-2aC . 0D . 21-2a36.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( ) A . 3,12e ⎡⎫-⎪⎢⎣⎭ B . 33,24e ⎡⎫-⎪⎢⎣⎭C . 33,24e ⎡⎫⎪⎢⎣⎭D . 3,12e ⎡⎫⎪⎢⎣⎭37.若*n N ∈时,不等式()6ln 0n nx x ⎛⎫-≥⎪⎝⎭恒成立,则实数x 的取值范围是( ) A . []1,6 B . []2,3 C . []1,3 D . []2,638.已知函数f (x )=(2x −2−x )∙x 3,若实数a 满足f (log 2a )+f (log 0.5a )≤2f (1),则实数a 的取值范围为A . (−∞,12)∪(2,+∞) B . (12,2)C . [12,2]D . (−∞,12]∪[2,+∞)39.已知函数f(x)=x 2e 2x +m|x|e x +1(m ∈R)有四个零点,则m 的取值范围为( ) A . (−∞,−e −1e ) B . (−∞,e +1e ) C . (−e −1e ,−2) D . (−∞,−1e )40.定义运算,,{,,b a b a b a a b <⊗=≥设函数,若函数()()g x f x ax =-在区间()0,4上有三个零点,则实数a 的取值范围是( )A .B .C .D . 41.已知函数()222,0{ ,0x x x a x f x e ax e x ++<=-+-≥ 恰有两个零点,则实数a 的取值范围是( )A . ()0,1B . (),e +∞C . ()()0,1,e ⋃+∞D . ()()20,1,e ⋃+∞42.已知1x 是函数f (x )=x+1-ln (x+2)的零点, 2x 是函数g (x )=2x -2ax 4a 4++的零点,且满足|12x -x |≤1,则实数a 的最小值是 A . -1 B . -2 C .D .43()f x[]1,x π∈时()ln f x x =,若函数()()g x f x ax =-在上有唯一的零点,则实数a 的取值范围是( )A .B .C . []0,ln ππD . 44,在区间()0,1内任取两个数,p q ,且p q ≠,不等恒成立,则实数a 的取值范围为( )A . [)4,+∞B . (]1,4C . [)10,+∞D . []0,10 45.已知函数f (x )=22,{ 52,x x ax x x a+>++≤函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A . [-1,1)B . [0,2]C . [-2,2)D . [-1,2)46.已知f (x )是定义域为(0 , +∞)的单调函数,若对任意x ∈(0 , +∞)都有f (f (x )+log 13x)=4,且关于x 的方程|f (x )−3|=x 2−6x 2+9x −4+a 在区间(0 , 3]上有两个不同实数根,则实数a 的取值范围是A . (0 , 5]B . [0 , 5]C . (0 , 5)D . [5 , +∞)47,若方程()0f x kx -=有3个不同的实根,则实数k 的取值范围为()A .B .C .D . 48.函数()|2|ln f x x x =--在定义域内的零点的个数为A .0B .1C .2D .349.不等式xlnx +x 2+(a −2)x ≤2a 有且只有一个整数解,则a 的取值范围是( ) A . [−1 , +∞) B . (−∞ , −4−4ln2]∪[−1 , +∞)C . (−∞ , −3−3ln3]∪[−1 , +∞)D . (−4−4ln2 , −3−3ln3]∪[−1 , +∞)50.若关于x 的方程.则实数a 的取值范围是( ) A . ()0,1 B . (]0,1 C . ()0,+∞ D . ()1,+∞ 51.已知函数()()221,1{log 1,1x x f x x x +≤=->, ()2221g x x x m =-+-。

高中数学必修1函数的应用练习题+答案

高中数学必修1函数的应用练习题+答案

2.函数 f(x)=x2+4x+a 没有零点,则实数 a 的取值范围是( A.a<4 B.a>4 C.a≤4 ) D .3 D.a≥4
3.函数 f(x)=x2+x+3 的零点的个数是( A.0 B. 1 C .2
4.函数 f(x)=ax2+2ax+c(a≠0)的一个零点是-3,则它的另一个零 点是( A.-1 ) B.1 C.-2 ) D.2
5.下列函数中在区间[1,2]上有零点的是( A.f(x)=3x2-4x+5 C.f(x)=lnx-3x+6
B.f(x)=x3-5x-5 D.f(x)=ex+3x-6
6.若函数 f(x)=ax+b 的零点是 2,则函数 g(x)=bx2-ax 的零点是 A.0,2 7.函数 B.0, 1 2 C.0,- 1 2 D.2,- ) D.3 ) 1 2
2.函数 f(x)=x2-ax-b 的两个零点是 2 和 3,求函数 g(x)=bx2-ax -1 的零点.
3.二次函数 f(x)=ax2+bx+c 的零点是-2 和 3,当 x∈(-2,3)时, f(x)<0,且 f(-6)=36,求二次函数的解析式.
4.定义在 R 上的偶函数 y=f(x)在(-∞,0]上递增,函数 f(x)的一个 1 零点为- ,求满足 f(log1x)≥0 的 x 的取值集合. 2 4
2 x +2x-3,x≤0, f(x)= -2+lnx,x>0
的零点个数为( C .2
A.0 8. 函数 y=x
3
B.1
1 与 y 2
x
的图象的交点为(x0, y0), 则 x0 所在区间为( B.(-1,0) C.(0,1) D.(1,2)
A.(-2,-1)
9.若函数 f(x)=x2-ax+b 的两个零点是 2 和 3,则函数 g(x)=bx2- ax-1 的零点是( A.-1 和 1 6 ) B.1 和- 1 6 C. 1 1 1 1 和 D.- 和- 2 3 2 3

