初二数学总复习知识点总结

合集下载

数学初二知识点总结归纳

数学初二知识点总结归纳

数学初二知识点总结归纳初二数学知识点总结归纳一、有理数与整式1. 有理数的概念与性质2. 有理数的加减乘除及其性质3. 绝对值与有理数大小关系4. 有理数的科学计数法5. 计算器使用方法6. 整数的概念和性质二、代数式与整式1. 代数式的概念、含义及运算法则2. 代数式的等值关系和计算3. 整式的概念与性质4. 整式的加减乘除及其性质5. 因式分解与公因式提取6. 分式、分式的加减乘除7. 分式方程三、平面图形的认识1. 点、线、面的认识2. 点的坐标系3. 直线与角四、图形的性质1. 直角、直线、角度的意义2. 平行线与相交线3. 四边形的性质4. 三角形的性质5. 圆的概念与性质五、相似1. 相似的概念和判定2. 相似三角形的性质3. 相似三角形的应用六、比例与实际问题1. 比例的概念与性质2. 比例与相似的关系3. 平均数与几何平均数七、数据的搜集和整理1. 调查、统计与实际问题2. 统计图的绘制与分析八、选修内容初二数学的选修内容主要包括:1. 平面向量与坐标2. 多边形的面积3. 空间图形的认识4. 立体图形的计算5. 数据的分析与应用6. 几何体的展开与折叠7. 根式的运算及其应用此外,还需要掌握一些常用的计算方法和数学问题的解决思路,如:1. 常用的数学运算法则和计算技巧2. 数学问题的解决思路和方法3. 数学模型的建立和应用4. 数学问题中的一些常用定理、公式和推理方法的运用5. 数学与实际问题的联系和应用初二数学知识点总结归纳完毕。

以上列举的知识点是初中数学课程的主要内容,通过学习这些知识点,可以打好数学基础,为进一步的学习打下良好的基础。

初二数学总复习知识点总结

初二数学总复习知识点总结

精心整理初二数学复习提纲一、一次函数1、我们称数值变化的量为变量(variable)。

2、有些量的数值是始终不变的,我们称它们为常量(constant)。

3、在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们说x 是自变量(independent variable ),y 是x 的函数(function)。

4、如果当x=a 时y=b ,那么b 叫做当自变量的值为a 时的函数值。

5形如数。

6当k >712。

341、能够完全重合的两个图形叫做全等形(congruent figures )。

2、能够完全重合的两个三角形叫做全等三角形(congruent triangles )。

3、全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。

4、全等三角形全等的条件:三边对应相等的两个三角形全等。

(SSS )5、两边和它们的夹角对应相等的两个三角形全等。

(SAS )6、两角和它们的夹边对应相等的两个三角形全等。

(ASA )7、两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS )8、角平分线的性质:角平分线上的点到角的两边的距离相等。

9、到角两边的距离相等的点在角的平分线上。

四、轴对称1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。

2、轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。

3、线段垂直平分线上的点与这条线段两个端点的距离相等。

4、由一个平面图形得到它的轴对称图形叫做轴对称变换。

5、等腰三角形的性质:6、等腰三角形的两个底角相等。

(等边对等角)7、°)891012345678910111213、单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

14、单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

初二的数学知识点大全

初二的数学知识点大全

初二的数学知识点大全目录•一、代数– 1.1 代数基础– 1.2 一元一次方程与不等式– 1.3 二元一次方程组– 1.4 算式的运算规则– 1.5 几何图形与坐标系•二、几何– 2.1 几何基础– 2.2 图形的相似与相等– 2.3 角的概念与性质– 2.4 直线和平面– 2.5 三角形•三、函数– 3.1 函数基础– 3.2 函数的图像– 3.3 函数的性质与运算– 3.4 一元二次函数– 3.5 反比例函数•四、统计与概率– 4.1 统计基础– 4.2 数据的收集与整理– 4.3 数据的分析与图像– 4.4 概率基础– 4.5 事件与概率一、代数1.1 代数基础代数是数学的一个重要分支,研究数与数之间的关系。

在初二数学中,代数基础主要包括: - 数的分类和性质 - 加减乘除运算规则 - 合并同类项和分配律 - 等式与恒等式的性质1.2 一元一次方程与不等式一元一次方程是指只有一个未知数的一次方程,形如ax + b = 0。

