河北省邢台市临西县2020-2021学年八年级上学期期末数学试题
河北省邢台市临西县2022-2023学年八年级上学期期末教学质量评估数学试卷(含答案)

2022~2023学年度第一学期八年级期末教学质量评估数学注意事项:共8页,总分120分.一、选择题(本大题共16个小题,共42分.第1~10小题各3分,11~16小题各2分)1.下列标志图案中,不是轴对称图形的是().A.B.C.D.2.下列方程中,是分式方程是().A.B.C.D.3.在中,,则中最大的内角度数为().A.B.C.D.4.下列运算中,正确的是().A.B.C.D.5.如图,平分,P是上一点,过点P作,N为射线上一动点.若,则的最小值为().A.2B.3C.4D.56.下列命题中,是假命题的是().A.三角形的高线一定在三角形的内部B.全等三角形的对应边相等C.等腰三角形是轴对称图形D.全等三角形的面积一定相等7.若,则的值是().A.4B.6C.8D.98.下列各式中,不能进行因式分解的是().A.B .C .D.9.对于分式,若将x,y的值都扩大到原来的3倍,则分式的值().A.扩大到原来的3倍B.扩大到原来的9倍C.不变D.无法确定10.如图,将长方形沿折叠,B,C分别落在点H,G 的位置,与交于点M.下列说法中,不正确的是().A.B .C .D.11.小明和小亮解答“解分式方程:”的过程如下,对他们的解答过程有以下判断,判断正确的是().小明的解法:解:去分母,得,①去括号,得,②移项,得,③合并同类项,得,④系数化为1,得,⑤小亮的解法:解:去分母,得,①去括号,得,②移项,得,③合并同类项,得,④系数化为1,得,⑤经检验是原分式方程的解.⑥经检验是原分式方程的解.⑥A.小明正确,小亮错误B.小明错误,小亮正确C.两人都正确D.两人都错误12.如图,正十边形与正方形共边,延长正方形的一边与正十边形的一边,两线交于点F,设,则x的值为().A.15B.18C.21D.2413.计算的值为().A.B.C.D.14.如图,在中,,角平分线,相交于点P,若,,则().A.4B.6C.12D.2415.《四元玉鉴》是一部成就辉煌的数学名著,是宋元数学集大成者,也是我国古代水平最高的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”.大意是:现请人代买一批橡,这批椽的总售价为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设6210元购买椽的数量为x株,则符合题意的方程是().A.B.C.D.16.题目:“已知数x,y,z,m满足,求m的值.”对于其答案,甲答:,乙答:,丙答:,则正确的是().A.甲的答案正确B.甲、乙的答案合在一起才完整C.乙、丙的答案合在一起才完整D.甲、丙的答案合在一起才完整二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分,19小题每空1分)17.若的结果中不含x的一次项,则实数a的值为__________.18.如图,在中,,,D为中点,,,过点E作交于F,作交的延长线于点G,连接,(1)______.(2)______.(填入数值)19.利用完全平方公式,可以将多项式(a,b,c均为常数且)变形为的形式,如.这样的变形方法叫做多项式的配方法.运用配方法及平方差公式能对一些多项式进行因式分解,例如:.(1)根据以上材料,用多项式的配方法将化成的形式是__________.(2)当多项式值为时,x的值为______;把多项式进行因式分解,结果为______.三、解答题(本大题有7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20.(9分)已知.(1)化简A.(2)若a是不等式的最大整数解,求A的值.21.(9分)先化简,再求值:.(1)化简分式.(2)当时,求分式的值.22.(9分)已知一个正多边形的边数为n.(1)若这个正多边形的内角和的比外角和多,求n的值.(2)若这个正多边形的一个内角为,求n的值.23.(10分)在中,,D是的中点,连接.(1)如图1,若,,求的长.(2)如图2,过点A作交的延长线于点F,求证:是等腰三角形.24.(10分)某镇准备对一条长3200米道路进行绿化整修,按原计划修了800米后,承包商安排工人每天加班,每天的工作量比原计划提高了20%,共用28天完成了全部任务.(1)问原计划每天绿化道路多少米?(2)已知承包商原计划每天支付工人工资5000元,安排工人加班后每天支付给工人的工资增加了40%,则完成此项工程,承包商共需支付工人工资多少元?25.(10分)请阅读下列材料:若,求m,n的值.解:∵,∴,∴,∴,,∴,.根据你的观察,探究下面的问题:(1)若,则a的值为______;b的值为______.(2)已知的三边长a,b,c都是正整数,且满足,求c 的值.(3)若,,试比较A与B的大小关系,并说明理由.26.(12分)如图1,在线段上取一点,如果以,为边在同一侧作正方形与正方形,连接,取的中点M,的延长线交于点N.(1)请探究与的数量关系和位置关系,并加以证明.(2)如图2,将正方形绕点C顺时针旋转,使得A,C,E在同一条直线上,其余条件不变.①填空:的度数是______,的度数是______.②探究(1)中的结论是否成立?并说明理由.2022~2023学年度第一学期八年级期末教学质量评估数学参考答案1.D 2.A 3.B 4.C 5.B 6.A 7.C 8.D 9.A 10.A 11.B 12.B 13.C 14.B 15.C 16.D17.2 18.(1)(2)1019.(1);(2),20.解:(1).(5分)(2)由,解得.∵a是不等式的最大整数解,∴,将代入A,得.(9分)21.解:(1)原式.(5分)(2),(7分)∴原式.22.(1)解:依题意,得,解得,即n的值为12.(2)∵正多边形的一个内角为,∴这个正多边形的外角为.∵多边形的外角和为,∴,即n的值为5.23.解:(1)∵,,∴是等边三角形,.∵D是的中点,∴.(4分)(2)证明:∵,D是中点,∴平分,即.∵,∴,∴,∴,∴是等腰三角形.(10分)24.解:(1)设原计划每天绿化道路x米.,(3分)解得,(4分)经检验,是原分式方程的解,且符合题意.答:原计划每天绿化道路100米.(6分)(2)(天),(天),(元).(10分)25.解:(1)3,.(2分)(2)∵,∴,∴,∴,,解得,,(4分)∵a,b,c是的三边长,∴.∵c是正整数,∴.(6分)(3)..(8分)∵,∴,∴.(10分)26.解:(1)且.(1分)证明:∵以,为边在同一侧作正方形与正方形,∴,∴.在和中,,∴≌(ASA),(3分)∴,,∵,∴,∴,∴是等腰直角三角形,∵,∴也是等腰直角三角形.∴且.(5分)(2)①,.(7分)②成立.理由:如图,延长交于N,连接,.同(1)可证≌,∴,.∵,∴.在和中,,∴≌(SAS),(9分)∴,,∴,即是等腰直角三角形.(10分)∵,∴,.综上可知,且.(12分)。
(汇总3份试卷)2020年邢台市八年级上学期数学期末联考试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题中,真.命题是( ) A .同旁内角互补B .在同一平面内,垂直于同一条直线的两条直线平行C .相等的角是内错角D .有一个角是60︒的三角形是等边三角形 【答案】B【分析】分别根据平行线的性质和判定、内错角的定义和等边三角形的判定方法逐项判断即可得出答案.【详解】解:A 、同旁内角互补是假命题,只有在两直线平行的前提下才成立,所以本选项不符合题意; B 、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,所以本选项符合题意; C 、相等的角是内错角,是假命题,所以本选项不符合题意;D 、有一个角是60︒的三角形是等边三角形,是假命题,应该是有一个角是60︒的等腰三角形是等边三角形,所以本选项不符合题意.故选:B .【点睛】本题考查了真假命题的判断、平行线的性质和判定以及等边三角形的判定等知识,属于基本题型,熟练掌握基本知识是解题的关键.2.点P 在第二象限内,那么点P 的坐标可能是( )A .(4,3)B .(3,4)--C .()3,4-D .(3,4)- 【答案】C【分析】根据第二象限内点坐标的特点:横坐标为负,纵坐标为正即可得出答案.【详解】根据第二象限内点坐标的特点:横坐标为负,纵坐标为正,只有()3,4-满足要求 故选:C .【点睛】本题主要考查第二象限内点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.3.式子2x -中x 的取值范围是( ) A .x≥1且x≠2B .x >1且x≠2C .x≠2D .x >1 【答案】A【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】根据题意得x −1⩾0且x −2≠0解得:x ⩾1且x≠2.故选A.【点睛】本题主要考查二次根式有意义的条件,分式有意义的条件,熟悉掌握条件是关键.4.在平面直角坐标系中,如果点A 的坐标为(﹣1,3),那么点A 一定在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】根据平面直角坐标系中点P(a,b),①第一象限:a>1,b>1;②第二象限:a<1,b>1;③第三象限:a<1,b<1;④第四象限:a>1,b<1;据此求解可得.【详解】解:∵点A 的横坐标为负数、纵坐标为正数,∴点A 一定在第二象限.故选:B .【点睛】本题主要考查坐标确定位置,解题的关键是掌握①第一象限:a>1,b>1;②第二象限:a<1,b>1;③第三象限:a<1,b<1;④第四象限:a>1,b<1.5.如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( ).A .25︒B .30︒C .35︒D .40︒【答案】B 【解析】试题分析:作点P 关于OA 对称的点P 3,作点P 关于OB 对称的点P 3,连接P 3P 3,与OA 交于点M,与OB 交于点N,此时△PMN 的周长最小.由线段垂直平分线性质可得出△PMN 的周长就是P 3P 3的长,∵OP=3,∴OP 3=OP 3=OP=3.又∵P 3P 3=3,,∴OP 3=OP 3=P 3P 3,∴△OP 3P 3是等边三角形, ∴∠P 3OP 3=60°,即3(∠AOP+∠BOP )=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B .考点:3.线段垂直平分线性质;3.轴对称作图.6.中国科学院微电子研究所微电子设备与集成技术领域的专家殷华湘说,他的团队已经研发出3纳米(1米910=纳米)晶体管.将3纳米换算成米用科学记数法表示为( )A .9310-⨯米B .80.310-⨯米C .9310⨯米D .10310-⨯米【答案】A【分析】本题根据科学记数法进行计算即可.【详解】因为科学记数法的标准形式是10(1||10)n a a ⨯≤< ,因此3纳米=9310-⨯.故答案选A .【点睛】本题主要考查了科学记数法,熟练掌握科学记数法是解题的关键.7.下列式子是分式的是( )A .2xB .2xC .x πD .2x y + 【答案】B【解析】解:A 、C 、D 是整式,B 是分式.故选B .8.如图,A B D ,,在同一直线上,ABC ∆≌EBD ∆,2EC =,8AD =,则∆ECD S 的值为( )A .1B .2C .3D .5【答案】C 【分析】设BD=x ,根据全等的性质得到BC=x,故BE=AB=x+2,再根据8AD =得到方程即可求解.【详解】设BD=x∵ABC ∆≌EBD ∆∴BD=BC=x∴BE=AB=x+2,∵8AD =∴AB+BD=8,即x+2+x=8解得x=3∴∆ECD S =12EC×BD=12×2×3=3 故选C .【点睛】此题主要考查全等的性质,解题的关键是熟知三角形的性质及三角形的面积公式.9.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( )A .40,37B .40,39C .39,40D .40,38【答案】B【分析】根据众数和中位数的概念求解可得.【详解】将数据重新排列为37,37,38,39,40,40,40所以这组数据的众数为40,中位数为39,故选B .【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.下列哪个点在第四象限( )A .(1,2)B .(1,2)-C .(2,1)-D .(2,1)-- 【答案】C【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答即可.【详解】因为第四象限内的点横坐标为正,纵坐标为负,各选项只有C 符合条件,故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题11.比较大小:321-__________5 【答案】<【分析】先确定32的大小,再计算321-的大小,即可与5比较.【详解】∵5<32<6,∴4<321-<5,∴321-<5,故答案为:<.【点睛】此题考查实数的大小比较,确定无理数的大小是解题的关键.12.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是______.【答案】三角形具有稳定性【分析】三角形具有稳定性,其它多边形具有不稳定性,故需在门上钉上一条斜拉的木条.【详解】解:为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是:三角形具有稳定性 故答案为:三角形具有稳定性.【点睛】此题考查的是三角形具有稳定性的应用,掌握三角形具有稳定性,其它多边形具有不稳定性是解决此题的关键.13.若n 边形的每一个外角都是72°,则边数n 为_____.【答案】5【解析】试题分析:n 边形的每一个外角都是72°,由多边形外角和是360°,可求得多边形的边数是5. 14.已知一个三角形的两边长分别为2和5,第三边x 的取值范围为______.【答案】3x 7<<.【分析】根据三角形三边关系两边之和大于第三边,两边之差小于第三边求解即可.【详解】∵一个三角形的两边长分别为2和5,∴第三边x 的范围为:5252x -<<+,即:37x <<.所以答案为37x <<.【点睛】本题主要考查了三角形三边关系,熟练掌握相关概念是解题关键.15.若最简二次根式aa =_____.【答案】-1【分析】根据同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式,可得方程组,根据解方程组,可得答案.【详解】解:由最简二次根式a322534a a b a +=⎧⎨+=+⎩ ,解得173a b =-⎧⎪⎨=⎪⎩, 故答案为:﹣1.【点睛】本题考查了最简二次根式、同类二次根式,掌握根据最简二次根式、同类二次根式的定义列出方程是解题的关键.16.如果2(2)(3)x x mx m -+-的乘积中不含2x 项,则m 为__________. 【答案】23【分析】把式子展开,找到x 2项的系数和,令其为1,可求出m 的值.【详解】()()223x x mx m -+- =x 3+3mx 2-mx-2x 2-6mx+2m,又∵()()223x x mx m -+-的乘积中不含2x 项, ∴3m-2=1,∴m=23. 【点睛】考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为1. 17.已知32x -与5x 互为相反数,则x =__________【答案】-8【分析】由题意根据相反数的性质即互为相反数的两数之和为0,进行分析计算即可.【详解】解:∵32x -与5x 互为相反数,∴3250x x -+=,解得8x =-.故答案为:-8.【点睛】本题考查相反数的性质,熟练掌握相反数的性质即互为相反数的两数之和为0进行分析是解题的关键.三、解答题18.甲、乙两人分别从距离目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.【答案】甲的速度为4.5千米/小时,乙的速度为1千米/小时【分析】设甲的速度为3x 千米/小时,则乙的速度为4x 千米/小时,根据时间=路程÷速度,结合甲比乙提前20分钟到达目的地即可得出关于x 的分式方程,解之即可求出x 的值,检验后将其代入3x 、4x 中即可得出结论.【详解】解:设甲的速度为3x 千米/小时,则乙的速度为4x 千米/小时, 根据题意得:104x ﹣63x =13, 解得:x =1.5,经检验,x =1.5是原分式方程的解,∴3x =4.5,4x =1.答:甲的速度为4.5千米/小时,乙的速度为1千米/小时.【点睛】本题考查了分式方程的应用,解决本题的关键是找到题目中蕴含的等量关系,在解方程后注意检验。