高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版

高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版

高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点为( ) A .0或12-B .0C .12-D .0或122.设()f x 在区间[],a b 上是连续变化的单调函数,且()()0f a f b ⋅<,则方程()0f x =在[],a b 内( ) A .至少有一实根 B .至多有一实根 C .没有实根D .必有唯一实根3.已知函数()22log 6f x x x =--,用二分法求()f x 的零点时,则其中一个零点的初始区间可以为( )A .()1,2B .()2,2.5C .()2.5,3D .()3,3.54.设函数()26x f x e x =+-, 在用二分法求方程()0f x =在()12x ∈,内的近似解过程中得(0)0(1)0(1.25)0(1.5)0(2)0f f f f f <<<>>,,,,,则方程的解所在的区间是( )A .()01,B .()11.25,C .()1.251.5,D .()1.52,5.函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2B .()2,3C .()3,4D .()4,56.若23691log 3log log 62m ⨯⨯=,则实数m 的值为( ) A .4B .6C .9D .127.若函数f (x )唯一零点同时在(0,4),(0,2),(1,2),3(1,)2内,则与f (0)符号相同的是( )A .f (4)B .f (2)C .f (1)D .f 3()28.通过下列函数的图象,判断能用“二分法”求其零点的是( )A .B .C. D .二、多选题9.某同学求函数()ln 26f x x x =+-的零点时,用计算器算得部分函数值如表所示:则方程ln 260x x +-=的近似解(精确度0.1)可取为A .2.52B .2.56C .2.66D .2.75三、填空题10.若函数()0y kx b k =+≠有一个零点是2,则函数2y bx kx =+的零点是______.11.定义方程()()f x f x '=的实根0x 叫做函数()f x 的“新驻点”,若函数()2e 1xg x =+,()ln h x x =和()31x x ϕ=-的“新驻点”分别为a ,b ,c ,则a ,b ,c 的大小关系为_______.12.已知函数()226xf x x =+-的零点为0x ,不等式04x x ->的最小整数解为k ,则k =______.13.定义在R 上的奇函数()f x 满足(1)()f x f x +=-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时()4f x x =,则方程1()=01f x x +-在[]2,4-上的所有根之和为____.四、解答题14.已知A 地到B 地的电话线路发生故障(假设线路只有一处发生故障),这是一条10km 长的线路,每隔50m 有一根电线杆,如何迅速查出故障所在(精确到50m )?15.已知函数()2283f x x x m =-++为R 上的连续函数.(1)若函数()f x 在区间[]1,1-上存在零点,求实数m 的取值范围.(2)若4m =-,判断()f x 在()1,1-上是否存在零点?若存在,请在误差不超过0.1的条件下,用二分法求出这个零点所在的区间;若不存在,请说明理由. 16.设函数32()613123g x x x x =----.(1)证明:()g x 在区间(-1,0)内有一个零点;(2)借助计算器,求出()g x 在区间(-1,0)内零点的近似解.(精确到0.1) 17.已知函数()e 23x f x mx =-+的图象为曲线C ,若曲线C 存在与直线13y x =垂直的切线,求实数m 的取值范围.参考答案与解析1.A【分析】根据函数f (x )=ax +b 有一个零点是2,得到b =-2a ,再令g (x )=0求解. 【详解】因为函数f (x )=ax +b 有一个零点是2 所以b =-2a所以g (x )=-2ax 2-ax =-a (2x 2+x ). 令g (x )=0,得x 1=0,x 2=-12. 故选:A 2.D【分析】根据零点存在性定理及函数的单调性判断即可.【详解】解:因为()f x 在区间[],a b 上连续的单调函数,且()()0f a f b ⋅<所以函数()f x 的图象在[],a b 内与x 轴只有一个交点,即方程()0f x =在[],a b 内只有一个实根. 故选:D 3.C【分析】根据函数解析式,结合二次函数与对数函数单调性,分别判断ABD 都不正确,再结合零点存在性定理,即可得出结果.【详解】因为函数()22log 6f x x x =--在()0,∞+上显然是连续函数2yx 和2log 6y x =+在()0,∞+上都是增函数当()1,2x ∈时,则2222246log 16log 6x x <=<=+<+,所以()22log 60f x x x =--<在()1,2x ∈上恒成立; 当()2,2.5x ∈时,则22222.5 6.257log 26log 6x x <=<=+<+,所以()22log 60f x x x =--<在()2,2.5x ∈上也恒成立;当()3,3.5x ∈时,则222239log 3.56log 6x x >=>+>+,所以()22log 60f x x x =-->在()3,3.5x ∈上恒成立又22(2.5) 2.5log 2.560f =--< 2(3)9log 360f =-->根据函数零点存在性定理,可得()f x 的其中一个零点的初始区间可为()2.5,3. 故选:C.【点睛】方法点睛:判断零点所在区间的一般方法:先根据题中条件,判断函数在所给区间是连续函数,再由零点存在性定理,即可得出结果. 4.C【分析】先判断函数()f x 的单调性,再根据已知条件确定方程的解所在的区间即可. 【详解】函数()26x f x e x =+-在R 上为增函数又(0)0(1)0(1.25)0(1.5)0(2)0f f f f f <<<>>,,,, 则方程的解所在的区间为()1.251.5,. 故选:C.【点睛】本题主要考查了利用二分法求方程的解所在的区间问题.属于较易题. 5.B【分析】利用零点存在性定理求解即可 【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<- ()23ln 3ln 31031f =-=->- 所以()()230f f <所以函数的零点所在的区间是()2,3. 故选:B 6.A【分析】由换底公式对原式变型即可求解.【详解】∵2369lg3lg lg 6log 3log log 6lg 2lg36lg9m m ⨯⨯=⨯⨯ 2lg3lg lg 6lg 11log lg 22lg 62lg34lg 242m m m =⨯⨯=== ∴2log 2m =,∴4m =. 故选:A . 7.C【分析】根据零点存在定理判断,注意零点的唯一性.【详解】由题意()f x 的唯一零点在3(1,)2上,因此(1)f 与(0)f 符号相同,3()2f ,(2)f 和(4)f 符号相同且与(0)f 符号相反故选:C . 8.C【解析】利用二分法的定义依次判断选项即可得到答案. 【详解】在A 中,函数无零点,故排除A在B 和D 中,函数有零点,但它们在零点左右的函数值符号相同 因此它们都不能用二分法来求零点.而在C 中,函数图象是连续不断的,且图象与x 轴有交点并且在交点两侧的函数值符号相反,所以C 中的函数能用二分法求其零点. 故选:C【点睛】本题主要考查二分法的定义,同时考查学生分析问题的能力,属于简单题. 9.AB【分析】根据表格中函数值在0的左右两侧,最接近的值,即()2.50.084f ≈-,()2.56250.066f ≈可知近似根在()2.5,2.5625之内,再在四个选项中进行选择,得到答案.