掌握一元一次方程的求解方法是初二数学的基础,同时也包括一元一次不等式的解法。

1.3 二元一次方程组二元一次方程组是由两个未知数的一次方程组成的方程组。

初二数学要求掌握二元一次方程组的解法,包括代入法、消元法和图解法。

1.4 算式的运算规则算式的运算规则包括加法、减法、乘法和除法的运算法则。

初二数学要求熟练掌握算式的运算规则,并能够灵活运用。

1.5 几何图形与坐标系几何图形是初二数学的重要内容,包括点、线、面等几何概念。

同时,学生也需要学习坐标系的概念和使用方法,能够画出简单的几何图形并标出坐标。

二、几何2.1 几何基础几何基础包括点、线、面等几何概念,以及几何图形的分类和性质。

初二数学要求学生熟练掌握几何基础的概念和性质。

2.2 图形的相似与相等图形的相似与相等是几何学中重要的概念,涉及到图形的大小和形状变化。

初二数学要求学生理解图形的相似与相等,并能够应用相似与相等的性质解决问题。

初二数学必考知识点归纳最新

初二数学必考知识点归纳最新

初二数学必考知识点归纳最新
一、代数基本知识
1.代数式的定义与性质
2.方程与不等式的概念
3.一元一次方程的解法(如去分式法、加减消去法等等)
4.二元一次方程的解法(如联立消元法、代入法等等)
5.等式的基本性质
6.二次根式的化简方法
二、平面几何基础
1.基本图形的面积计算(如矩形、三角形、梯形等等)
2.基本图形的周长计算(如矩形、三角形、梯形等等)
3.计算线段的长度
4.平行线与垂线的性质
5.相似三角形的判定与性质
6.图形的旋转与对称性
7.圆的相关概念与性质
三、立体几何基础
1.空间图形的投影
2.空间图形的计算
3.空间直角坐标系的使用
4.空间向量的计算(如加减、数量积、等等)
5.空间中的平面与直线
6.空间图形的重心与质心
四、三角函数的基本概念
1.角度的概念与弧度制的转换
2.正弦、余弦、正切等三角函数的定义
3.各种三角函数的性质
4.三角函数的图像与周期性
五、统计学的基本知识
1.数据的采集与整理
2.数据的中心与散布度量(如平均数、中位数、众数、标准差等等)
3.数据的分布形式(如正态分布、偏态分布等等)
4.数据的统计推断(如置信区间、假设检验等等)
六、概率的基本概念
1.随机事件、试验与样本空间
2.概率的定义与性质
3.条件概率的定义及其应用
4.独立事件的概念与性质
以上是初二数学必考知识点的归纳总结,希望对初中学生们的学习有所帮助。

初二数学知识点归纳

初二数学知识点归纳

初二数学知识点归纳1. 数的运算- 有理数的加、减、乘、除运算法则- 绝对值的概念和运算- 相反数的概念和运算- 乘方和开方的运算法则2. 代数基础- 代数式的书写规则- 代数式的加减运算- 代数式的乘除运算- 分式的加减乘除运算3. 一元一次方程- 一元一次方程的定义- 一元一次方程的解法- 一元一次方程的应用4. 二元一次方程组- 二元一次方程组的定义- 二元一次方程组的解法(加减消元法和代入消元法) - 二元一次方程组的应用5. 不等式- 不等式的概念- 不等式的解法- 一元一次不等式组的解法- 不等式的应用6. 几何图形- 点、线、面的基本性质- 平面图形的分类- 几何图形的对称性7. 三角形- 三角形的分类- 三角形的内角和定理- 三角形的外角性质- 三角形的边长关系8. 四边形- 四边形的分类- 平行四边形的性质- 矩形、菱形、正方形的性质9. 圆- 圆的基本概念- 圆的周长和面积计算- 圆的切线性质- 圆与圆的位置关系10. 空间几何- 空间几何体的认识- 空间几何体的表面积和体积计算 - 空间几何体的组合与分解11. 函数初步- 函数的概念- 一次函数的图像和性质- 正比例函数和反比例函数12. 概率初步- 概率的基本概念- 简单事件的概率计算- 概率在实际问题中的应用以上是初二数学的主要知识点归纳,涵盖了数的运算、代数基础、方程与不等式、几何图形、空间几何、函数和概率等重要领域,为进一步学习数学打下坚实的基础。