〖汇总3套试卷〗邢台市2020年八年级上学期期末综合测试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若方程mx+ny=6的两个解是11xy=⎧⎨=⎩,21xy=⎧⎨=-⎩,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4【答案】A【分析】根据方程解的定义,将x与y的两对值代入方程得到关于m与n的方程组,解方程组即可.【详解】解:将11xy=⎧⎨=⎩,21xy=⎧⎨=-⎩分别代入mx+ny=6中,得:626m nm n+=⎧⎨-=⎩①②,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A.【点睛】本题考查了二元一次方程解的定义和二元一次方程组的解法,根据二元一次方程解的定义得到关于m、n 的方程组是解题关键.2.(a-)A.1-BC.D.【答案】C【解析】先根据二次根式有意义有条件得出1-a>0,再由此利用二次根式的性质化简得出答案.【详解】11a-有意义,10a∴->,10a∴-<,(a ∴-==故选C.【点睛】考查了二次根式的性质与化简,正确化简二次根式是解题关键.3.若分式211xx-+=0,则x的值是()A.﹣1 B.0 C.1 D.﹣2【答案】C【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【详解】解:由题意得:x2﹣1=1且x+1≠1,解得:x=1,故选:C.【点睛】此题考查分式的值为零的问题,若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.4.若分式22943xx x--+的值为零,则x的值为( )A.3 B.3或-3 C.-3 D.0 【答案】C【分析】分式值为零的条件:分子为0且分母不为0时,分式值为零.【详解】解:由题意得2290430xx x⎧-=⎨-+≠⎩,解得31 3xx x=±⎧⎨≠≠⎩,,则x=-3故选C.【点睛】本题考查分式值为零的条件,本题属于基础应用题,只需学生熟练掌握分式值为零的条件,即可完成.5.一辆客车从霍山开往合肥,设客车出发th后与合肥的距离为skm,则下列图象中能大致反映s与t之间函数关系的是()A.B.C.D.【答案】B【解析】分析:因为匀速行驶,图象为线段,时间和路程是正数,客车从霍山出发开往合肥,客车与合肥的距离越来越近,路程由大变小,由此选择合理的答案.详解:客车是匀速行驶的,图象为线段,s表示客车从霍山出发后与合肥的距离,s会逐渐减小为0;A、C、D都不符.故选B.点睛:本题主要考查了函数图象,解题时应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.6.下列函数中,y随x的增大而减小的函数是()A .21y x =-B .52y x =+C .3y x =-D .53y x =-【答案】D 【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A 、∵k=2>0,∴y 随x 的增大而增大,故本选项错误;B 、∵k=5>0,∴y 随x 的增大而增大,故本选项错误;C 、∵k=1>0,∴y 随x 的增大而增大,故本选项错误;D 、∵k=-3<0,∴y 随x 的增大而减小,故本选项正确;故选D .【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小是解答此题的关键.7.要使分式1x x -有意义,则x 的取值范围是 ( ) A .x≠1B .x >1C .x <1D .x≠1- 【答案】A【分析】根据分式有意义,分母不等于0列不等式求解即可.【详解】由题意得,x-1≠0,解得x ≠1.故答案为:A .【点睛】本题考查了分式有意义的条件:分式有意义⇔分母不为零,比较简单.8.已知一组数据为2,3,5,7,8,则这组数据的方差为( )A .3B .4.5C .5.2D .6 【答案】C【分析】先求出这组数据的平均数,再根据方差公式分别进行计算即可.【详解】解:这组数据的平均数是:(1+3+5+7+8)÷5=5, 则方差=15[(1﹣5)1+(3﹣5)1+(5﹣5)1+(7﹣5)1+(8﹣5)1]=5.1. 故选C .【点睛】此题考查方差,掌握方差公式是解题关键.9.已知关于x 的分式方程3111m x x +=--的解是非负数,则m 的取值范围是( ) A .2m >B .2m ≥C .2m ≥且3m ≠D .2m >且3m ≠ 【答案】C【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m 的值,得到答案.【详解】解:去分母得,m-1=x-1,解得x=m-2,由题意得,m-2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠1,所以m的取值范围是m≥2且m≠1.故选C.【点睛】本题考查的是分式方程的解法和一元一次不等式的解法,理解分式方程的增根的判断方法是解题的关键.10.等边三角形的两个内角的平分线所夹的钝角的度数为()A.60︒B.80︒C.100︒D.120︒【答案】D【分析】画出图形,根据内角平分线的定义求出∠OBC和∠OCB的度数,再根据三角形的内角和定理求出∠BOC的度数.【详解】如图:∵∠ABC=∠ACB=60︒,BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30︒,∴在△OBC中,∠BOC=180︒−30︒−30︒=120︒.故选D.【点睛】本题考查了等边三角形的性质,知道等边三角形的每个内角是60度是解题的关键.二、填空题11.金秋十月,丹桂飘香,重庆双福育才中学迎来了首届行知创新科技大赛,初二年级某班共有18人报名参加航海组,航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于3人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6114元,则其中购买无人机模型的费用是__________.【答案】3300元【分析】设无人机组有x 个同学,航空组有y 个同学,根据人数为18列出二元一次方程,根据航空组的同学不少于3人但不超过9人,得到x,y 的解,再代入模型费用进行验证即可求解.【详解】设无人机组有x 个同学,航空组有y 个同学,依题意得x+2x-3+y=18解得x=213y - ∵航空组的同学不少于3人但不超过9人,x,y 为正整数,故方程的解为63x y =⎧⎨=⎩,56x y =⎧⎨=⎩,49x y =⎧⎨=⎩设为无人机组的每位同学购买a 个无人机模型,当63x y =⎧⎨=⎩时,依题意得6a ×165+2×9×75+3×3×98=6114 解得a=647165,不符合题意; 当63x y =⎧⎨=⎩时,依题意得5a ×165+2×7×75+6×3×98=6114 解得a=4,符合题意,故购买无人机模型的费用是3300元;当49x y =⎧⎨=⎩时,依题意得4a ×165+2×5×75+9×3×98=6114 解得a=453110,不符合题意; 综上,答案为3300元.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意列出方程,再分类讨论进行求解.12.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”)【答案】y 轴【解析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x 轴,两点到y 轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y 轴对称,故答案为:y 轴.【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x 轴对称;横坐标互为相反数,纵坐标相等的两点关于y 轴对称”是解题的关键.13.如果一粒芝麻约有0.000002千克,那么10粒芝麻用科学记数法表示为_______千克.【答案】2×10-1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000002×10=0.000020.00002用科学记数法表示为 2×10-1千克,故答案为:2×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =_____度.【答案】1【分析】根据三角形全等的判定和性质,先证△ADC ≌△BDF ,可得BD=AD ,可求∠ABC=∠BAD=1°.【详解】∵AD ⊥BC 于D ,BE ⊥AC 于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE (对顶角相等)∴∠EAF=∠DBF ,在Rt △ADC 和Rt △BDF 中,CAD FBD BDF ADC BF AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△BDF (AAS ),∴BD=AD ,即∠ABC=∠BAD=1°.故答案为1.【点睛】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.15.如果关于x的不等式1532223xxxx a+⎧-⎪⎪⎨+⎪+⎪⎩><只有4个整数解,那么a的取值范围是________________________。
河北省邢台市八年级数学上学期期末试题(扫描版)

数学试题参考答案一、选择题(每小题3分,共42分)1-5 C C A A D 6-10 C A C D C 11-14 A A B B二、填空题(每小题3分,共12分)15.7。
90 16.a 17.3418.两边及夹角对应相等的两个三角形全等,全等三角形对应边相等.三、解答题(共66分)19.解:∵A,B两点表示的数分别为1,2∴C点所表示的数是x=1-(2-1)=2-2。
..。
.。
....。
..。
.。
5分∴BC=2-(2-2)=22-2 。
.。
.。
.。
....。
....。
.。
10分20.(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°, ∴∠BAC=180°-30°-30°=120°。
.。
.。
.。
.。
.。
.。
.。
2分∵∠DAB=45°,∴∠DAC=∠BAC-∠DAB=120°-45°=75°。
.。
.。
.。
.。
.。
.。
5分(2)证明:∵∠DAB=45°∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC .。
.。
..。
(3)∴DC=AC,∴DC=AB. ....。
.。
..。
.。
..。
..5分21.(1)③ .。
.......。
..。
.。
4分(2)623243⨯-÷=24263⨯-3=2188-= 6222-= 42 ..。
..。
.。
.。
...。
.。
6分22.解:(1)如图(1),设CE=x ,则BE=8-x ;由题意得:AE=BE=8-x .。
.。
.。
....2分由勾股定理得:x 2+62=(8-x)2 .。
..。
.。
.。
..。
....5分解得:x=74 即CE 的长为:74 。
.。
.。
.。
..。
...。
.......。
.。
.6分(2)如图(2),∵点B′落在AC 的中点∴CB′=12AC=3;设CE=x 则EB ′=EB=8-x .。
河北省邢台市2020-2021学年八年级上学期期末数学试题

24.已知 .
求:(1) 的值;
(2)代数式 的值.
25.已知:直线 ,点 , 分别是直线 , 上任意两点,在直线 上取一点 ,使 ,连接 ,在直线 上任取一点 ,作 , 交直线 于点 .
(1)如图1,若点 是线段 上任意一点, 交 于 ,求证: ;
(2)如图2,点 在线段 的延长线上时, 与 互为补角,若 ,请判断线段 与 的数量关系,并说明理由.
参考答案
1.D
【解析】
【分析】
先化简 ,进而判断即可.
【详解】
,
故此数为无理数,
故选:D.
【点睛】
本题主要考查无理数的定义和二次根式的化简,正确将二次根式化简得出是解题关键.
2.B
【分析】
把命题的题设和结论互换即可得到逆命题.
【详解】
命题“对顶角相等”的逆命题是“如果两个角相等,那么它们是对顶角”,
13.C
【分析】
依题意分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.
【详解】
分别用2x和2y去代换原分式中的x和y,
得 = = = ,
故选:C.
【点睛】
本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.
故选C.
点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.
12.B
【分析】
根据O为线段AB的中点,AB=4cm,得到AO=BO=2cm,由P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cm,得到OP2=2cm,推出OP2= AB,根据直角三角形的判定即可得到结论.