【详解】由表格函数值在0的左右两侧,最接近的值,即()2.50.084f ≈- ()2.56250.066f ≈ 可知方程ln 260x x +-=的近似根在()2.5,2.5625内 因此选项A 中2.52符合,选项B 中2.56也符合 故选AB .【点睛】本题考查利用二分法求函数零点所在的区间,求函数零点的近似解,属于简单题.10.0或12【分析】先求得,k b 的关系式,然后求得函数2y bx kx =+的零点. 【详解】由于函数()0y kx b k =+≠有一个零点是2 所以20k b += 2b k =-所以()22221y bx kx kx kx kx x =+=-+=--由于0k ≠,所以()2100kx x x --=⇒=或12x =. 故答案为:0或12 11.c b a >>【分析】先根据函数的新定义分别求出a ,b ,c ,然后再比较大小【详解】由()2e 1x g x =+,得()22e xg x '=所以由题意得22e 12e a a +=,解得0a = 由()ln h x x =,得()1h x x'= 所以由题意得1ln b b=令1()ln t x x x=-,(0x >),则211()0t x x x '=+>所以()t x 在(0,)+∞上递增因为(1)10t =-< ()1212ln 2ln 202t lne =-=->所以存在0(1,2)x ∈,使0()0t x =,所以(1,2)b ∈由()31x x ϕ=-,得()23x x ϕ'=所以由题意得3213c c -=令32()31m x x x =--,则2()36m x x x '=- 令()0m x '=,则0x =或2x =当0x <或2x >时()0m x '>,当02x << ()0m x '< 所以()m x 在(,0)-∞和()2,+∞上递增,在()0,2上递减所以()m x 的极大值为(0)1m =-,极小值为()283415m =-⨯-=-因为(3)2727110m =--=-< (4)64121510m =--=> 所以()m x 存在唯一零点0(3,4)x ∈,所以(3,4)c ∈ 所以c b a >> 故答案为:c b a >> 12.6【分析】利用()f x 单调性和零点存在定理可知012x <<,由此确定04x +的范围,进而得到k .【详解】函数()226xf x x =+-为R 上的增函数,()120f =-< ()220f =>∴函数()226x f x x =+-的零点0x 满足012x << 0546x ∴<+<04x x ∴->的最小整数解6k =. 故答案为:6. 13.6【分析】由奇函数()f x 满足(1)()f x f x +=-,可知函数的周期性与对称性,作出函数图象,判断函数()f x 与函数11y x =--的交点情况. 【详解】因为函数()f x 满足(1)()f x f x +=-,所以函数()f x 的对称轴为直线12x = 又因为函数()f x 为奇函数,所以()()f x f x =--又(1)()f x f x +=-,所以(1)()f x f x +=-,所以函数()f x 的周期为2又因为当10,2x ⎡⎤∈⎢⎥⎣⎦时,()4f x x =,作出函数()f x 和()11y g x x ==--的简图如图所示由411y x y x =⎧⎪⎨=-⎪-⎩可得122x y ⎧=⎪⎨⎪=⎩故当102x ≤≤时,线段4y x =与曲线11y x =--仅有一个交点 故由图可知,有6个交点,这6个交点是关于点()1,0对称的,且关于点()1,0对称的两个点的横坐标之和为2则所有根之和为326⨯=. 故答案为:6. 14.见解析【解析】利用二分法取线段的中点即可迅速查出故障所在. 【详解】如图:可首先从中点C 开始检查,若AC 段正常,则故障在BC 段; 再到BC 段中点D 检查,若CD 段正常,则故障在BD 段;再到BD 段中点E 检查……每检查一次就可以将待查的线路长度缩短一半 经过8次查找,可将故障范围缩小到50m 之内,即可迅速找到故障所在. 【点睛】本题考查了二分法在生活中的应用,理解二分法的定义,属于基础题. 15.(1)[]13,3-; (2)存在,区间为1,08⎛⎫- ⎪⎝⎭.【分析】(1)根据()2283f x x x m =-++,结合二次函数的图象与性质,可知()f x 在区间[]1,1-上单调递减,结合条件()f x 在区间[]1,1-上存在零点,则有()()1010f f ⎧-≥⎪⎨≤⎪⎩,解不等式组即可求出实数m 的取值范围;(2)当4m =-时,得()2281f x x x =--,可知()f x 在区间()1,1-上单调递减,并求得()()110f f -⋅<,根据零点存在性定理可知()f x 在()1,1-上存在唯一零点0x ,最后利用二分法和零点存在性定理,求出在误差不超过0.1的条件下的零点所在的区间. (1) 解:()2283f x x x m =-++为二次函数,开口向上,对称轴为2x =可知函数()f x 在区间[]1,1-上单调递减∵()f x 在区间[]1,1-上存在零点,∴()()1010f f ⎧-≥⎪⎨≤⎪⎩即28302830m m +++≥⎧⎨-++≤⎩,解得:133m -≤≤∴实数m 的取值范围是[]13,3-. (2)解:当4m =-时,()2281f x x x =--为二次函数,开口向上,对称轴为2x =所以()f x 在区间()1,1-上单调递减()19f ∴-=,()17f =-则()()110f f -⋅<∴函数()f x 在()1,1-上存在唯一零点0x 又()f x 为R 上的连续函数∵()010f =-<,∴()()100f f -⋅<,∴()01,0x ∈- ∵17022f ⎛⎫-=> ⎪⎝⎭,∴()1002f f ⎛⎫-⋅< ⎪⎝⎭,∴01,02x ⎛⎫∈- ⎪⎝⎭ ∵19048f ⎛⎫-=> ⎪⎝⎭,∴()1004f f ⎛⎫-⋅< ⎪⎝⎭,∴01,04x ⎛⎫∈- ⎪⎝⎭∵110832f ⎛⎫-=> ⎪⎝⎭,∴()1008f f ⎛⎫-⋅< ⎪⎝⎭,∴01,08x ⎛⎫∈- ⎪⎝⎭此时误差为10.1610218-=<-,即满足误差不超过0.1 ∴零点所在的区间为1,08⎛⎫- ⎪⎝⎭.16.(1)证明见解析;(2)0.4-.【分析】(1)令32()6131230g x x x x =----=,转化为函数()()326,13123h x x r x x x =-=++的交点问题,利用数形结合法证明;(2)利用函数零点存在定理,根据(1)的建立求解. 【详解】(1)令32()6131230g x x x x =----= 则32613123x x x -=++令()()326,13123h x x r x x x =-=++在同一坐标系中作出函数()(),h x r x 的图象,如图所示:因为()()()()11,00h r h r ><,即(1)0,(0)0g g ->< 所以()g x 在区间(-1,0)内有零点再由图象知()g x 在区间(-1,0)内有一个零点.(2)由()0(0.5)00.5,0(0)30g x g ->⎧⇒∈-⎨=-<⎩; 由()0(0.25)00.5,0.25(0.5)0g x g -<⎧⇒∈--⎨->⎩; 由()0(0.375)00.5,0.375(0.5)0g x g -<⎧⇒∈--⎨->⎩; 由()0(0.4375)00.4375,0.375(0.375)0g x g ->⎧⇒∈--⎨-<⎩ 所以00.4x ≈-. 17.3,2⎛⎫+∞ ⎪⎝⎭【分析】求出导函数()e 2xf x m '=-,由题意,原问题等价于2e 3x m =+有解,从而即可求解.【详解】解:函数()f x 的导数()e 2xf x m '=-由题意,若曲线C 存在与直线13y x =垂直的切线,则()1e 213x m -=-,即2e 3x m =+有解第 11 页 共 11 页 又因为e 33x +>,所以23m >,即32m >所以实数m 的取值范围是3,2⎛⎫+∞ ⎪⎝⎭.。