初二数学知识点全总结

初二数学知识点全总结

初二数学知识点全总结一、整数1. 整数的概念和表示法2. 整数的加减法3. 整数的乘除法4. 整数的乘方和开方5. 整数的大小比较和大小关系的判断6. 整数的运算性质和规律二、分数1. 分数的概念和表示法2. 分数的加减法3. 分数的乘除法4. 分数的约分和商的混合数表示法5. 分数的运算性质和规律6. 分数的大小比较和大小关系的判断三、小数1. 小数的概念和表示法2. 小数的加减法3. 小数的乘除法4. 小数与分数的相互转换5. 小数的运算性质和规律6. 小数的大小比较和大小关系的判断四、代数式与方程式1. 代数式的概念和表示法2. 代数式的加减法和乘法3. 代数式的乘方和乘方的运算规则4. 代数式的化简和展开5. 一元一次方程和一元一次方程的解法6. 代数式和方程式在实际问题中的应用五、平面图形1. 点、线、面的概念和性质2. 直线、射线、线段的概念和性质3. 角的概念和性质4. 三角形、四边形、多边形的概念和性质5. 圆的概念和性质6. 平面图形的周长和面积计算六、几何变换1. 平移、旋转、翻转的概念和性质2. 平移、旋转、翻转的操作方法和计算规则3. 平面图形在几何变换中的变化规律4. 几何变换在实际问题中的应用七、统计与概率1. 数据的搜集、整理、分析和表示2. 数据的统计量和图表的绘制3. 概率的概念和性质4. 事件的概念和性质5. 概率计算和事件发生的可能性判断以上是初二数学的主要知识点总结,其中包括整数、分数、小数、代数式与方程式、平面图形、几何变换、统计与概率等方面的内容。

掌握这些知识点对于学好初二数学非常重要,希望对你有所帮助。

初二数学知识点全总结梳理

初二数学知识点全总结梳理

初二数学知识点全总结梳理一、代数与方程式1. 整数的加减乘除2. 分数的加减乘除3. 同底数幂的乘法与除法4. 多项式的加减乘除5. 一元一次方程的解法6. 一元一次方程组的解法7. 二元一次方程组的解法8. 四则运算法则9. 开方法则(开方、乘方)10. 分式方程的解法二、几何1. 点、线、面、立体图形的性质2. 直线、射线和线段的性质3. 角的基本概念4. 直角、锐角和钝角的概念5. 平行线与垂直线的判定6. 三角形的分类(等腰、等边、直角等)7. 三角形的性质(面积、高、中线等)8. 同位角与内错角的性质9. 图形的相似与全等10. 空间中的位置与方向三、函数1. 函数的概念及性质2. 函数的图像与表示3. 一次函数与二次函数4. 反比例函数与比例函数5. 常用函数的性质与图像6. 函数的求值与求解四、概率1. 事件与概率的概念2. 随机事件的组合与求概率3. 统计与频率分布4. 概率的计算与应用五、数与数量关系1. 整数与有理数的性质2. 分数与小数的转换3. 比例与比例的应用4. 百分数与百分数的应用5. 近似数与误差的估算六、数与代数1. 数字运算与计算2. 运算法则与运算律3. 数量与代数式的关系4. 代数式的展开与因式分解5. 符号与数学运算的关系七、图形与变换1. 图形的分类与性质2. 图形的平移、旋转、翻转与对称3. 图形的相似与全等4. 图形的计算与应用八、应用题1. 实际问题的数学化及求解2. 理解题、烦恼题的求解3. 推算与循环推理问题的解决以上是初二数学知识点的全面总结梳理,希望对你有所帮助。

如需详细了解每个知识点的具体内容,可以选择相应的知识点进行深入学习。

八年级数学重点知识点(全)

八年级数学重点知识点(全)

文档初二数学知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 ⇔ q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫文档做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcadc d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.文档11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.文档3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文档文档文档文档几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,文档实用标准文案文档而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;ABCEDA BCD 12实用标准文案文档② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD 是角平分线)(3)已知三角形中线(若AD 是BC 的中线)(4) 已知等腰三角形ABC 中,AB=AC(5)其它文档。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学复习提纲一、一次函数1、我们称数值变化的量为变量(variable)。

2、有些量的数值是始终不变的,我们称它们为常量(constant)。

3、在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independent variable),y是x的函数(function)。