(汇总3份试卷)2020年邢台市八年级上学期期末达标检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知3AB =,5BC =,6AF =,要在长方体上系一根绳子连接AG ,绳子与DE 交于点P ,当所用绳子最短时,AG 的长为( )A .8B .34C .10D .254【答案】C 【分析】将长方体的侧面展开图画出来,然后利用两点之间线段最短即可确定最短距离,再利用勾股定理即可求出最短距离.【详解】将长方体的侧面展开,如图,此时AG 最短由题意可知5,3,6AD BC DC AB CG AF ======∴8AC AD DC =+=90ACG ∠=︒∴22228610AG AC CG =+=+=故选:C .【点睛】本题主要考查长方体的侧面展开图和勾股定理,掌握勾股定理是解题的关键.2.下列多项式① x²+xy -y² ② -x²+2xy-y² ③ xy+x²+y² ④1-x+14x 其中能用完全平方公式分解因式的是( )A .①②B .①③C .①④D .②④ 【答案】D【解析】①③均不能用完全平方公式分解;②-x 2+2xy -y 2=-(x 2-2xy +y 2)=-(x -y)2,能用完全平方公式分解,正确;④1-x +24x =14(x 2-4x +4)=14(x -2)2,能用完全平方公式分解. 故选D.3.如图,已知线段20AB =米.MA AB ⊥于点A ,6MA =米,射线BD AB ⊥于B ,P 点从B 点向A 运动,每秒走1米.Q 点从B 点向D 运动,每秒走3米.P 、Q 同时从B 出发,则出发x 秒后,在线段MA 上有一点C ,使CAP 与PBQ △全等,则x 的值为( )A .10B .5或10C .5D .6或10【答案】C 【分析】分两种情况考虑:当△APC ≌△BQP 时与当△APC ≌△BPQ 时,根据全等三角形的性质即可确定出时间.【详解】当△APC ≌△BQP 时,AP=BQ ,即20-x=3x ,解得:x=5;当△APC ≌△BPQ 时,AP=BP=12AB=10米, 此时所用时间x 为10秒,AC=BQ=30米,不合题意,舍去;综上,出发5秒后,在线段MA 上有一点C ,使△CAP 与△PBQ 全等.故选:C .【点睛】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.4.如图,在平面直角坐标系中,直线l 1:3y x 与直线l 2:y mx n =+交于点A(1-,b),则关于x 、y 的方程组3y x y mx n =+⎧⎨=+⎩的解为( )A .21x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =-⎧⎨=⎩D .12x y =-⎧⎨=-⎩ 【答案】C【解析】试题解析:∵直线l 1:y=x+3与直线l 2:y=mx+n 交于点A (-1,b ),∴当x=-1时,b=-1+3=2,∴点A 的坐标为(-1,2),∴关于x 、y 的方程组3{y x y mx n ++==的解是1{2x y -==.故选C .【点睛】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.5.某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x 本素描本,列方程正确的是( ) A .120240420x x -=+ B .240120420x x -=+ C .120240420x x -=- D .240120420x x -=- 【答案】A 【分析】根据题意可知第二次买了(x +20)本素描本,然后根据“第二次购买比第一次购买每本优惠4元”列出分式方程即可.【详解】解:由题意可知:120240420x x -=+ 故选A .【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.6.如图,在菱形纸片ABCD 中,60A ∠=︒,点E 是边BC 上的一点,将纸片沿DE 折叠,点C 落在C '处,DC '恰好经过AB 的中点P ,则DEC ∠的度数是( )A .75︒B .60︒C .45︒D .78︒【答案】A 【分析】连接BD ,由菱形的性质及∠A =60°,得到三角形ABD 为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到∠ADP =30°,∠ADC =120°,∠C =60°,进而求出∠PDC =90°,由折叠的性质得到∠CDE =∠PDE =45°,利用三角形的内角和定理即可求出所求角的度数.【详解】解:连接BD ,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°−(∠CDE+∠C)=180°−(45°+60°)=75°.故选:A.【点睛】本题考查了折叠问题,菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.7.下面的图形中对称轴最多的是( )A.B.C.D.【答案】B【分析】分别得出各选项对称轴的条数,进而得出答案.【详解】A、有1条对称轴;B、有4条对称轴;C、有1条对称轴;D、有2条对称轴;综上可得:对称轴最多的是选项B.故选:B.【点睛】本题主要考查了轴对称变换,正确得出每个图形的对称轴是解题关键.8.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 2【答案】B 【解析】试题分析:A 、根据合并同类项计算,原式=22x ;B 、同底数幂的乘法,底数不变,指数相加,则计算正确;C 、幂的乘方法则,底数不变,指数相乘,原式=168x ;D 、根据平方差公式进行计算,原式=22(3)x y -=229x y -.考点:(1)同底数幂的计算;(2)平方差公式9.点M (1,2)关于x 轴对称的点的坐标为( )A .(1,-2)B .(-1,2)C .(-1,-2)D .(2,-1)【答案】A【分析】利用关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ),进而求出即可.【详解】点M (1,2)关于x 轴对称的点的坐标为:(1,-2).故选:A .【点睛】此题考查关于x 轴对称的性质,正确把握横纵坐标的关系是解题关键.10.在平面直角坐标系中,若将点()1,2A 的横坐标乘以1-,纵坐标不变,可得到点'A ,则点A 和点'A 的关系是( )A .关于x 轴对称B .关于y 轴对称C .将点A 向y 轴负方向平移一个单位得到点'AD .将点A 向x 轴负方向平移一个单位得到点'A【答案】B【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点是(-x ,y ),据此解答本题即可.【详解】解:∵在直角坐标系中()1,2A 的横坐标乘以1-,纵坐标不变,∴A '的坐标是(-1,2),∴A 和点A '关于y 轴对称;故选:B .【点睛】本题考查的是平面直角坐标系中关于坐标轴对称的两点坐标之间的关系:关于纵坐标对称,则纵坐标不变,横坐标互为相反数.二、填空题11.(34x 2y ﹣13xy 212xy +)÷112xy =_____. 【答案】9x ﹣4y+1【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:原式=22311111412312212x y xy xy xy xy xy ÷-÷+÷ =9x ﹣4y+1.故答案为:9x ﹣4y+1.【点睛】本题考查了整式的除法运算,解题关键是正确掌握相关运算法则.12.如图,小颖同学折叠一个直角三角形的纸片,使A 与B 重合,折痕为DE ,若已知8AC cm =,6BC cm =,则CE 的长为________.【答案】74【分析】连接BE,根据线段垂直平分线性质可得BE =AE ,再由勾股定理可得CB²+CE²=BE².【详解】解:连接BE由折叠可知,DE 是AB 的垂直平分线∴BE =AE设CE 为x ,则BE =AE =8-x在Rt △BCE 中,由勾股定理,得CB²+CE²=BE²∴6²+x²=(8-x)²解得74x =∴CE=74【点睛】考核知识点:勾股定理.根据折叠的性质,把问题转化为利用勾股定理来解决.13.若一次函数2y x b =+(b 为常数)的图象经过点(b ,9),则b =____.【答案】1【分析】把点(b ,9)代入函数解析式,即可求解.【详解】∵一次函数2y x b =+(b 为常数)的图象经过点(b ,9),∴92b b =+,解得:b=1,故答案是:1.【点睛】本题主要考查一次函数图象上的点的坐标特征,掌握待定系数法,是解题的关键.14.如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是_______.(只需填一个即可)【答案】∠A=∠F (答案不唯一)【详解】要判定△ABC ≌△FDE ,已知AC=FE ,AD=BF ,则AB=CF ,具备了两组边对应相等,故添加夹角∠A=∠F ,利用SAS 可证全等;或添加AC ∥EF 得夹角∠A=∠F ,利用SAS 可证全等;或添加BC=DE ,利用SSS 可证全等.15.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3…分别在直线y =kx+b(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B 3的坐标是_____,点B n 的坐标是_____.【答案】 (7,4 ) B n (2n -1,2n-1)【详解】解:已知B 1的坐标为(1,1),点B 2的坐标为(3,2),可得正方形A 1B 1C 1O 1边长为1,正方形A 2B 2C 2C 1边长为2,所以A 1的坐标是(0,1),A 2的坐标是(1,2),用待定系数法求得直线A 1A 2解析式为y=x+1. 已知点B 1的坐标为(1,1),点B 2的坐标为(3,2),可得点B 3的坐标为(7,4),所以B n 的横坐标是:2n -1,纵坐标是:2n-1.即可得B n 的坐标是(2n -1,2n-1).故答案为: (7,4 );B n (2n -1,2n-1)【点睛】本题主要考查了一次函数图象上点的坐标性质和坐标的变化规律,正确得到点的坐标的规律是解题的关键.16.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:m )这六次成绩的平均数为7.7m ,方差为160.如果李阳再跳一次,成绩为7.7m .则李阳这7次跳远成绩的方差_____(填“变大”、“不变”或“变小”).【答案】变小【分析】根据平均数的求法121()n x x x x n =+++ 先求出这组数据的平均数,再根据方差公式2222121[()()()]n s x x x x x x n =-+-++- 求出这组数据的方差,然后进行比较即可求出答案.【详解】解:∵李阳再跳一次,成绩为7.7m ,∴这组数据的平均数是7.767.77⨯+=7.7, ∴这7次跳远成绩的方差是:S 2=17[(7.5﹣7.7)2+(7.6﹣7.7)2+3×(7.7﹣7.7)2+(7.8﹣7.7)2+(7.9﹣7.7)2]=170<160, ∴方差变小;故答案为:变小.【点睛】本题主要考查平均数和方差,掌握平均数和方差的求法是解题的关键.17.如图,在平面直角坐标系中,(0,3)B ,(4,1)A ,点C 是第一象限内的点,且ABC 是以AB 为直角边的等腰直角三角形,则点C 的坐标为__________.【答案】(6,5)或(2,7)【解析】设C 的点坐标为(,)a b ,先根据题中条件画出两种情况的图形(见解析),再根据等腰直角三角形的性质、三角形全等的判定定理与性质、点坐标的定义分别求解即可.【详解】设C 的点坐标为(,)a b由题意,分以下两种情况:(1)如图1,ABC ∆是等腰直角三角形,90,CAB AB AC ∠=︒=过点A 作AD y ⊥轴,过点C 作x 轴的垂线,交DA 的延长线于点E则,⊥⊥AD BD AE CE90BAD ABD BAD CAE ∴∠+∠=∠+∠=︒ABD CAE ∴∠=∠又90ADB CEA ∠=∠=︒()ADB CEA AAS ∴∆≅∆,BD AE AD CE ∴==(0,3),(4,1)B A4,3,1,312AD OB OD BD OB OD ∴====-=-=426415a DE AD AE AD BDb CE OD AD OD ==+=+=+=⎧∴⎨=+=+=+=⎩ 则点C 的坐标为(6,5)(2)如图2,ABC ∆是等腰直角三角形,90,CBA AB BC ∠=︒=过点A 作AD y ⊥轴,过点C 作CE y ⊥轴则,AD BD CE BE ⊥⊥同理可证:ADB BEC ∆≅∆,BD CE AD BE ∴==(0,3),(4,1)B A4,3,1,312AD OB OD BD OB OD ∴====-=-=2347a CE BD b OB BE OB AD ===⎧∴⎨=+=+=+=⎩则点C 的坐标为(2,7)综上,点C 的坐标为(6,5)或(2,7)故答案为:(6,5)或(2,7).【点睛】本题考查了三角形全等的判定定理与性质、等腰直角三角形的性质、点的坐标等知识点,依据题意,正确分两种情况并画出图形是解题关键.三、解答题18.先化简,再求值.()()()()225x y x y x y x x y ++-+--,其中2,3x y ==-.【答案】9xy ,-54【分析】先去括号,再合并同类项化简原式,代入x ,y 的值求解即可.【详解】原式 222224455x xy y x y x xy =+++--+9xy =当x =2,y =-3时,原式=9xy =9×2×(-3)=-54【点睛】本题考查了整式的化简运算,先通过合并同类项化简再代入求值是解题的关键.19.如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于点E ,点F 是AC 上的动点,BD=DF(1)求证:BE=FC ;(2)若∠B=30°,DC=2,此时23AC =ACB 的面积.【答案】(1)证明见解析;(2)3【分析】(1)根据角平分线的性质可得DC=DE ,利用HL 可证明△DCF ≌△DEB ,可得BE=FC ;(2)根据含30°角的直角三角形的性质可求出BD 的长,即可求出BC 的长,利用三角形面积公式即可得答案.【详解】(1)∵AD 平分,,90,BAC DE AB C DC AC ∠⊥∠=⊥,∴90,C DEB DC DE ∠=∠=︒=,在Rt DCF △和Rt DEB 中,DC DE DF DB=⎧⎨=⎩, ∴DCF DEB ≌(HL ),∴BE=FC . (2)AD 平分∠BAC ,DE ⊥AB ,∠C=90°,∴2DC DE ==,∵∠B=30°,DE ⊥AB ,∴BD=2DE=4,∴BC=CD+BD=6,∵AC=23, ∴ACB △的面积116236322AC BC =⨯⨯=⨯⨯=. 【点睛】本题考查全等三角形的判定与性质、角平分线的性质及含30°角的直角三角形的性质,角平分线上的点到角两边的距离相等;30°角所对的直角边等于斜边的一半;熟练掌握相关判定定理及性质是解题关键. 20.(尺规作图,保留作图痕迹,不写作法)如图,在△ABC 中,作∠ABC 的平分线BD ,交AC 于D ,作线段BD 的垂直平分线EF ,分别交AB 于E ,BC 于F ,垂足为O ,连结DF .在所作图中,寻找一对全等三角形,并加以证明.【答案】作图见解析;△BOE ≌△BOF;证明见解析【分析】先根据题意作图,再利用三角形全等的判定定理AAS 判定△BOE ≌△BOF 全等即可.【详解】作图如下:△BOE ≌△BOF证明:∵BD 平分∠ABC,∴∠ABO=∠OBF∵EF⊥BD,∴∠BOE=∠BOF=90°,在△BOE 和△BOF 中,EOB FBO BO BOBOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△BOF(ASA )【点睛】本题不但考查了学生对常用的画图方法有所掌握,还要对全等三角形的判定方法能熟练运用.21.