人教版高中数学必修一函数的应用综合测试题含解析新人教A版必修

人教版高中数学必修一函数的应用综合测试题含解析新人教A版必修

人教版高中数学必修一函数的应用综合测试题含解析新人教A版必修集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)第三章函数的应用综合测试题(时间:120分钟分值:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中没有零点的是( )A.f(x)=log2x-3 B.f(x)=x-4C.f(x)=1x-1D.f(x)=x2+2x答案:C 解析:由于函数f(x)=1x-1中,对任意自变量x的值,均有1x-1≠0,故该函数不存在零点.2.函数f(x)=2x+m的零点落在(-1,0)内,则m的取值范围为( )A.(-2,0) B.(0,2)C.[-2,0] D.[0,2]答案:B 解析:由题意,f(-1)·f(0)=(m-2)m<0,∴0<m<2.3.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得,f(1.5)>0,f(1.25)<0,则方程的根落在区间( ) A.(1,1.25) B.(1.25,1.5)C.(1.5,2) D.不确定答案:B 解析:因为f(1.5)>0,f(1.25)<0,所以由零点存在性定理,可得方程3x+3x-8=0的根落在区间(1.25,1.5)内.4.下表表示一球自一斜面滚下t秒内所行的距离s的尺数(注:尺是一种英制长度单位).当t=2.5A.45 B.62.5 C.70 D.75答案:B 解析:由题表可知,距离s同时间t的关系是s=10t2,当t=2.5时,s=10×(2.5)2=62.5.5.不论m为何值时,函数f(x)=x2-mx+m-2的零点有( )A.2个B.1个C.0个D.都有可能答案:A 解析:方程x2-mx+m-2=0的判别式Δ=m2-4(m-2)=(m-2)2+4>0,∴函数f(x)=x2-mx+m-2的零点有2个.6.已知f(x)=2x2-2x,则在下列区间中,方程f(x)=0一定有实数解的是( )A.(-3,-2) B.(-1,0)C.(2,3) D.(4,5)答案:B 解析:∵f(-1)=2-12>0,f(0)=0-1<0,∴在(-1,0)内方程f(x)=0一定有实数解.7.设x0是函数f(x)=ln x+x-4的零点,则x0所在的区间为( )A.(0,1) B.(1,2) C.(2,3) D.(3,4)答案:C 解析:∵f(2)=ln 2+2-4=ln 2-2<0,f(3)=ln 3-1>ln e -1=0,f(2)·f(3)<0.由零点存在定理,得x0所在的区间为(2,3).故选C.8.已知x0是函数f(x)=2x+11-x的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则( )A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0答案:B 解析:由定义法证明函数的单调性的方法,得f(x)在(1,+∞)为增函数,又1<x 1<x 0<x 2,x 0为f (x )的一个零点,所以f (x 1)<f (x 0)=0<f (x 2).9.有浓度为90%的溶液100 g ,从中倒出10 g 后再倒入10 g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.301 0,lg 3=0.477 1)( )A .19B .20C .21D .22答案:C 解析:操作次数为n 时的浓度为⎝ ⎛⎭⎪⎫910n +1,由⎝ ⎛⎭⎪⎫910n +1<10%,得n +1>-1lg 910=-12lg 3-1≈21.8,∴n ≥21.10.若函数y =a x -x -a 有两个零点,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(0,+∞)D .?答案:A 解析:令f (x )=a x ,g (x )=x +a ,作出它们的图象如图所示. 显然当a >1时,f (x )与g (x )的图象有两个交点,即函数y =a x -x -a 有两个零点.11.用二分法判断方程2x 3+3x -3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421 875,0.6253=0.244 14)( )A .0.25B .0.375C .0.635D .0.825答案:C 解析:令f (x )=2x 3+3x -3,f (0)<0,f (1)>0,f (0.5)<0,f (0.75)>0,f (0.625)<0,则方程2x 3+3x -3=0的根在区间(0.625,0.75)内.∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意. 12.甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2),甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半的时间使用速度v 2,关于甲、乙二人从A 地到达B 地的路程与时间的函数图象及关系,有如图所示的四个不同的图示分析(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点),则其中可能正确的图示分析为( )答案:A 解析:由题意可知,开始时,甲、乙速度均为v 1,所以图象是重合的线段,由此排除C ,D ,再根据v 1 <v 2,可知两人的运动情况均是先慢后快,图象是折线且前“缓”后“陡”,故图示A 分析正确.二、填空题(本大题共4小题,每小题5分,共20分.请把正确的答案填在题中的横线上)13.函数f (x )=⎩⎨⎧x 2-2, x ≤0,2x -6+ln x ,x >0的零点个数是________.答案:2 解析:当x ≤0时,令x 2-2=0,解得x =-2(正根舍去), 所以在(-∞,0]上有一个零点. 当x >0时,f (x )在(0,+∞)上是增函数. 又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,f (2)·f (3)<0,所以f (x )在(2,3)内有一个零点.综上,函数f (x )的零点个数为2.14.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为________.答案:⎣⎢⎡⎦⎥⎤-235,1 解析:令f (x )=x 2+ax -2,则f (0)=-2<0,∴要使f (x )在[1,5]上与x 轴有交点,则需要⎩⎨⎧f (1)≤0,f (5)≥0,即⎩⎨⎧a -1≤0,23+5a ≥0,解得-235≤a ≤1.15.若函数f (x )=lg|x -1|-m 有两个零点x 1和x 2,则x 1+x 2=________. 答案:2 解析:∵函数f (x )=lg|x -1|-m 有两个零点, ∴函数y 1=lg|x -1|与函数y 2=m 由两个交点,∵y 1=lg|x -1|的图象关于x =1对称, lg|x 1-1|=lg|x 2-1|, ∴x 1+x 2=2.16.