4、如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

5形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。

6、形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。

正比例函数是一种特殊的一次函数。

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

7、每个二元一次方程组都对应两个一次函数,于是也对应两条直线。

从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

二、数据的描述1、我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。

2、常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。

条形图:描述各组数据的个数。

复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。

扇形图:描述各组频数的大小在总数中所占的百分比。

折线图:描述数据的变化趋势。

直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。

3、在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。

4、求出各个小组两个端点的平均数,这些平均数称为组中值。

三、全等三角形1、能够完全重合的两个图形叫做全等形(congruent figures)。

2、能够完全重合的两个三角形叫做全等三角形(congruent triangles)。

3、全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。

4、全等三角形全等的条件:三边对应相等的两个三角形全等。

(SSS)5、两边和它们的夹角对应相等的两个三角形全等。

(SAS)6、两角和它们的夹边对应相等的两个三角形全等。

(ASA)7、两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS)8、角平分线的性质:角平分线上的点到角的两边的距离相等。

9、到角两边的距离相等的点在角的平分线上。

四、轴对称1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。

2、轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。

3、线段垂直平分线上的点与这条线段两个端点的距离相等。

4、由一个平面图形得到它的轴对称图形叫做轴对称变换。

5、等腰三角形的性质:6、等腰三角形的两个底角相等。

(等边对等角)7、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)(附:顶角+2底角=180°)8、如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)9、有一个角是60°的等腰三角形是等边三角形。

10、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

五、整式1、式子是数或字母的积的式子叫做单项式(monomial)。

单独的一个数或字母也是单项式。

2、单项式中的数字因数叫做这个单项式的系数(coefficient)。

3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree )。

4、几个单项式的和叫做多项式(polynomial)。

每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constant term)。

5、多项式里次数最高的项的次数,就是这个多项式的次数。

6、单项式和多项式统称整式(integral expression_r)。

7、所含字母相同,并且相同字母的指数也相同的项叫做同类项。

8、把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。

9、几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。

10、同底数幂相乘,底数不变,指数相加。

11、幂的乘方,底数不变,指数相乘12、积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

13、单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

14、单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

15、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

①pq x q p x q x p x +++=++)())((2②平方差公式:22))((b a b a b a -=-+③完全平方公式:2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-222)()(2)(c b c b a a c b a ++++=++ab bc ac c b a 222222+++++= ④同底数幂相除,底数不变,指数相减。

⑤任何不等于0的数的0次幂都等于1。

六、分式1、如果A 、B 表示两个整式,并且B 中含有字母,那么式子A/B 叫做分式(fraction )。

2、分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

3、分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

4、分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

5、分式乘方要把分子、分母分别乘方。

)0(1≠=-a aa n n 这就是说,)0(≠-a a n 是n a 的倒数。

6、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

七、反比例函数1、形如y=k/x (k 为常数,k ≠0)的函数称为反比例函数(inverse proportional function)。

2、反比例函数的图像属于双曲线(hyperbola )。

当k >0时,双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小; 当k <0时,双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x 值的增大而增大。

八、勾股定理1、勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222c b a =+2、勾股定理逆定理:如果三角形三边长a,b,c 满足222c b a =+,那么这个三角形是直角三角形。

3、经过证明被确认正确的命题叫做定理(theorem)。

4、我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)九、四边形1、有两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

3、平行四边形的判定:①两组对边分别相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。

4、三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5、直角三角形斜边上的中线等于斜边的一半。

6、矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

7、矩形判定定理:①有一个角是直角的平行四边形叫做矩形。

②对角线相等的平行四边形是矩形。

③有三个角是直角的四边形是矩形。

8、菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

9、菱形的判定定理:①一组邻边相等的平行四边形是菱形(rhombus)。

②对角线互相垂直的平行四边形是菱形。

③四条边相等的四边形是菱形。

ab S 21=(a 、b 为两条对角线) 10、正方形的性质:四条边都相等,四个角都是直角。

11、正方形既是矩形,又是菱形。

12、正方形判定定理:①邻边相等的矩形是正方形。

②有一个角是直角的菱形是正方形。

13、一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium )。

14、等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

15、等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

16、线段的重心就是线段的中点。

17、平行四边形的重心是它的两条对角线的交点。

18、三角形的三条中线交于疑点,这一点就是三角形的重心。

19、宽和长的比是)618.0(215约为-的矩形叫做黄金矩形。

十、数据的分析1、将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

2、一组数据中出现次数最多的数据就是这组数据的众数(mode )。

3、一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

4、方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

5、数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告。

相关文档
最新文档