(阅读理解)利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式,我们把这样的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++2221111112422x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭ 2112524x ⎛⎫=+- ⎪⎝⎭ 1151152222x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭ (8)(3)x x =++(问题解决)根据以上材料,解答下列问题:(1)用多项式的配方法将多项式2310x x +-化成2()x m n ++的形式;(2)用多项式的配方法及平方差公式对多项式2310x x +-进行分解因式;(3)求证:不论x ,y 取任何实数,多项式222416x y x y +--+的值总为正数. 【答案】(1)234924x ⎛⎫+- ⎪⎝⎭,见解析;(2)()()52x x +-,见解析;(3)见解析 【分析】(1)根据题中给出的例题,利用完全平方公式进行配方即可;(2)根据题中给出的例题,利用完全平方公式进行配方后,再利用平方差公式进行因式分解即可; (3)利用配方法将多项式化成22(1)(2)11-+-+x y 后,再结合平方的非负性即可求证.【详解】解:(1) 2310x x +- 2223331022x x ⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭ 234924x ⎛⎫=+- ⎪⎝⎭ (2)由(1)得2310x x +- 234924x ⎛⎫=+- ⎪⎝⎭ 37372222x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭ (5)(2)x x =+-.(3)222416x y x y +--+ 2221441614x x y y =-++-++--22(1)(2)11x y =-+-+2(1)0x -≥,2(2)0y -≥22(1)(2)1111x y ∴-+-+≥,∴不论x ,y 取任何实数,多项式222416x y x y +--+的值总为正数.【点睛】本题考查了完全平方公式和公式法因式分解,解题的关键是读懂题中给出的例题,熟知完全平方公式和因式分解的方法.22.如图所示,在平面直角坐标系xOy 中,已知点(1,2)(3,1)(0,1),,---A B C(1)在图作出ABC 关于y 轴的称图形111A B C △(2)若将ABC 向右移2个单位得到A B C ''',则点A 的对应点A '的坐标是 .【答案】(1)作图见解析;(2) (1,2)【分析】(1)根据网格结构找出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1的位置,然后顺次连接即可; (2)根据网格结构找出点A 、B 、C 向右平移2个单位的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点A′的坐标.【详解】(1)△A 1B 1C 1如图所示;(2)△A′B′C′如图所示,A′(1,2);【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.等腰三角形ABC 中,AB AC =,60ACB ∠>︒,点D 为边AC 上一点,满足BD BC =,点E 与点B 位于直线AC 的同侧,ADE 是等边三角形,(1)①请在图中将图形补充完整:②若点D 与点E 关于直线AB 轴对称,ACB =∠______;(2)如图所示,若80ACB ∠=︒,用等式表示线段BA 、BD 、BE 之间的数量关系,并说明理由.【答案】(1)①画图见解析;②75°;(2)AB=BE+BD ,证明见解析.【分析】(1)①根据题意直接画出图形;②根据对称性判断出AB ⊥DE ,再判断出∠DAE=60°,可以求出∠BAC ,即可得出结论;(2)先判断出∠ADF=∠EDB ,进而判断出△BDE ≌△FDA ,即可得出结论.【详解】解:(1)①根据题意,补全图形如图所示,②当点D 与点E 关于直线AB 轴对称时,∴AB ⊥DE ,∵△ADE 是等边三角形,AB ⊥DE ,∴∠DAE=60°,AD=AE,∴∠BAC=12∠DAE=30°,∵AB=AC,∴∠ACB=12(180°-∠BAC)=75°,故答案为75°;(2)AB=BE+BD,证明如下:如图,在BA上取一点F,使BF=BD,DE与AB的交于H,∵△ADE是等边三角形,∴AD=ED,∠EAD=∠AED=60°,在△ABC中,AB=AC,∠ACB=80°,∴∠ABC=∠ACB=80°,∴∠BAC=180°-∠ACB-∠ABC=20°,∴∠BAE=∠DAE-∠BAC=40°,在△BCD中,BC=BD,∴∠BDC=∠ACB=80°,∴∠DBC=180°-∠ACB-∠BDC=20°,∴∠ABD=∠ABC-∠DBC=60°,∵BF=BD,∴△BDF是等边三角形,∵∠AED=∠ABD=60°,∠AHE=∠BHD,∴∠BDE=∠BAE=40°,∴∠BDF=60°,BD=FD=BF,∴∠ADF=180°-∠BDC-∠BDF=40°=∠ADF,又∵DE=AD ,∴△BDE ≌△FDA (SAS ),∴FA=BE ,∴BA=BF+FA=BD+BE .【点睛】本题主要考查了轴对称的性质,三角形的内角和定理,等腰三角形的判定和性质,全等三角形的判定和性质,正确做出辅助线,构造出全等三角形是解本题的关键.24.化简①)【答案】(1)-(2)1.【分析】(1)先利用二次根式的乘法法则运算,然后合并即可;(2)利用平方差公式计算.【详解】解:(1)原式==-(2)原式=1.【点睛】本题考查二次根式的混合运算,掌握运算法则正确计算是解题关键.25(1)求+a b 的值;(2)求20207x y +的值.【答案】 (1)2020;(2)15.【分析】(1)根据二次根式有意义的条件可得关于a 、b 的不等式组,解不等式组即可求得答案;(2)把a+b 的值代入所给式子,继而根据非负数的性质可得关于x 、y 的方程组,解方程组求解x 、y 的值代入所求式子进行计算即可.【详解】(1)由题意2020020200a b a b +-≥⎧⎨--≥⎩①②,由①得:a+b ≥2020,由②得:a+b ≤2020,所以a+b=2020;(2)∵a+b=2020,=变为0=,00≥≥,∴230240x y x y +-=⎧⎨--=⎩, ∴21x y =⎧⎨=-⎩, ∴20207x y +=7×2+(-1)2020=14+1=1.【点睛】本题考查了二次根式有意义的条件,二次根式的非负性,熟练掌握二次根式的相关知识是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运算结果为x-1的是()A.11x-B.211x xx x-⋅+C.111xx x+÷-D.2211x xx+++【答案】B【分析】根据分式的基本性质和运算法则分别计算即可判断.【详解】A.11x-=,故此选项错误;B.原式=(1)(1)11x x xxx x+-⋅=-+,故此选项g正确;C.原式=211(1)x xxx x+-⋅-=,故此选项错误;D.原式=2(1)11xxx+=++,故此选项错误.故答案选B.【点睛】本题主要考查分式的混合运算,熟练掌握分式的运算顺序和运算法则是解题的关键.2.下列命题中不正确的是()A.全等三角形的对应边相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等【答案】D【解析】A.全等三角形的对应边相等,正确,故本选项错误;B.全等三角形的面积相等,正确,故本选项错误;C.全等三角形的周长相等,正确,故本选项错误;D.周长相等的两个三角形全等,错误,故本选项正确,故选D.3.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A.1个B.2个C.3个D.4个【答案】B【解析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”解答即可.【详解】如图,满足条件的所有点P的个数为1.故选B.【点睛】本题考查了等腰三角形的判定与性质,熟练掌握等腰三角形的判定和性质定理是解题的关键. 4.一次函数()21y k x k =-+的图象经过点()0,4,且y 随x 的增大而减小,则k 的值是( ). A .2B .2±C .0D .2-【答案】D 【分析】将点代入一次函数中,可得24k =,y 随x 的增大而减小,可得-10k <,计算求解即可.【详解】∵ 一次函数()21y k x k =-+的图象经过点()0,4, ∴ 24k =,解得:=2k ±,∵ y 随x 的增大而减小,∴-1k <0,解得:k <1,∴=-2k ,故选:D .【点睛】本题考查了一次函数图象与系数的关系,明确:①k >0,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.5.已知等腰三角形一腰上的高与另一腰的夹角是40º,则底角是( )A .65ºB .50ºC .25ºD .65º或25º【答案】D【分析】从锐角三角形和钝角三角形两种情况,利用三角形内角和定理即可求出它的底角的度数.【详解】在三角形ABC 中,设AB=AC BD ⊥AC 于D ,①若是锐角三角形,如图:∠A=90°-40°=50°,底角=(180°-50°)÷2=65°;②若三角形是钝角三角形,如图:∠A=40°+90°=130°,此时底角=(180°-130°)÷2=25°,所以等腰三角形底角的度数是65°或者25°.故选:D .【点睛】本题主要考查了等腰三角形的性质和三角形内角和定理,此题的关键是熟练掌握三角形内角和定理. 6.下列计算错误的是( )A .45535-=B .()()23231-+=C .236⨯=D .2733÷= 【答案】B【分析】根据二次根式的加减法对A 进行判断;根据平方差公式对B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】A 、45535-=,计算正确,不符合题意;B 、()()23231-+=-,计算错误,符合题意;C 、236⨯=,计算正确,不符合题意; D 、2733÷=,计算正确,不符合题意;故选:B .【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.7.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A 51B 51C 31D 31【答案】B 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则BC=BD+DC=51+. 【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB∴5BD AD ==在Rt △ADC 中,由勾股定理得:22DC 541AD AC =-=-=∴BC=BD+DC=51+故选B【点睛】 本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s (米)和所用时间t (分钟)的关系图.则下列说法中正确的是( ).①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A .①③④B .①②③C .①②④D .①②③④【答案】D 【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.9.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是( ).A.对应点所连线段都相等B.对应点所连线段被对称轴平分C.对应点连线与对称轴垂直D.对应点连线互相平行【答案】B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.【点睛】本题主要考查轴对称图形的性质,熟悉掌握性质是关键.10.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1 B.2C.3 D.4【答案】B【解析】分析:根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值. 解答:解:过点P 作PQ ⊥OM ,垂足为Q ,则PQ 为最短距离,∵OP 平分∠MON ,PA ⊥ON ,PQ ⊥OM ,∴PA=PQ=2,故选B .二、填空题11.点(3,2)P -关于x 轴对称点M 的坐标为_________.【答案】(-3,-2)【分析】根据平面直角坐标系中,两点关于x 轴对称,两点坐标的关系,即可求出答案.【详解】∵点(3,2)P -关于x 轴对称点是M ,∴点M 的坐标为(-3,-2),故答案是:(-3,-2).【点睛】本题主要考查平面直角坐标系中,两点关于x 轴对称,两点坐标的关系:横坐标相等,纵坐标互为相反数,理解并牢记两点坐标的关系是解题的关键.12.已知a m =2,a n =3,那么a 2m+n =________.【答案】12【分析】逆用同底数幂的乘法法则和幂的乘方法则计算即可.【详解】∵a m =2,a n =3,∴a 2m+n =a 2m ×a n =()2ma ×a n =4×3=12. 故答案为12.【点睛】本题考查了幂的乘方及同底数幂的乘法的逆运算,熟练掌握幂的乘方和同底数幂的乘法运算法则是解答本题的关键,即()()n nmn m m a a a ==,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.13.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______. 【答案】1【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n 边形,根据题意得,(n-2)•180°=72×360°, 解得:n=1.故答案为:1.【点睛】 本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.14.如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为_____.【答案】1; 【解析】分析:根据辅助线做法得出CF ⊥AB ,然后根据含有30°角的直角三角形得出AB 和BF 的长度,从而得出AF 的长度.详解:∵根据作图法则可得:CF ⊥AB , ∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8, ∵∠CFB=90°,∠B=10°, ∴BF=12BC=2, ∴AF=AB -BF=8-2=1.点睛:本题主要考查的是含有30°角的直角三角形的性质,属于基础题型.解题的关键就是根据作图法则得出直角三角形. 15.关于x 的分式方程223242mx x x x +=--+无解,则m 的值为_______. 【答案】1或6或4-【分析】方程两边都乘以()()22x x +-,把方程化为整式方程,再分两种情况讨论即可得到结论.【详解】解:223242mx x x x +=--+ ()()232222mx x x x x ∴+=-+-+ ()()2232x mx x ∴++=-()110,m x ∴-=-当1m =时,显然方程无解,又原方程的增根为:2,x =±当2x =时,15,m -=-4,m ∴=-当2x =-时,15,m -=6,m ∴=综上当1m =或4m =-或6m =时,原方程无解.故答案为:1或6或4-.【点睛】本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键.16.试写出一组勾股数___________________.