某学校开展研究性学习活动,一组同学获得了下面的一组试验数据.现有如下5①y =0.58x -0.16;②y =2x -3.02;③y =x 2-5.5x +8;④y =log 2x ;⑤y=⎝ ⎛⎭⎪⎫12x+1.74. 请从中选择一个模拟函数,使它比较近似地反映这些数据的规律,应选________.(填序号)答案:④解析:画出散点图如图所示.由图可知,上述点大体在函数y =log 2x 上(对于y =0.58x -0.16,可代入已知点验证不符合),故选择y =log 2x 可以比较近似地反映这些数据的规律.三、解答题(本大题共6小题,满分70分.解答时应写出文字说明、证明过程或演算步骤)17. (本小题满分10分)已知函数f (x )= (1)求不等式f (x )>5的解集;(2)若方程f (x )-m 22=0有三个不同实数根,求实数m 的取值范围.解:(1)当x ≤0时,由x +6>5,得-1<x ≤0; 当x >0时,由x 2-2x +2>5,得x >3.综上所述,不等式的解集为(-1,0]∪(3,+∞).(2)方程f (x )-m 22=0有三个不同实数根,等价于函数y =f (x )与函数y =m 22的图象有三个不同的交点.由图可知,1<m 22<2,解得-2<m <-2或 2<m <2.所以,实数m 的取值范围(-2,-2)∪(2,2) .18. (本小题满分12分)有一小型自来水厂,蓄水池中已有水450吨,水厂每小时可向蓄水池注水80吨,同时蓄水池向居民小区供水,x 小时内供水总量为8020x 吨.现在开始向池中注水并同时向居民小区供水,问:(1)多少小时后蓄水池中的水量最少?(2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?解:设x 小时后蓄水池中的水量为y 吨,则有y =450+80x -8020x=450+80x -1605x (x ≥0). (1)y =16(5x -5)2+50(x ≥0), 则当5x =5,即x =5时,y min =50, ∴5小时后蓄水池中水量最少为50吨. (2)由题意,450+80x -1605x <150,可得 52<x <352,即54<x <454. ∵454-54=10,故有10小时供水紧张. 19. (本小题满分12分)已知定义在R 上的奇函数f (x )在x ≥0时的图象是如图所示的抛物线的一部分.(1)请补全函数f (x )的图象;(2)写出函数f (x )的表达式(只写明结果,无需过程); (3)讨论方程|f (x )|=a 的解的个数(只写明结果,无需过程). 解:(1)补全f (x )的图象如图所示:(2)f (x )=⎩⎨⎧2x 2-4x ,x ≥0,-2x 2-4x ,x <0.(3)当a <0时,方程无解; 当a =0时,方程有三个解; 当0<a <2时,方程有6个解; 当a =2时,方程有4个解; 当a >2时,方程有2个解.20. (本小题满分12分)某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2011年为第1年,且前4年中,第x 年与年产量f (x )(万件)之间的关系如下表所示:若f (x )b ,f (x )=2x +a ,f (x )=log 12x +a .(1)找出你认为最适合的函数模型,并说明理由,然后选取11年和13年的数据求出相应的解析式;(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.解:(1)符合条件的是f (x )=ax +b .若模型为f (x )=2x +a ,则由f (1)=21+a =4,得a =2,即f (x )=2x +2, 此时f (2)=6,f (3)=10,f (4)=18,与已知相差太大,不符合. 若模型为f (x )=log 12x +a ,则f (x )是减函数,与已知不符合.由已知得⎩⎨⎧ a +b =4,3a +b =7,解得⎩⎨⎧a =32,b =52,所以f (x )=32x +52,x ∈N .(2)2015年预计年产量为f (7)=32×7+52=13,2015年实际年产量为13×(1-30%)=9.1. 所以,2015年的实际产量为9.1万件.21. (本小题满分12分)已知函数f (x )=log 4(4x +1)+kx ,(k ∈R )为偶函数.(1)求k 的值;(2)若函数 f (x )=log 4(a ·2x -a )有且仅有一个根,求实数a 的取值范围. 解:(1)∵f (x )为偶函数,∴f (-x )=f (x ), 即log 4(4-x +1)-kx =log 4(4x +1)+kx , ∴log 44x +14x -log 4(4x +1)=2kx ,∴(2k +1)x =0,∴k =-12.(2)依题意知,log 4(4x +1)-12x =log 4(a ·2x -a ),整理得log 4(4x +1)= log 4[(a ·2x -a ) 2x ], ∴4x +1=(a ·2x -a )·2x .(*)令t =2x ,t >0,则(*)变为(1-a )t 2+at +1=0.(**) 只需其仅有一正根.①当a =1时,t =-1不合题意; ②当(**)式有一正一负根时,∴⎩⎨⎧Δ=a 2-4(1-a )>0,t 1t 2=11-a <0,解得a >1;③当(**)式有两相等的正根时,Δ=0,∴a =±22-2,且a2(a -1)>0,∴a =-2-2 2.综上所述,a 的取值范围为{a |a >1或a =-2-22}.22. (本小题满分12分)某上市股票在30天内每股交易价格P (元)与时间t (天)组成有序数对(t ,P ),点(t ,P )落在图中的两条线段上,该股票在30天内的日交易量Q (万股)与时间t (天)的部分数据如下表所示:(1)元)与时间t (天)所满足的函数关系式;(2)根据表中数据确定日交易量Q (万股)与时间t (天)的一次函数关系式; (3)用y 表示该股票日交易额(万元),写出y 关于t 的函数关系式,并求在这30天中第几天日交易额最大,最大值是多少?解:(1)由图象知,前20天满足的是递增的直线方程,且过两点(0,2),(20,6),易求得直线方程为P =15t +2;从20天到30天满足递减的直线方程,且过两点(20,6),(30,5),求得方程为P =-110t +8, 故每股交易价格P (元)与时间t (元)所满足的函数关系式为P =⎩⎨⎧15t +2,0≤t ≤20,t ∈N ,-110t +8,20<t ≤30,t ∈N .(2)由图表,易知Q 与t 满足一次函数关系,即Q =-t +40,0≤t ≤30,t ∈N .(3)由以上两问,可知y =⎩⎨⎧⎝ ⎛⎭⎪⎫15t +2(-t +40),0≤t ≤20,t ∈N ,⎝ ⎛⎭⎪⎫-110t +8(-t +40),20<t ≤30,t ∈N=⎩⎨⎧-15(t -15)2+125,0≤t ≤20,t ∈N ,110(t -60)2-40,20<t ≤30,t ∈N , 当0≤t ≤20,t =15时,y max =125,当20<t ≤30,y 随t 的增大而减小,y <120,∴在30天中的第15天,日交易额最大,最大值为125万元.。