【答案】3、4、1(答案不唯一).【详解】解:最常见的勾三股四弦五,勾股数为3,4,1.故答案为:3、4、1(答案不唯一).17.如图,直线y =2x ﹣1分别交x ,y 轴于点A ,B ,点C 在x 轴的正半轴,且∠ABC =45°,则直线BC 的函数表达式是_____.【答案】y =13x ﹣1 【分析】过A 作AF⊥AB 交BC 于F ,过F 作FE⊥x 轴于E ,判定△ABO≌△FAE(AAS ),即可得出OB , OA 得到点F 坐标,从而得到直线BC 的函数表达式.【详解】解:∵一次函数y =2x ﹣1的图象分别交x 、y 轴于点A 、B ,∴令x =0,得y =﹣1;令y =0,则x =12, ∴A (12,0),B (0,﹣1), ∴OA =12,OB =1, 如图,过A 作AF ⊥AB 交BC 于F ,过F 作FE ⊥x 轴于E ,∵∠ABC =45°,∴△ABF 是等腰直角三角形,∴AB =AF ,∵∠OAB+∠ABO =∠OAB+∠EAF =90°,∴∠ABO =∠EAF ,∴△ABO ≌△FAE (AAS ),∴AE =OB =1,EF =OA =12, ∴F (32,﹣12), 设直线BC 的函数表达式为:y =kx+b ,则31221k b b ⎧+=-⎪⎨⎪=-⎩, 解得131k b ⎧=⎪⎨⎪=-⎩,∴直线BC 的函数表达式为:y =13x ﹣1, 故答案为:y =13x ﹣1.【点睛】本题考查了一次函数图象与几何变换,待定系数法求函数的解析式,全等三角形的判定和性质,解题关键是正确的作出辅助线构造全等三角形.三、解答题18.已知1a b -=,223a b +=,求下列代数式的值:(1)ab ;(2)228a b --.【答案】(1)1;(258或58.【分析】(1)把1a b -=两边平方,展开,即可求出ab 的值;(2)先求出2()a b +的值,再开方求得a b +的值,再对原式分解因式,再整体代入求出即可.【详解】(1)∵1a b -=,223a b +=,∴2()1a b -=,∴2221a ab b -+=,∴2132ab -=-=-,∴1ab =;(2)∵1a b -=,1ab =,∴()2a b a b +=±+ ()24a b ab =±-+14=±+5=±228a b --()()8a b a b =+--58=±-故答案为:58-或58--.【点睛】本题考查了完全平方公式和平方差的应用,能灵活运用公式进行变形是解此题的关键.19.如图,在等腰直角三角形ABC 中,∠ACB=90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD=3,求BF 的长.【答案】BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .。
★试卷3套精选★邢台市2020届八年级上学期数学期末学业水平测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是( )A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E【答案】C【解析】根据∠1=∠2可利用等式的性质得到∠BAC=∠DAE,然后再根据所给的条件利用全等三角形的判定定理进行分析即可.【详解】解:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,A、添加AE=AC,可利用SAS定理判定△ABC≌△ADE,故此选项不合题意;B、添加∠B=∠D,可利用SAS定理判定△ABC≌△ADE,故此选项不合题意;C、添加BC=DE,不能判定△ABC≌△ADE,故此选项符合题意;D、添加∠C=∠E,可利用AAS定理判定△ABC≌△ADE,故此选项不合题意;故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有A.3种B.4种C.5种D.6种【答案】D【分析】设甲种笔记本购买了x本,乙种笔记本y本,由题意,得7x+5y≤1.【详解】解:∵x≥3,y≥3,∴当x=3,y=3时,7×3+5×3=36<5;当x=3,y=4时,7×3+5×4=41<1;当x=3,y=5时,7×3+5×5=46<1;当x=3,y=6时,7×3+5×6=51>1舍去;当x=4,y=3时,7×4+5×3=43<1;当x=4,y=4时,7×4+5×4=4<1;当x=4,y=5时,7×4+5×5=53>1舍去;当x=5,y=3时,7×5+5×3=1=1.综上所述,共有6种购买方案.故选D .3.下列各式中,从左到右的变形是因式分解的是( )A .()()2111x x x +-=-B .()24444x x x x -+=-+ C .()()23412x x x x +-=-- D .()()2422x x x -=+- 【答案】D【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【详解】解:A 、是整式的乘法,不是因式分解,故本选项不符合题意;B 、右边不是积的形式,所以不是因式分解,故本选项不符合题意;C 、是整式的乘法,不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】本题考查了因式分解的定义,能正确理解因式分解的定义是解此题的关键.4.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE 等于( )A .110︒B .115︒C .120︒D .125︒【答案】A 【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC ,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A .【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和. 5.如果把分式36a w b -中的a 、b 同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是( ) A .1B .12bC .abD .a 2 【答案】B【解析】根据分式的基本性质对选项逐一判断即可.【详解】解:如果把分式3a -w 6b中的a 、b 同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是:12b . 故选B .【点睛】本题考查了分式的基本性质:分式的分子与分母同时乘以或除以同一个不为零的数,分式的值不变. 6.已知x 2+16x +k 是完全平方式,则常数k 等于( )A .64B .48C .32D .16【答案】A【详解】∵x 2+16x +k 是完全平方式,∴对应的一元二次方程x 2+16x +k=1根的判别式△=1.∴△=162-4×1×k=1,解得k=2.故选A .也可配方求解:x 2+16x +k=(x 2+16x +2)-2+k= (x +8)2-2+k ,要使x 2+16x +k 为完全平方式,即要-2+k=1,即k=2.7.如图,在Rt ABC ∆中,90C ∠=︒,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当4AC =,2BC =时,则阴影部分的面积为( )A .4B .4πC .52πD .8【答案】A 【分析】先根据勾股定理求出AB ,然后根据S 阴影=S 半圆AC +S 半圆BC +S △ABC -S 半圆AB 计算即可.【详解】解:根据勾股定理可得2225AC BC +=∴S 阴影=S 半圆AC +S 半圆BC +S △ABC -S 半圆AB=22211112222222AC BC AB AC BC πππ⎛⎫⎛⎫⎛⎫++•- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=22214121125422222222πππ⎛⎫⎛⎫⎛⎫⨯⨯+⨯⨯+⨯⨯-⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =4故选A .【点睛】此题考查的是求不规则图形的面积,掌握用勾股定理解直角三角形、半圆的面积公式和三角形的面积公式是解决此题的关键.8.如图,三个正比例函数的图象分别对应表达式:将a ,b ,c 从小到大排列为( )①y=ax ;②y=bx ;③y=cxA .a <b <cB .a <c <bC .b <a <cD .c <b <a【答案】B 【分析】根据直线所过象限可得a <0,b >0,c >0,再根据直线陡的情况可判断出b >c ,进而得到答案.【详解】根据三个函数图象所在象限可得a <0,b >0,c >0,再根据直线越陡,|k|越大,则b >c .则a <c <b .故选:B .【点睛】此题主要考查了正比例函数图象,关键是掌握:当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小.同时注意直线越陡,则|k|越大9.已知当2x =时,分式2x a x b +-的值为0,当1x =时,分式2x a x b +-无意义,则a -b 的值为( ) A .4B .-4C .0D .14 【答案】B【分析】根据题意可得,当2x =时,分子0x a +=,当1x =时,分母20x b -=,从而可以求得a 、b 的值,本题得以解决.【详解】解:当2x =时,分式2x a x b+-的值为0,当1x =时,分式无意义,∴20210a b +=⎧⎨⨯-=⎩, 解得,22a b =-⎧⎨=⎩, 224a b ∴-=--=-,故选B .【点睛】本题考查分式的值为零的条件、分式有意义的条件,解答本题的关键是明确题意,求出a 、b 的值. 10.计算:2210021009999(-⨯⨯+= )A .0B .1C .1-D .39601 【答案】B【解析】直接利用完全平方公式分解因式得出即可.【详解】解:1002-2×100×99+992 =(100-99)2=1.故选:B.【点睛】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.二、填空题11.如图,在等腰三角形ABC 中,90ABC ∠=︒,D 为AC 边上中点,过D 点作DE DF ⊥,交AB 于E ,交BC 于F ,若9DEBF S =四边形,则AB 的长为_________.【答案】1【分析】连接BD ,利用ASA 证出△EDB ≌△FDC ,从而证出S △EDB =S △FDC ,从而求出S △DBC ,然后根据三角形的面积即可求出CD ,从而求出AC ,最后利用勾股定理即可求出结论.【详解】解:连接BD∵在等腰三角形ABC 中,90ABC ∠=︒,D 为AC 边上中点,∴AB=BC,BD=CD=AD,∠BDC=90°,∠EBD=145 2ABC∠=︒,∠C=45°∵DE DF⊥∴∠EDF=∠BDC=90°,∠EBD=∠C=45°∴∠EDB=∠FDC在△EDB和△FDC中EDB FDCBD CDEBD C∠=∠⎧⎪=⎨⎪∠=∠⎩∴△EDB≌△FDC∴S△EDB=S△FDC∴S△DBC= S△FDC+S△BDF= S△EDB+S△BDF=9DEBFS=四边形∴192•=CD BD∴CD2=18∴CD=32∴AC=2CD=62∴AB2+BC2=AC2∴2AB2=(62)2故答案为:1.【点睛】此题考查的是全等三角形的判定及性质、等腰三角形的性质和勾股定理,掌握全等三角形的判定及性质、等腰三角形的性质和勾股定理是解决此题的关键.12.如图,在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,垂足是D,若AB=8cm,则AD=__cm.【答案】2【分析】根据含30°角的直角三角形的性质可求出AC的长,由锐角互余的关系可得∠ACD=∠B=30°,再根据含30°角的直角三角形的性质求出AD的长即可.【详解】∵∠ACB=90°,∠B=30°,AB=8cm,∴AC=12AB=4,∵∠B+∠A=90°,∠A+∠ACD=90°,∴∠ACD=∠B=30°,∴AD=12AC=2. 故答案为2 【点睛】本题考查含30°角的直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半. 13.如果332y x x =-+--,那么y x =_______________________.【答案】19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x=3,∴y=﹣2,∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.14.如图,已知函数y 1=3x+b 和y 2=ax ﹣3的图象交于点P (﹣2,﹣5),则不等式3x+b >ax ﹣3的解集为_____.【答案】x >﹣2【分析】根据两函数的交点坐标,结合图象即可确定出所求不等式的解集.【详解】解:由题意及图象得:不等式3x+b >ax ﹣3的解集为x >﹣2,故答案为:x >﹣2【点睛】本题考查了一次函数与一元一次不等式,利用了数形结合的思想,灵活运用数形结合思想是解本题的关键. 15.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_______场.【答案】1【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=1(场).故答案为:1.【点睛】本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.16.把无理数11,5,﹣3表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是_____.111153【详解】解:由数轴知,被墨迹覆盖住的无理数在3到4之间,∵9<11<16, ∴11<4,∵4<5<9, ∴5,∵1<3<4,∴3,∴–2<3–1, 11 11.【点睛】1153的范围是解本题的关键. 17.关于x 的一次函数(2)21y k x k =+-+,其中k 为常数且2k ≠-.①当0k =时,此函数为正比例函数.②无论k 取何值,此函数图象必经过(2,5).③若函数图象经过()2,m a ,()23,2m a +-(m ,a 为常数),则83k =-. ④无论k 取何值,此函数图象都不可能同时经过第二、三、四象限.上述结论中正确的序号有________.【答案】②③④【分析】根据一次函数知识依次判断各项即可.【详解】①当k=0时,则21y x =+,为一次函数,故①错误;②整理得:=(2)21-++y x k x ,∴x=2时,y=5,∴此函数图象必经过(2,5),故②正确;③把()2,m a ,()23,2m a +-代入(2)21y k x k =+-+中,得:()22(2)212(2)321①②⎧=+-+⎪⎨-=++-+⎪⎩a k m k a k m k ,②-①得:23(2)-=+k , 解得:83k =-,故③正确;④当k+2<0时,即k <-2,则-2k+1>5,∴此函数图象都不可能同时经过第二、三、四象限,故④正确;故答案为:②③④.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数的性质定理是解决本题的关键.三、解答题 18.先化简,再求值:2212x x x +++÷211x x --﹣2x x +,其中x =(5﹣π)0+(﹣2)﹣1. 【答案】12x +,25【分析】先把分子分母因式分解和把除法运算化为乘法运算,约分后进行同分母的减法运算得到化简的结果,然后利用零指数幂和非整数指数的意义计算出x ,最后把x 的值代入计算即可.【详解】解:原式=()()()2112112 x x x x x x x+-•-++-+=122 x x x x+-++=12 x+,当x=111-=22时,原式=12=15+22.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.如图1,已知ED垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.(1)求证:∠AFE=∠CFD;(1)如图1.在△GMN中,P为MN上的任意一点.在GN边上求作点Q,使得∠GQM=∠PQN,保留作图痕迹,写出作法并作简要证明.【答案】(1)证明见解析;(1)答案见解析.【分析】(1)根据垂直平分线的性质证明三角形CFB是等腰三角形,进而证明∠AFE=∠CFD;(1)作点P关于GN的对称点P′,连接P′M交GN于点Q,结合(1)即可证明∠GQM=∠PQN.【详解】(1)∵ED垂直平分BC,∴FC=FB,∴△FCB是等腰三角形.∵FD⊥BC,由等腰三角形三线合一可知:FD是∠CFB的角平分线,∴∠CFD=∠BFD.∵∠AFE=∠BFD,∴∠AFE=∠CFD.(1)作点P关于GN的对称点P',连接P'M交GN于点Q,点Q即为所求.∵QP=QP',∴△QPP'是等腰三角形.∵QN⊥PP',∴QN是∠PQP'的角平分线,∴∠PQN=∠P'QN.∵∠GQM=∠P'QN,∴∠GQM=∠PQN.【点睛】本题考查了作图−复杂作图,解决本题的关键是掌握线段垂直平分线的性质.20.为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)一班8.76 a= b=二班8.76 c= d=根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.【答案】(1)补全一班竞赛成绩统计图如图所示,见解析;(2)a=9;b=9;c=8;d=10 ;(3)一班成绩比二班好.理由见解析.【分析】(1)设一班C等级的人数为x,根据题意列出方程求解即可;(2)根据已知数据求出中位数、众数即可;(3)根据平均数和中位数做判断即可;【详解】(1)设一班C等级的人数为x,则8.76(6+12+x+5)=6×10+9×12+8x+5×7,解得:x=2,补全一班竞赛成绩统计图如图所示:(2)由题可知总共有25人,则可得一班的中位数是9,众数是9,二班A级人数是11,B级人数是1,C级人数是9,D级人数是4人,故二班中位数是8,众数是10,∴a=9;b=9;c=8;d=10;(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.【点睛】本题主要考查了数据分析的知识点,准确计算是解题的关键.21.如图,在△ABC中,∠A>∠B.分别以点A、B为圆心,以大于12AB的长为半径画弧,过两弧的交点的直线与AB,BC分别相交于点D,E,连接AE,若∠B=50°,求∠AEC的度数.【答案】∠AEC=100°.【分析】根据作图过程可知直线ED是线段AB的垂直平分线,利用垂直平分线的性质和等腰三角形的性质,再根据三角形的外角性质即可求得结果.【详解】解:∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.【点睛】本题考查了复杂作图,解决本题的关键是利用线段的垂直平分线的性质.22.ABC 在直角坐标系中如图所示,请写出点、、A B C 的坐标.【答案】22112)2(()()A B C ---,,,,,. 【分析】根据平面直角坐标系的特点写出点A 、B 、C 的坐标;【详解】解:由平面直角坐标系可得:A(2,2),B(-1,1),C(-2,-2);故答案为A(2,2),B(-1,1),C(-2,-2).【点睛】本题考查了平面直角坐标系点的坐标,解题的关键是熟练掌握基本知识.23.已知:如图,9×9的网格中(每个小正方形的边长为1)有一个格点△ABC .(1)利用网格线,画∠CAB 的角平分线AQ ,交BC 于点Q ,画BC 的垂直平分线,交射线AQ 于点D ; (2)连接CD 、BD ,则∠CDB = °.【答案】(1)见解析;(2)1【分析】(1)根据网格线的结构特征,直接画出角平分线和垂直平分线,即可;(2)根据勾股定理的逆定理,即可得到答案.【详解】(1)如图所示,射线AQ 即为∠BAC 的平分线,DE 所在直线即为BC 的垂直平分线;(2)由网格线的结构特征可得:CD 2=12+52=26, BD 2=12+52=26,BC 2=42+62=52,∴CD 2+ BD 2= BC 2,∴△BCD 是直角三角形,即:∠BDC =1°,故答案为:1.【点睛】本题主要考查角平分线和垂直平分线的定义以及勾股定理的逆定理,掌握角平分线和垂直平分线的定义以及勾股定理的逆定理是解题的关键.24.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影..........(注:所画的三个图形不能重复)【答案】【解析】试题分析:可分别选择不同的直线当对称轴,得到相关图形即可.试题解析:如图所示:考点:利用轴对称设计图案25.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长【答案】(1)见解析;(2)EC=4,理由见解析【分析】(1)由AB=AC ,可知∠B=∠C ,再由DE ⊥BC 和余角的性质可推出∠F=∠BDE ,再根据对顶角相等进行等量代换即可推出∠F=∠FDA ,于是得到结论;(2)由题意根据解直角三角形和等边三角形的性质即可得到结论.【详解】解:(1)AB AC =,B C ∴∠=∠,又DE BC ⊥,90FEC DEB ∴∠=∠=︒,∴90BDE B ∠=︒-∠,90F C ∠=︒-∠,∴BDE F ∠=∠,又BDE ADF ∠=∠,ADF F ∴∠=∠,AF AD ∴=.(2),60AB AC B =∠=︒,AB BC AC ∴==,又4,2BD AD ==,6AB ∴=,在Rt DEB ∆中,60,4B BD ∠=︒=,122BE BD ∴==, 4EC ∴=.【点睛】本题主要考查等腰三角形的判定与性质和余角的性质以及对顶角的性质等知识点,解题的关键根据相关的性质定理通过等量代换进行分析.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.能说明命题“对于任何实数a ,a 2≥a”是假命题的一个反例可以是( )A .2a =-B .1a =C .0a =D .0.2a =【答案】D【分析】根据题意、乘方的意义举例即可.【详解】解:当a=0.2时,a 2=0.04,∴a 2<a ,故选D .【点睛】本题考查的是命题的真假判断,正确举出反例是解题的关键. 2.若分式293x x --的值为0,则x 的值是( ) A .﹣3B .3C .±3D .0 【答案】A【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意,得x 2﹣9=1且x ﹣3≠1,解得,x =﹣3;故选:A .【点睛】若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.3.在227-,0,3π,0.2121121112,等五个数中,无理数有( ) A .1个B .2个C .3个D .4个 【答案】C【分析】根据无理数的三种形式:①开方开不尽的数;②无限不循环小数;③含有π的数.【详解】解:227-=-3,开方可以开尽,属于有理数;0是整数,属于有理开方开不尽,属于无理数;3π含有π,属于无理数;0.2121121112是无限不循环小数,属于无理数.所以有三个无理数.故选C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数;②无限不循环小数;③含有π的数.4.下列各数中是无理数的是()A.πB.16C.327D.0【答案】A【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】解:π是无理数;16=4,327=3,0都是有理数.故选:A.【点睛】此题考查的是无理数的判断,掌握无理数的定义是解决此题的关键.5.如图,△ABC中,AB=5,AC=8,BD、CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,分别交AB、AC于E、F,则△AEF的周长为( )A.12 B.13 C.14 D.18【答案】B【解析】试题分析:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=3.故选B.考点:3.等腰三角形的判定与性质;3.平行线的性质.6.某学校计划挖一条长为300米的供热管道,开工后每天比原计划多挖5米,结果提前10天完成.若设原计划每天挖x米,那么下面所列方程正确的是()A.300300105x x-=+B.300300105x x-=-C.300300105x x-=+D.300300105x x-=-【答案】A【分析】若计划每天挖x米,则实际每天挖x+5米,利用时间=路程÷速度,算出计划的时间与实际时间作差即可列出方程.【详解】原计划每天挖x米,则实际每天挖x+5米,那么原计划所有时间:300x;实际所有时间:3005x+.提前10天完成,即300300105x x -=+. 故选A .【点睛】 本题考查分式方程的应用,关键在于理解题意找出等量关系.7.若点(21,3)P a -关于y 轴对称的点为(3,)Q b ,则点(,)M a b 关于x 轴对称的点的坐标为( ) A .(1,3)B .(1,3)-C .(1,3)--D .(1,3)-【答案】C【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而利用关于x 轴对称点的性质得出答案.【详解】解:∵点P (2a-1,3)关于y 轴对称的点为Q (3,b ),∴2a-1=-3,b=3,解得:a=-1,故M (-1,3)关于x 轴对称的点的坐标为:(-1,-3).故选:C .【点睛】本题考查关于x 轴、y 轴对称点的性质,正确得出a ,b 的值是解题关键. 8.在211x 13xy 31a x 22πx y m+++,,,,,中,分式的个数是( ) A .2B .3C .4D .5【答案】B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】解:在211133122x xy a x x y mπ+++,,,,,中, 分式有131a x x y m++,,, ∴分式的个数是3个.故选:B .【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以象2x π-不是分式,是整式. 9.一次函数23y x =-+上有两点1(1,)y 和2(2019,)y -,则1y 与2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .无法比较【答案】B【分析】由点两点(-1,y 1)和(1,y 1)的横坐标利用一次函数图象上点的坐标特征,可求出y 1、y 1的值,比较后即可得出结论.【详解】∵一次函数y=-1x+3上有两点(1,y 1)和(-1019,y 1),∴y 1=-1×1+3=1,y 1=-1×(-1019)+3=4041,∴y 1<y 1.故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,求出y 1、y 1的值是解题的关键.10.式子()()()()()()a b b c c a b c c a a b c a a b b c ---++------的值不可能等于( ) A .﹣2B .﹣1C .0D .1 【答案】C【分析】根据分式的加减运算,对式子进行化简,然后根据分式有意义,即可得出答案.【详解】解:()()()()()()-------a b b c c a ++b c c-a a-b b c a b b c =()()()()()()+-+----222a-b b c c a a b b c c a ,分式的值不能为0,因为只有a=b=c 时,分母才为0,此时分式没意义,故选:C .【点睛】本题主要考察了分式的加减运算以及分式有意义的定义,解题的关键是分式的加减运算要正确进行通分,以及注意分式的分母不能为零.二、填空题11.对于整数a ,b ,c ,d ,符号a b c d 表示运算ad ﹣bc ,已知1<14b d <3,则bd 的值是_____. 【答案】1【分析】根据题中已知条件得出关于bd 的不等式,直接进行解答即可.【详解】解:已知1<14b d <3,即1<4﹣bd <3 所以4143bd bd ⎧⎨⎩﹣>﹣< 解得1<bd <3因为b ,d 都是整数,则bd 一定也是整数,因而bd =1.故答案为:1.【点睛】本题考查解不等式,解题的关键是把题目中的不等式正确转化为一般的不等式.12.81的平方根是____.【答案】±3【详解】∵81=9,∴9的平方根是3±.故答案为±3.13.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q 在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q运动路线的长为_____.【答案】3或1【分析】如图,连接CP,BQ,由“SAS”可证△ACP≌△ABQ,可得BQ=CP,可得点Q运动轨迹是A→H→B,分两种情况讨论,即可求解.【详解】解:如图,连接CP,BQ,∵△ABC,△APQ是等边三角形,∴AP=AQ=PQ,AC=AB,∠CAP=∠BAQ=60°,∴△ACP≌△ABQ(SAS)∴BQ=CP,∴当点P运动到点B时,点Q运动到点H,且BH=BC=6,∴当点P在AB上运动时,点Q在AH上运动,∵△BPQ是等腰三角形,∴PQ=PB,∴AP=PB=3=AQ,∴点Q运动路线的长为3,当点P 在BC 上运动时,点Q 在BH 上运用,∵△BPQ 是等腰三角形,∴PQ =PB ,∴BP =BQ =3,∴点Q 运动路线的长为3+6=1,故答案为:3或1.【点睛】本题考查了点的运动轨迹,全等三角形的判定和性质,等边三角形的性质,确定点Q 的运动轨迹是本题的关键.14.3184900精确到十万位的近似值是______________.【答案】63.210⨯【分析】根据科学记数法和近似值的定义进行解答.【详解】663184900 3.184910 3.210=⨯≈⨯【点睛】考点:近似数和有效数字.15.小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.0000065毫米,该厚度用科学记数法表示为_____毫米.【答案】66.510-⨯【分析】一个较小的数可表示为:10n a -⨯的形式,其中1≤10a <,据此可得结论.【详解】将0.0000065用科学记数法法表示,其中 6.5a =则原数变为6.5,小数点需要向右移动6为,故n=6故答案为:66.510-⨯【点睛】本题考查用科学记数法表示较小的数,需要注意,科学记数法还可以表示较大的数,形式为:10n a ⨯. 16.因式分解:3xy ﹣6y=_____.【答案】3y (x ﹣2).【分析】直接提取公因式进而分解因式即可.【详解】解:3xy ﹣6y=3y (x ﹣2).故答案为:3y (x ﹣2).【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.17.如图是按以下步骤作图:(1)在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于,M N 两点; (2)作直线MN 交BC 于点D ;(3)连接AD .若AB AC =,54CAD ∠=,则C ∠的度数为__________.【答案】42°【分析】由作图步骤可知MD 是线段AB 的垂直平分线,易得B BAD ∠=∠,利用三角形内角和定理可得C ∠的度数.【详解】解:由作图步骤可知MD 是线段AB 的垂直平分线,AD BD ∴=B BAD ∴∠=∠2ADC B BAD B ∴∠=∠+∠=∠AB AC =B C ∴∠=∠2ADC C ∴∠=∠在ADC 中,180CAD ADC C ∠+∠+∠=︒542180C C ︒∴+∠+∠=︒42C ∴∠=︒故答案为:42°【点睛】本题考查了线段垂直平分线的性质及等腰三角形的性质,正确理解题中所给的作图步骤是解题的关键.