高一数学函数的应用测试题(含答案)

高一数学函数的应用测试题(含答案)

高一数学函数的应用测试题(含答案)高一数学函数的应用测试题(含答案)数学是研究现实世界空间形式和数量关系的一门科学。

小编准备了高一数学函数的应用测试题,具体请看以下内容。

一、选择题:本大题共12小题,每小题5分,共60分.1.函数的定义域是( )A.[1,+)B.45,+C.45,1D.45,1解析:要使函数有意义,只要得01,即45答案:D2.设a=20.3,b=0.32,c=logx(x2+0.3)(x1),则a,b,c的大小关系是()A.aC.c解析:∵a=20.321=2,且a=20.320=1,1∵x1,c=logx(x2+0.3)logxx2=2. cb.答案:B3.已知函数f(x)=ln(x+x2+1),若实数a,b满足f(a)+f(b-1)=0,则a+b等于()A.-1B.0C.1D.不确定解析:观察得f(x)在定义域内是增函数,而f(-x)=ln(-x+x2+1)=ln1x+x2+1=-f(x),f(x)是奇函数,则f(a)=-f(b-1)=f(1-b).a=1-b,即a+b=1.答案:C4.已知函数f(x)=-log2x (x0),1-x2 (x0),则不等式f(x)0的解集为()A.{x|0C.{x|-1-1}解析:当x0时,由-log2x0,得log2x0,即0当x0时,由1-x20,得-1答案:C5.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是()A.f(x)=-x|x|B.f(x)=x3C.f(x)=sinxD.f(x)=lnxx解析:为奇函数的是A、B、C,排除D. A、B、C中在定义域内为减函数的只有A.答案:A6.函数f(x)=12x与函数g(x)= 在区间(-,0)上的单调性为()A.都是增函数B.都是减函数C.f(x)是增函数,g(x)是减函数D.f(x)是减函数,g(x)是增函数解析:f(x)=12x在x(-,0)上为减函数,g(x)= 在(-,0)上为增函数.答案:D7.若x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()A.aC.b解析:a=lnx,b=2lnx=lnx2,c=ln3x.∵x(e-1,1),xx2.故ab,排除A、B.∵e-1lnx答案:C8.已知f(x)是定义在(-,+)上的偶函数,且在(-,0]上是增函数,若a=f(log47),,c=f(0.2-0.6) ,则a、b、c的大小关系是()A.cC.c解析:函数f(x)为偶函数,b=f(log123)=f(log23),c=f(0.2-0.6)=f(50.6).∵50.6log23=log49log47,f(x)在(0,+)上为减函数,f(50.6)答案:A9.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.46.8万元D.46.806万元解析:设在甲地销售x辆,则在乙地销售(15-x)辆,总利润L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30,当x=3.0620.15=10.2时,L最大.但由于x取整数,当x=10时,能获得最大利润,最大利润L=-0.15102+3.0610+30=45.6(万元).答案:B10.若f(x)是定义在R上的偶函数,且满足f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2解析:f(5)=f(2+3)=f(2)=0,又∵f(-2)=f(2)=0,f(4)=f(1)=f(-2)=0,在(0,6)内x=1,2,4,5是方程f(x)=0的根.答案:B11.函数f(x)=x+log2x的零点所在区间为()A.[0,18]B.[18,14]C.[14,12]D.[12,1]解析:因为f(x)在定义域内为单调递增函数,而在四个选项中,只有f14f120,所以零点所在区间为14,12.答案:C12.定义在R上的函数f(x)满足f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,则当x[-4,-2]时,f(x)的最小值是()A.-19B.-13C.19D.-1解析:f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,当x=1时,f(x)取得最小值.所以当x[-4,-2]时,x+4[0,2],所以当x+4=1时,f(x)有最小值,即f(-3)=13f(-3+2)=13f(-1)=19f(1)=-19.答案:A第Ⅱ卷(非选择共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若函数f(x)=ax2+x+1的值域为R,则函数g(x)=x2+ax+1的值域为__________.解析:要使f(x)的值域为R,必有a=0.于是g(x)=x2+1,值域为[1,+).答案:[1,+)14.若f(x)是幂函数,且满足f(4)f(2)=3,则f12=__________. 解析:设f(x)=x,则有42=3,解得2=3,=log23,答案:1315.若方程x2+(k-2)x+2 k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是__________. 解析:设函数f(x)=x2+(k-2)x+2k-1,结合图像可知,f(0)0,f(1)0,f(2)0.即2k-10,1+(k-2)+2k-10,4+2(k-2)+2k-10,解得k12,k23,即1214,我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)

高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)

高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)一、单选题1.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率为x ,则x 满足的方程为( )A .210(1)42x +=B .21010(1)42x ++=C .1010(1)10(12)42x x ++++=D .21010(1)10(1)42x x ++++=2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A .310元B .300元C .390元D .280元3.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为2121L x x=-+和22L x =.若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元4.把长为12cm 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A .233cm 2B .24cmC .232cmD .223cm5.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .306.单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A .135B .149C .165D .1957.某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了( )A .0.33米B .0.42米C .0.39米D .0.43米8.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则下列说法错误的是( )A .乙的速度为300米/分钟B .25分钟后甲的速度为400米/分钟C .乙比甲晚14分钟到达B 地D .A 、B 两地之间的路程为29400米二 、多选题 9.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=√x x <A,√A x ⩾A(A,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,下列结果正确的是( )A. A =16B. c =60C. A =4D. c =3010.对任意两个实数a ,b ,定义max{ a,b}={a,a >b,若f(x)=2−x 2,g(x)=x 2下列关于函数F(x)=max{ f(x),g(x)}的说法正确的有( )A. 函数F(x)是偶函数B. 函数F(x)有四个单调区间C. 方程F(x)=2有四个不同的根D. 函数F(x)的最大值为1,无最小值11.函数y =[x]的函数值表示不超过x 的最大整数.例如[1.1]=1,[2.3]=2设函数f(x)={1−x 2,x <0,x −[x],x ⩾0,则下列说法正确的是( )A. 函数f(x)的值域为(−∞,0]B. 若x ⩾0,则[f(x)]=0C. 方程f(x)=1有无数个实数根D. 若方程f(x)=−x +a 有两个不等的实数根,则实数a 的取值范围是[0,+∞)12.已知函数f(x)={x 2,x ⩽0,−x 2,x >0,则下列结论中正确的是( ) A. f(√2)=2B. 若f(m)=9,则m ≠±3C. f(x)是奇函数D. 在f(x)上R 单调递减三、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算. 可以享受折扣优惠金额折扣优惠率 不超过500元的部分5% 超过500元的部分 10% 某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为__________元.14.函数()()222323y x x x x =---+零点的个数为_____________.15.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为____(单位:2cm ).四、解答题16..如图,某灌溉渠的横断面是等腰梯形,底宽2m ,渠深为1.8m ,斜坡的倾斜角是45°(无水状态不考虑).(1)试将横断面中水的面积()A h (2m )表示成水深h (m )的函数;(2)当水深为1.2m 时,求横断面中水的面积.17.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0.(1)当020x <≤时,求函数()v x 的表达式;(2)当x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大?并求出最大值.18.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为21200800002y x x =-+ ,且处理每吨二氧化碳得到可利用的化工产品价值为100元. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?19.吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本()h x 万元,当产量小于或等于50万盒时()180100h x x =+;当产量大于50万盒时()2603500h x x x =++,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?20.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:5 2.236) 参考答案1.D 2.B3.C4.D5.C6.B7.B8.C9.AB;10.AB;11.BD;12.CD;13.112014.215.1616.(1)依题意,横断面中的水面是下底为2m ,上底为()22h +m ,高为h m 的等腰梯形,所以()()()222220 1.82h A h h h h h ++=⋅=+<≤. (2)由(1)知()()220 1.8A h h h h =+<≤ ()21.2 1.22 1.2 3.84h =+⨯=所以当水深为1.2m 时,横断面水中的面积为3.842m .17.(1)依题意,当04x <≤时()2v x =;当420x <≤时,()v x 是关于x 的一次函数,假设()(0)v x ax b a =+≠则42200a b a b +=⎧⎨+=⎩,解得0.1252.5a b =-⎧⎨=⎩所以()2,040.125 2.5,420x v x x x <≤⎧=⎨-+<≤⎩. (2)当04x <≤时()()()2028v x f x x v x x =⇒<=⋅=≤;当420x <≤时()()20.125 2.50.125 2.5v x x f x x x =-+⇒=-+当()2.51020.125x =-=⨯-时,()f x 取得最大值()1012.5f =. 因为12.58>,所以当x =10时,鱼的年生长量()f x 可以达到最大,最大值为12.53/千克米.18.(1)由题意知,平均每吨二氧化碳的处理成本为180000180000200220020022y x x x x x=+-≥⋅-=; 当且仅当1800002x x = ,即400x = 时等号成立 故该当每月处理量为400吨时,才能使每吨的平均处理成本最低为200元.(2)不获利,设该单位每个月获利为S 元,则2211100100200800003008000022S x y x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭()21300350002x =--- 因为[]400,600x ∈,则[]80000,40000S ∈--故该当单位每月不获利,需要国家每个月至少补贴40000元才能不亏损.19.(1)当产量小于或等于50万盒时20020018010020300y x x x =---=-当产量大于50万盒时222002006035001403700y x x x x x =----=-+-故销售利润y (万元)关于产量x (万盒)的函数关系式为220300,050,N 1403700,50x x y x x x x -≤≤⎧=∈⎨-+->⎩(2)当050x ≤≤时2050300700y ≤⨯-=;当50x >时21403700y x x =-+-当140702x ==时,21403700y x x =-+-取到最大值,为1200. 因为7001200<,所以当产量为70万盒时,该企业所获利润最大.20.(1)解:由题意知当120x =(辆/千米)时,0v =(千米/小时)代入80150k v x=--,解得2400k = 所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩. 当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤. 所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.(2)解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时 ()()2150180150450024004500808080180150150150150x x x y x x x x x --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦ 4800(35)3667≤-≈. 当且仅当4500150150x x-=-,即30(55)83x =-≈时等号成立. 所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.。