三、解答题18.解方程:1x x -+21x -=4 【答案】23x = 【分析】先去分母,方程的两边同乘(x ﹣1),再展开计算,化简求解出未知数,最后验算结果即可.【详解】方程的两边同乘(x ﹣1),得:x-2=4(x ﹣1),即:32x -=- 解得:23x =, 检验:当23x =时,x ﹣1≠0, ∴原分式方程的解为23x =. 【点睛】本题主要考车了解方程的相关计算,注意不能把“解”子漏掉,最后得到的结果代入检验原式的分母是否为0,如果为零,则把该结果舍去.19.如图,直线1(0)y kx k =+≠角形与两坐标轴分别交于,A B ,直线24y x =-+与y 轴交于点,C 与直线1y kx =+交于点,D ACD ∆面积为32. (1)求k 的值(2)直接写出不等式124x x +<-+的解集; (3)点P 在x 上,如果DBP ∆的面积为4,点P 的坐标.【答案】(1)1k =; (2)1x <; (3)P (-5,0)或(3,0).【分析】(1)将x=0分别代入两个一次函数表达式中求出点A 、C 的坐标,进而即可得出AC 的长度,再根据三角形的面积公式结合△ACD 的面积即可求出点D 的横坐标,利用一次函数图象上的点的坐标特点即可求出点D 的坐标,由点D 的坐标即可得到结论.(2)先移项,再合并同类项,即可求出不等式的解集.(3)由直线AB 的表达式即可得出B 的坐标,根据三角形面积为4,可计算PB 的长,根据图形和点B 的坐标可得P 的坐标.【详解】(1)当x=0时,11y kx =+=,2+4=4y x =-∴A (0,1),C (0,4)∴AC=3∴133222D D S ACD AC x x ===△∴1D x =当x=1时,24=2y x =-+∴D (1,2)将D (1,2)代入1y kx =+中解得1k =(2)124x x +<-+241x x +<-33x <1x <(3)在1y x =+中,当0y =时,1x =-∴B (-1,0)∵点P 在x 轴上设P (m,0) ∵142D S BDP PB y ==△ ∴1342PB ⨯= ∴14PB m =+=解得3m =或5m =-∴P (-5,0)或(3,0).【点睛】本题考查了直线解析式的几何问题,掌握直线解析式的性质和解法、解不等式的方法、三角形面积公式是解题的关键.20.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题.(1)(课本习题)如图①,△ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE=CD . 求证:DB=DE(2)(尝试变式)如图②,△ABC 是等边三角形,D 是AC 边上任意一点,延长BC 至E ,使CE=AD . 求证:DB=DE .(3)(拓展延伸)如图③,△ABC 是等边三角形,D 是AC 延长线上任意一点,延长BC 至E ,使CE=AD 请问DB 与DE 是否相等? 并证明你的结论.【答案】(1)见详解;(2)见详解;(3)DB=DE成立,证明见详解【分析】(1)由等边三角形的性质,得到∠CBD=30°,∠ACB=60°,由CD=CE,则∠E=∠CDE=30°,得到∠E=∠CBD=30°,即可得到DB=DE;(2)过点D作DG∥AB,交BC于点G,证明△BDC≌△EDG,根据全等三角形的性质证明结论;(3)过点D作DF∥AB交BE于F,由“SAS”可证△BCD≌△EFD,可得DB=DE.【详解】证明:(1)∵△ABC是等边三角形∴∠ABC=∠BCA=60°,∵点D为线段AC的中点,∴BD平分∠ABC,AD=CD,∴∠CBD=30°,∵CD=CE,∴∠CDE=∠CED,又∵∠CDE+∠CED=∠BCD,∴2∠CED=60°,∴∠CED=30°=∠CBD,∴DB=DE;(2)过点D作DG∥AB,交BC于点G,如图,∴∠DGC=∠ABC=60°,又∠DCG=60°,∴△DGC为等边三角形,∴DG=GC=CD,∴BC-GC=AC-CD,即AD=BG,∵AD=CE,∴BG=CE,∴BC=GE,在△BDC和△EDG中,60DC DG BCD EGD BC EG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDC ≌△EDG (SAS )∴BD=DE ;(3)DB=DE 成立,理由如下:过点D 作DF ∥AB 交BE 于F ,∴∠CDF=∠A ,∠CFD=∠ABC ,∵△ABC 是等边三角形∴∠ABC=∠BCA=∠A=60°,BC=AC=AB ,∴∠CDF=∠CFD=60°=∠ACB=∠DCF ,∴△CDF 为等边三角形∴CD=DF=CF ,又AD=CE ,∴AD-CD=CE-CF ,∴BC=AC=EF ,∵∠BCD=∠CFD+∠CDF=120°,∠DFE=∠FCD+∠FDC=120°,∴∠BCD=∠DFE ,且BC=EF ,CD=DF ,∴△BCD ≌△EFD (SAS )∴DB=DE .【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,以及平行线的性质,正确添加恰当辅助线构造全等三角形是本题的关键.21.如图,△ABC 中,AB =BC ,∠ABC =45°,BE ⊥AC 于点E ,AD ⊥BC 于点D ,BE 与AD 相交于F .(1)求证:BF=AC;(2)若BF=3,求CE的长度.【答案】(1)见解析;(2)CE=3 2.【分析】(1)由三角形的内角和定理,对顶角的性质计算出∠1=∠2,等腰直角三角形的性质得BD=AD,角边角(或角角边)证明△BDF≌△ADC,其性质得BF=AC;(2)等腰三角形的性质“三线合一”证明CE=12AC,计算出CE的长度为32.【详解】解:如图所示:(1)∵AD⊥BC,BE⊥AC,∴∠FDB=∠FEA=∠ADC=90°,又∵∠FDB+∠1+∠BFD=180°,∠FEA+∠2+AFE=180°,∠BFD=∠AFE,∴∠1=∠2,又∠ABC=45°,∴BD=AD,在△BDF和△ADC中,12BD ADBDF ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDF≌△ADC(ASA)∴BF=AC;(2)∵BF=3,∴AC=3,又∵BE⊥AC,∴CE=AE=1 2AC=32.【点睛】本题综合考查了全等三角形的判定与性质,等腰三角形的判定与性质,三角形的中线及三角形的内角和定理等相关知识,重点掌握全等三角形的判定与性质.22.如图,直线L:122y x=-+与x轴、y轴分别交于A、B两点,在y轴上有一点()0,4C,动点M 从A点以每秒1个单位的速度沿x轴向左移动.()1求A、B两点的坐标;()2求COM∆的面积S与M的移动时间t之间的函数关系式;()3当t为何值时COM∆≌AOB∆,并求此时M点的坐标.【答案】(1)A(0,4),B(0,2);(2)()()8-2t0t4S2t-8t4<≤⎧⎪=⎨>⎪⎩;(3)当t=2或1时,△COM≌△AOB,此时M(2,0)或(﹣2,0).【分析】(1)由直线L的函数解析式,令y=0求A点坐标,x=0求B点坐标;(2)由面积公式S=12OM•OC求出S与t之间的函数关系式;(3)若△COM≌△AOB,OM=OB,则t时间内移动了AM,可算出t值,并得到M点坐标.【详解】(1)∵y=﹣12x+2,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=12×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=12×4×(t﹣4)=2t﹣8;∴COM∆的面积S与M的移动时间t之间的函数关系式为:()()8-2t0t4S2t-8t4<≤⎧⎪=⎨>⎪⎩。
邢台市八年级上学期数学期末考试试卷

邢台市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·扶风期末) 生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾管理,维护公共环境和节约资源是全社会的公共责任.2020年5月1日起北京将全面推行生活垃圾强制分类.下列四个垃圾分类标识中的图形是轴对称图形的是()A .B .C .D .2. (2分)等腰三角形的两边分别为5和10,则它的周长是()A . 20B . 15C . 25D . 20或253. (2分)(2019·郊区模拟) 下列运算正确是()A .B .C .D .4. (2分)下列多项式中,能用公式法分解因式的是()A . ﹣m2+n2B . a2﹣2ab﹣b2C . m2+n2D . ﹣a2﹣b25. (2分)若等腰三角形的两边长分别是3cm和8cm,那么这三角形的周长为()。
A . 14cmB . 19cmC . 14cm或19cmD . 以上答案均不对6. (2分) (2019七下·电白期末) 计算6m3÷(﹣3m2)的结果是()A . ﹣3mB . ﹣2mC . 2mD . 3m7. (2分) (2020八上·百色期末) 如图,△ABC的一角被墨水污了,但小明很快就画出跟原来一样的图形,他所用定理是()A . SASB . SSSC . ASAD . HL8. (2分)(2017·泸州) 已知抛物线y= x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y= x2+1上一个动点,则△PMF周长的最小值是()A . 3B . 4C . 5D . 69. (2分)(2020·潢川模拟) 如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A . 2B . 3C . 4D . 610. (2分)如图,正方形ABCD中,点E,F分别在AD,DC上,且△BEF为等边三角形,下列结论:①DE=D F;②∠AEB=75°;③BE= DE;④AE+FC=EF.其中正确的结论个数有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)(2016·大连) 因式分解:x2﹣3x=________.12. (1分)计算:a6÷a﹣2的结果是________13. (1分) (2017八上·崆峒期末) 一个多边形的内角和比外角和的2倍多180度,则它的边数是________.14. (1分) (2020九上·北京月考) 如图,正六边形内接于,正六边形的周长是12,则的半径是________.15. (1分) (2020八下·北京期中) 清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为元,出发时又增加了名同学,且租金不变,这样每个同学比原来少分摊了元车费,若设实际参加游览的同学,一共有人则可列分式方程________.16. (1分) (2019九上·靖远月考) 如图所示,把两个大小完全一样的矩形拼成“L”形图案,则∠FAC=________度,∠FCA=________度.三、解答题 (共9题;共70分)17. (5分)先化简,再求值:,其中a= .18. (5分)先化简,再求值:(2a﹣b)(a+2b)﹣(3a+2b)(3a﹣2b),其中a=2,b=﹣3.19. (5分) (2018八下·东台期中) 解下列方程:(1);(2)20. (5分)已知:如图,∠1=∠2,∠3=∠4.求证:∠AEB=∠AED.21. (10分)(2019·南陵模拟) 如图,在由边长为1个单位长度的小正方形组成的12×2网格中,给出了格点△ABC和直线l.(1)画出△ABC关于直线l对称的格点△A′B′C;(2)在直线l上选取一格点,在网格内画出格点△DPE,使得△DPE∽△ABC,且相似比为2:1.22. (10分)如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)若CB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC;小洁在遇到此问题时不知道怎么下手,秦老师提示他可以过点C作CH CF,交DB于点H,先证明△AFC△BHC,然后继续思考,并鼓励小洁把证明过程写出来.请你帮助小洁完成这个问题的证明过程.23. (5分) (2020八下·泉州期中) 甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)24. (10分) (2015七上·海南期末) 托运行李的费用计算方法是:托运行李总重量不超过30千克,每千克收费2元;超过30千克,超过部分每千克收费3.5元.某旅客托运行李a千克(a为正整数).(1)请用代数式表示托运a千克行李的费用;(2)当a=45时,求托运行李的费用.25. (15分) (2020九下·宝应模拟) 如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.(1)求点E、F的坐标(用含m的式子表示);(2)连接OA,若△OAF是等腰三角形,求m的值;(3)如图(2),设抛物线y=a(x-m-6)2+h经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共70分)17-1、18-1、19-1、19-2、20-1、21-1、21-2、22-1、23-1、24-1、24-2、25-1、25-2、25-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省邢台市临西县2020-2021学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.0(4)-的结果是( )A .4-B .40-C .0D .12.下列图形中,和所给图形全等的图形是( )A .B .C .D . 3.将多项式222a a --因式分解提取公因式后,另一个因式是( )A .aB .1a +C .1a -D .1a -+ 4.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是( )A .B .C .D .5.计算:()23m n的结果是 A .6m n B .62m n C .52m n D .32m n 6.三条线段长分别为1,9,a ,若这三条线段能组成三角形,则a 的长可以是( ) A .7 B .8 C .9 D .10 7.下列图形中,不是运用三角形的稳定性的是( )A .B .C .D.8.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.9.下面是黑板上出示的尺规作图题,需要回答横线上符号代表的内容∠,如图,已知AOB∠的角平分线.求作:AOB作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交☺于点N;②分别以点⊕为圆心,大于♡的长为半径画弧,两弧在✞内部交于点C;③画射线OC,OC即为所求.∠A.☺表示OA B.⊕表示M、C C.♡表示ON D.✞表示AOB 10.如图,在四边形ABCD中,BC∥AD,CD⊥AD,P是CD边上的一动点,要使P A+PB 的值最小,则点P应满足的条件是( )A .PB=P AB .PC=PDC .∠APB =90°D .∠BPC =∠APD11.化简2242213x x x x x a ÷-++-的结果为21x x -,则a =( ) A .4 B .3 C .2 D .2112.已知ABC 边AB 、AC 的垂直平分线DM 、EN 相交于O ,M 、N 在BC 边上,若20MAN ∠=︒,则BAC ∠的度数为( )A .100︒B .120︒C .140︒D .160︒13.有3张边长为a 的正方形纸片,8张边长分别为a 、b (b >a )的矩形纸片,10张边长为b 的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为( )A .a +5bB .a +4bC .2a +2bD .a +3b14.