高一人教版数学必修一函数的应用练习题

高一人教版数学必修一函数的应用练习题

高一人教版数学必修一函数的应用练习题上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160元,同时,平均每天有3千克的野生菌损坏不能出售.(1)设x到后每千克该野生菌的市场价格为y元,试写出y 与x之间的函数关系式.O(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元? (利润=销售总额-收购成本-各种费用)8、(09湖南长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?9、(09成都)大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x为整数);又知前20天的销售价格Q1 (元/件)与销售时间x(天)之间有如下关系:Q1?x?30 (1≤x≤20,且x为整数),后10天的销售价格Q2 (元/件)与销售时间x(天)之间有如下关系:Q2=45(21≤x≤30,且x 为整数).(1)试写出该商店前20天的日销售利润R1(元)和后l0天的日销售利润R2(元)分别与销售时间x(天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润. 注:销售利润=销售收入一购进成本.10、红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1?(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修Ⅰ第三章《函数的应用》期末练习题
一、选择题
1、下列函数有2个零点的是( )
A 、2
4510y x x =+- B 、310y x =+
C 、235y x x =-+-
D 、2441y x x =-+ 2、用二分法计算2
3380x x +-=在(1,2)x ∈内的根的过程中得: (1)0f <,(1.5)0f >,(1.25)0f <,则方程的根落在区间( )
A 、(1,1.5)
B 、(1.5,2)
C 、(1,1.25)
D 、(1.25,1.5)
3、一商店把货物按标价的九折出售,仍可获利20%,若该货物的进价为每件21元,则
每件的标价应为( )
A 、27.27元
B 、28元
C 、29.17元
D 、30元
4、某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进
货价),则该家具的进货价是( )
A 、108元
B 、105元
C 、106元
D 、118元
5、若方程0x
a x a --=有两个解,则实数a 的取值范围是( )
A 、(1,)+∞
B 、(0,1)
C 、(0,)+∞
D 、Φ
6、给右图的容器甲注水,下面图像中哪一个图像可以大致刻画容器中水的高度与时间的
函数关系:( )
A
B
7、方程12x x +=根的个数为( ) A 、0 B 、1 C 、2 D 、3
8、假设银行1年定期的年利率为2%,某人为观看2008年的奥运会,从2001年元旦开始在银行存款1万元,存期1年,第二年元旦再把1万元和前一年的存款本利和一起作为本金再存1年定期存款,以后每年元旦都这样存款,则到2007年年底,这个人的银行存款共有(精确到0.01)( )
A 、7.14 万元
B 、7.58万元
C 、7.56万元
D 、7.50万元
二、填空题
容器甲
9、函数222()(1)(2)(23)f x x x x x =-+--的零点是 (必须写全所有的零点)。

10、若1()x f x x
+=,则方程(4)f x x =的根为 。

11、若镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x 年后剩留量为y ,则y 与x 的函
数关系式为y = 。

12、已知函数()f x 的图象是连续不断的,有如下,()x f x 对应值表:
则函数()f x 在区间 有零点。

三、解答题
13、有一块长为20cm ,宽为12cm 的矩形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成
一个无盖的盒子,写出这个盒子的体积V 与边长x 的函数关系式,并讨论这个函数的定义域。

14、某地兴修水利挖渠,其渠道的横截面为等腰梯形,腰与水平线的夹角为60°,设横截面周长为定值m ,
问渠道深h 为多少时,可使其流量最大?
15、某厂生产一种新型的电子产品,为此更新专用设备和请专家设计共花去了200000元,生产每件电子
产品的直接成本为300元,每件电子产品的售价为500元,产量x 对总成本C 、单位成本P 、销售收入R 以及利润L 之间存在什么样的函数关系?表示了什么实际含义?
16、写一段小作文来说明下图中的图象所对应的函数的实际意义
17、纳税是每个公民应尽的义务,从事经营活动的有关部门必须向政府税务部门交纳一定的营业税。

某地区税务部门对餐饮业的征收标准如下表
(2)某饭店5月份的营业额是35000元,这个月该饭店应缴纳税金多少?
18、W AP 手机上网每月使用量在500分钟以下(包括500分钟)按30元记费,超过500
分钟按0.15
元/分钟记费。

假如上网时间过短,在1分钟以下不记费,1分钟以上(包括1分钟)按0.5元/分钟记费。

WAP 手机上网不收通话费和漫游费。

(1)小周12月份用WAP 手机上网20小时,要付多少上网费?
(2)小周10月份付了90元上网费,那么他这个月用手机上网多少小时?
(3)你会选择W AP 手机上网吗?你是用那一种方式上网的?。

相关文档
最新文档