已知ABC A B C ''△≌△,40A ∠=︒,60CBA ∠=︒,A C '交边AB 于P (点P 不与A 、B 重合).BO 、CO 分别平分CBA ∠,BCP ∠,若m BOC n ︒<∠<︒,则n m -的值为( )A .20B .40C .60D .100二、填空题15.若点(2,3)A 与点B 关于y 轴对称,则A 、B 两点间的距离为________.16.如图,BE ,CD 是ABC 的高,且BD EC =,判定BCD CBE △≌△的依据可以简写成是“________”.17.已知(1)(1)80m n m n +-++=,则m n +=________.18.小明在进行两个多项式的乘法运算时,不小心把乘2x y +错抄成乘以2x ,结果得到2(3)x xy -,则正确的计算结果是________.三、解答题19.作出已知图形ABC 关于给定直线l 的对称图形A B C '''.(保留作图痕迹,不写作法)20.已知;如图,BP 、CP 分别是ABC 的外角平分线,PM AB ⊥于点M ,PN AC ⊥于点N .求证:PA 平分MAN ∠.21.如图,已知六边形ABCDEF 的每个内角都相等,连接AD .(1)若148∠=︒,求2∠的度数;(2)求证://AB DE .22.某学生在化简求值:21211x x ++-其中3x =时出现错误.解答过程如下: 原式=12(1)(1)(1)(1)x x x x ++-+-(第一步) =12(1)(1)x x ++-(第二步) =231x -(第三步) 当3x =时,原式=233318=-(第四步) ①该学生解答过程从第__________步开始出错,其错误原因是____________________. ②写出此题的正确解答过程.23.在ABC ∆中,AB AC =,36A ∠=︒,CD 平分ACB ∠交AB 于D ,E ,F 在AC ,BC 上,且108EDF ∠=︒.(1)求ADC ∠的度数;(2)求证:AE BF BC +=.24.某次列车现阶段的平均速度是200千米/小时,未来还将提速,在相同的时间内,列车现阶段行驶a 千米,提速后列车比现阶段多行驶150千米.(1)求列车平均提速多少千米/小时?(2)若提速后列车的平均速度是300千米/小时,则题中的a 为多少千米?25.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解31x -.因为31x -为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积.故我们可以猜想31x -可以分解成2(1)()x x ax b -++,展开等式右边得:32(1)()x a x b a x b +-+--,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:10a -=,0b a -=,1b -=-可以求出1a =,1b =.所以321(1)(1)x x x x -=-++.(1)若x 取任意值,等式2223(3)x x x a x s ++=+-+恒成立,则a =________; (2)已知多项式323x x ++有因式1x +,请用待定系数法求出该多项式的另一因式; (3)请判断多项式421x x ++是否能分解成的两个均为整系数二次多项式的乘积,并说明理由.参考答案1.D【分析】根据0指数幂的定义解答即可.【详解】-=1(4)故选:D【点睛】本题考查的是0指数幂,掌握任何非0数的0次幂都为1是关键.2.D【解析】根据全等图形的定义只需找出与原图形大小相等,形状相同的图形即可,A、B、C选项均不符合题意,只有D符合题意,D中的图形相对于原图形顺时针作了180°的旋转变换.故选D.3.B【分析】直径提取公因式即可.【详解】()2--=-+a a a a2221故选:B【点睛】此题主要考查了提公因式法分解因式,关键是正确找出公因式.4.A【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D 、不是轴对称图形.故选项错误.故选:A .【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合. 5.B【解析】根据积的乘方和幂的乘方运算法则计算即可:()2332262m nm n m n ⨯==.故选B .6.C【分析】根据三角形的三边关系确a 的取值范围即可.【详解】根据题意得:8<a <10,故a 的长可以是9.故选:C【点睛】本题考查的是三角形的三边关系,掌握 “三角形中,两边之和大于第三边,两边之差小于第三边”是关键.7.C【解析】分析:利用三角形的稳定性解答即可.详解:对于A 、B 、D 选项,都含有三角形,故利用了三角形的稳定性;而C 选项中,拉闸门是用到了四边形的不稳定性.故选C.点睛:本题主要考查了三角形的稳定性,需理解稳定性在实际生活中的应用;首先,明确能体现出三角形的稳定性,则说明物体中必然存在三角形;8.D【解析】试题分析:根据三角形的高线的定义可得,则D 选项中线段BE 是△ABC 的高.考点:三角形的高【分析】根据角平分线的尺规作图的做法即可求解.【详解】尺规作∠AOB的平分线的作法:①以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N;②分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC,OC即为所求.所以☺表示BC,⊕表示M、N,♡表示12MN, 表示∠AOB.故选:D【点睛】本题考查的是尺规作图-作角平分线,掌握角平分线的作法及作图语言是关键.10.D【分析】首先根据轴对称的知识,可知P点的位置是连接点A和点B关于CD的对称点E与CD的交点,利用轴对称和对顶角相等的性质可得.【详解】如图,作点B关于CD的对称点E,连接AE交CD于P,连接BP.根据轴对称的性质,得∠BPC=∠EPC,根据对顶角相等知∠APD=∠EPC,所以∠BPC=∠APD.故选D.【点睛】此题主要考查轴对称的应用,解题的关键是根据题意作出辅助线,根据轴对称的性质进行求解.【分析】根据除数=被除数÷商,可求得除数项的式子,即可确定a 的值.【详解】()222242124121211x x x x x x x x x x x -÷-+=⨯=--- ∴x+3-a=x-1∴a=4故选:A【点睛】本题考查的是分式的乘除法,了解除法各部分的关系及掌握分式的除法法则是关键. 12.A【解析】【分析】根据垂直平分线的性质及等腰三角形的性质可得∠B=∠BAM ,∠C=∠CAN ,利用三角形的内角和定理即可求得∠BAM +∠CAN=80°,即可求解.【详解】∵DM 、EN 分别垂直平分AB 和AC ,∴AM=BM ,AN=CN ,∴∠B=∠BAM ,∠C=∠CAN又∠B+∠BAM+∠C+∠CAN+∠MAN=180°,∠MAN=20°∴∠BAM +∠CAN=80°∴∠BAC=100°故选:A【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键,注意三角形内角和定理的应用.13.D【分析】利用完全平方公式求解即可.【详解】解:∵a2+6ab+9b2=(a+3b)2,∴拼成的正方形的边长最长可以为a+3b,故选:D.【点睛】本题是对完全平方公式的实际运用的考查,熟练掌握完全平方公式是解决本题的关键. 14.B【分析】根据角平分线的定义求出∠BOC=90°+12∠BPC,根据三角形外角的性质,及P点在AB边上且不与A、B重合,确定∠ACP的大小,即可求解. 【详解】∵BO、CO分别平分∠ABC、∠PCB∴∠OBC=12∠ABC,∠OCB=12∠PCB∴∠BOC=180°-∠OBC-∠OCB=180°-12(∠ABC+∠PCB)=180°-12(180°-∠BPC)=90°+1 2∠BPC=90°+12(∠A+∠ACP)=110°+12∠ACP∵∠A=40°,∠CBA=60°∴∠ACB=80°∵P点在AB边上且不与A、B重合∴0°<∠ACP<80°∴110°<∠BOC<150°∴m=110,n=150∴n-m=40故选:B【点睛】本题考查的是角平分线的定义及三角形的内角和定理,能从图形中找到各角之间的关系是关键.15.4【分析】根据关于y轴的点的对称规律:横坐标互为相反数,纵坐标相同解答即可.【详解】若点A(2,3)与点B关于y轴对称,则B点的坐标为(-2,3),则A、B两点间的距离为4.故答案为:4【点睛】本题考查的是平面直角坐标系内点的对称规律,掌握点的对称规律是关键.16.斜边、直角边或HL【分析】根据已知条件可得直角三角形中斜边和一条直角边分别对应相等即可求解.【详解】∵BE、CD是△ABC的高,∴∠BDC=∠BEC=90°在Rt△BDC和Rt△BEC中:BD=EC,BC=CB∴△BCD≌△CBE(HL)故答案为:斜边、直角边或HL【点睛】本题考查的是直角三角形的全等的判定,掌握直角三角形的判定定理并能找到公共边是关键.17.9±【分析】设m+n=x,对原方程进行变形解答即可.【详解】设m+n=x,原方程可变形为;(x-1)(x+1)=80281x=9x=±所以m+n=±9故答案为:±9【点睛】本题考查的是解方程,解题的关键是把m+n 看成一个整体,利用换元法解答.18.2232x xy y +-【分析】 错乘2x ,得到(3x 2-xy )可求出没错乘之前的结果,再乘以2x y +即可, 【详解】由题意得,()22223(3)(3)()32222x x y x y x xy x x y x y x y x xy y x ++-÷⨯=-⨯⨯=-+=+- 故答案为:3x 2+2xy-y 2.【点睛】本题考查多项式乘以多项式的计算方法,根据逆运算得出正确的计算算式是解决问题的关键. 19.详见解析.【分析】首先确定A 、B 、C 三点关于l 的对称点的位置,然后再连接即可.【详解】如图所示,A B C '''就是所求的图形.【点睛】此题主要考查了作图--轴对称变换,关键是确定组成图形的关键点的对称点的位置. 20.详见解析.【解析】【分析】作PD ⊥BC 于点D ,根据角平分线的性质得到PM=PD ,PN=PD ,得到PM=PN ,根据角平分线的判定定理证明即可.【详解】作PD⊥BC于点D,∵BP是△ABC的外角平分线,PM⊥AB,PD⊥BC,∴PM=PD,同理,PN=PD,∴PM=PN,又PM⊥AB,PN⊥AC,∴PA平分∠MAN.【点睛】本题考查的是角平分线的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.∠=︒;(2)证明见解析;21.(1)248【分析】(1)先求六边形ABCDEF的每个内角的度数,再根据四边形的内角和是360°,求∠2的度数.(2)由(1)中∠ADC的度数,可得∠BAD=∠ADE,利用内错角相等,两直线平行,可证AB∥DE.【详解】(1)∵六边形ABCDEF的每个内角的度数是(6-2)×180°÷6=120°∴∠FAB=120°,∵∠1=48°∴∠FAD=∠FAB-∠1=120°-48°=72°,∴∠2=360°-120°-120°-72°=48°.(2)∵∠1=48°,∠2=48°,∴AB∥DE.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.注意平行于同一条直线的两直线平行.22.①一,通分错误;②答案见解析【分析】①利用分式加减运算法则判断得出答案;②直接利用分式加减运算法则计算得出答案.【详解】①该学生解答过程从第 一步开始出错,其错误原因是 通分错误.故答案为:一,通分错误;②原式()()()()121111x x x x x -=++-+-()()111x x x +=+- 11x =-. 当x =3时,原式12=. 【点睛】本题考查了分式的化简求值,正确掌握分式的加减运算法则是解题的关键.23.(1)108°;(2)见解析【分析】(1)由等腰三角形的性质和三角形内角和定理得出∠B=∠ACB=72°,由角平分线定义得出∠ACD=∠BCD=36°,由三角形的外角性质即可得出答案;(2)由(1)得∠ACD=36°=∠A ,∠ADC=108°,得出AD=CD ,证出∠ADC=∠EDF ,得出∠ADE=∠CDF ,证明△ADE ≌△CDF (ASA ),得出AE=CF ,即可得出结论.【详解】(1)解:∵AB=AC ,∠A=36°,∴∠B=∠ACB=12(180°-36°)=72°,∵CD 平分∠ACB ,∴∠ACD=∠BCD=36°,∴∠ADC=∠B+∠BCD=72°+36°=108°;(2)证明:由(1)得:∠ACD=36°=∠A ,∠ADC=108°,∴AD=CD ,∵∠EDF=108°,∴∠ADC=∠EDF ,∴∠ADE=∠CDF ,在△ADE 和△CDF 中,36A BCD AD CDADE CDF ∠∠︒⎧⎪⎨⎪∠∠⎩====, ∴△ADE ≌△CDF (ASA ),∴AE=CF ,∵CF+BF=BC ,∴AE+BF=BC .【点睛】此题考查全等三角形的判定与性质,等腰三角形的判定与性质,三角形的外角性质,熟练掌握等腰三角形的判定与性质,证明三角形全等是解题的关键.24.(1)列车平均提速30000a 千米/小时;(2)题中的a 为300千米. 【分析】(1)设列车平均提速x 千米/小时,根据“在相同的时间内,列车现阶段行驶a 千米,提速后列车比现阶段多行驶150千米”列出分式方程解方程即可.(2)列车平均速度为300千米/小时,此时列车平均提速100千米/小时,代入(1)中的结论即可求解.【详解】(1)设列车平均提速x 千米/小时, 依题意得150200200a a x+=+. 20020030000a ax a +=+解得30000x a= ∵0a >,经检验30000x a =为所列方程的解. 答:列车平均提速30000a千米/小时. (2)列车平均速度为300千米/小时,此时列车平均提速300200100x =-=千米/小时 ∴30000100x a= ∴300a =千米.答:题中的a 为300千米.【点睛】本题考查的是分式方程的应用,理解题意并能正确的找到等量关系是关键.25.(1)1;(2)23x x -+;(3)多项式421x x ++能分解成两个均为整系数二次多项式的乘积,理由详见解析.【分析】(1)根据题目中的待定系数法原理即可求得结果;(2)根据待定系数法原理先设另一个多项式,然后根据恒等原理即可求得结论; (3)根据待定系数原理和多项式乘以多项式即可求得结论.【详解】(1)根据待定系数法原理,得3-a=2,a=1.故答案为1.(2)设另一个因式为(x 2+ax+b ),(x+1)(x 2+ax+b )=x 3+ax 2+bx+x 2+ax+b=x 3+(a+1)x 2+(a+b )x+b∴a+1=0 a=-1 b=3∴多项式的另一因式为x 2-x+3.答:多项式的另一因式x 2-x+3.(3)多项式x 4+x 2+1能分解成两个整系数二次多项式的乘积.理由如下:设多项式x 4+x 2+1能分解成①(x 2+1)(x 2+ax+b )或②(x+1)(x 3+ax 2+bx+c )或③(x 2+x+1)(x 2+ax+1),①(x 2+1)(x 2+ax+b )=x4+ax3+bx2+ax+b=x4+ax3+(b+1)x2+ax+b∴a=0,b+1=1 ,b=1由b+1=1得b=0≠1,故此种情况不存在.②(x+1)(x3+ax2+bx+c),=x4+ax3+bx2+cx+x3+ax2+bx+c=x4+(a+1)x3+(b+a)x2+(b+c)x+c∴a+1=0 b+a=1 b+c=0 c=1解得a=-1,b=2,c=1,又b+c=0,b=-1≠2,故此种情况不存在.③(x2+x+1)(x2+ax+1)=x4+(a+1)x3+(a+2)x2+(a+1)x+1∴a+1=0,a+2=1,解得a=-1.即x4+x2+1=(x2+x+1)(x2-x+1)∴x4+x2+1能分解成两个整系数二次三项式的乘积却不能分解成两个整系数二次二项式与二次三项式的乘积.答:多项式x4+x2+1能分解成两个整系数二次三项式的乘积.【点睛】本题考查了因式分解的应用、多项式乘以多项式,解决本题的关键是理解并会运用待定系数法原理.。