山东省聊城市莘县一中2014届高三下学期第十九周综合练习数学试题Word版含答案
山东省聊城市莘县一中2014-2015学年高一上学期第一次

莘县一中2014~2015学年第一学期质量检测高一数学试题 2014.10 注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡和Ⅱ卷答题纸上.2.回答第I 卷时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题纸上.写在本试卷上无效.4.本试卷满分120分,考试时间100分钟,考试结束后,将答题卡一并交回.第Ⅰ卷 (共50分)一、选择题(本题包括10小题,每小题5分,每小题只有一个选项......符合题意) 1.下列关系式或说法正确的是( )A.N ∈QB. {}0φ⊆C.空集是任何集合的真子集D.(1,2){})2,1(⊆2.已知集合{}30|<<=x x M ,集合{}41|<<=x x N ,则=N M ( )A .{}31|<<x xB .{}40|<<x xC .{}43|<<x xD .{}10|<<x x3.若13x <) A. 31x - B. 13x - C. ()213x - D.非以上答案 4.方程组⎩⎨⎧=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-5.函数2)1(2)(2+-+=x a x x f 在]4,(-∞上是减函数,则实数a 的取值范围是( )A. 5≤a B . 3-≥a C. 3-≤a D . 3≥a6.函数()1f x x =-的图象是( )7.已知偶函数)(x f 在),0[+∞上单调递减,则)1(f 和)10(-f 的大小关系为( )A. )1(f >)10(-fB. )1(f <)10(-fC. )1(f =)10(-fD.)1(f 和)10(-f 关系不定8.下列函数中在)0,(-∞上单调递减的是 ( ) A.1+=x x y B .x x y +=2 C. x y -=1 D .21x y -= 9. 设奇函数()f x 在区间(0,)+∞上为增函数,且(1)0f -=,则不等式()()0f x f x x--<的解集为( ) A.(1,0)(1,)-⋃+∞ B.(,1)(0,1)-∞-⋃C.(,1)(1,)-∞-⋃+∞D.(1,0)(0,1)-⋃10. 设函数3()f x ax bx c =++的图像如图所示,则()()f a f a +-的值( )A.大于0B.等于0C.小于0D.以上结论都不对第Ⅱ卷(非选择题,共70分)二、填空题(本题包括5小题,共20分)11若集合}{3,2,1=A ,{}4,3,1=B ,则B A U 的真子集个数为 .12.函数0y =定义域 .(区间表示) 13.设集合}|{},1|{a x x N x x M >=≤=,要使∅=N M ,则实数a 的取值范围是 .14.已知函数(]2()22,3,1f x x x x =+-∈-,则()f x 的值域为 .15. 设212,1()1,11x x f x x x⎧--≤⎪=⎨>⎪+⎩,则)]21([f f = . 三、解答题题(本题包括5大题,共50分,要写出必要的文字说明、解题步骤)16. (本小题满分8分)计算:(1)0a >已知,化简(2)1122120331125343216π-⎡⎤⎛⎫⎢⎥++- ⎪⎢⎥⎝⎭⎣⎦.17(本小题满分10分)已知集合}0198|{22=+-+-=a a ax x x A ,}034|{2=+-=x x x B ,}0127|{2=+-=x x x C ,满足A B φ≠ ,φ=C A ,求实数a 的值.18.(本小题满分10分) 函数22,0(),0x x f x x x x ⎧-<⎪=⎨⎪≥⎩(1)若()1f a =,求a 的值;(2)确定函数()f x 在区间(,0)-∞上的单调性,并用定义证明.19. (本小题满分10分)函数()f x 的定义域为D ,若存在0x D ∈,使等式00(x )f x = 成立,则称0x x = 为函数()f x 的不动点,若1x =± 均为函数22()x a f x x b+=+ 的不动点. (1)求,a b 的值; (2)求证:()f x 是奇函数.20. (本小题满分12分)已知函数)(x f 是定义在R 上的偶函数,且当0≤x 时, x x x f 2)(2+=.(1)求函数R x x f ∈),(的解析式;(2)写出函数R x x f ∈),(的增区间(直接写出结果,不必写出求解过程);(3)若函数[]2,1,22)()(∈+-=x ax x f x g ,求函数)(x g 的最小值()h a .出题人:沈鹏正 审题人:王春兰莘县一中2014~2015学年第一学期质量检测高一数学试题 答案一、BABDC BACDB二、11. 15 12. ()()2,11,---+∞ 13. 1a ≥14. []3,1- 15. []3,1-三、解答题16. (1) 712a (或(2) 417.解: }{0342=+-=x x x B =}{3,1…………………………2 }{01272=+-=x x x c =}{4,3......................................4 又 A C= ∴A ∉3 (5)A B ,∴A ∈1 (6)⎪⎩⎪⎨⎧≠+-+-=+-+-∴0198990198122a a a a a a .............................................8 ∴a=5 (10)18. 解:(1)2a =-或1a = (5)(2)()f x 在区间(,0)-∞上单调递减.证明如下:任取()12,,0x x ∈-∞,且12x x <则 (6)1212121212211222()()()()112()()2()(1)f x f x x x x x x x x x x x x x -=---=---=-+ ………………………8 1221121212020,10()()0()()x x x x x x f x f x f x f x <<∴->+>∴->∴> (9)∴函数()f x 在区间(,0)-∞上单调递减. (10)19.解:(1)根据题意得211211a b a b +⎧=⎪⎪+⎨-⎪=-⎪+⎩, ………………………3 得01a b =⎧⎨=⎩ ...........................5 (2)证明:函数()f x 的定义域为R , (6)因为对定义域内的每一个x ,都有 ………………………7 ()()2222()()11x x f x f x x x --==-=-+-+ ……………………9 所以,函数22()1x f x x =+为奇函数. ……………………10 20.(1)222,0()2,0x x x f x x x x ⎧+≤⎪=⎨->⎪⎩ ........................3 (2)()()1,01,-+∞和 (5)(3)①当11a +≤时,即0a ≤min ()(1)12g x g a ==- (7)②当112a <+<时,即01a <<2min ()(1)21g x g a a a =+=--+ ........................9 ③当12a +≥时,即1a ≥ min ()(2)22g x g a ==- (11)综上:212,0()21,0124,1a a h a a a a a a -≤⎧⎪=--+<<⎨⎪-≥⎩ (12)。
山东省聊城市莘县中考数学一模试卷(含解析)

中考数学一模试卷12个小题,每小题3分,共36 分)1 ...丄的绝对值是()2A. —B. :C. 2D.- 22 22 .如图,/ 1 = / 2,/ 3=30° 则/ 4 等于()3•每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查•在这次调查中,样本是(A. 500名学生B. 所抽取的50名学生对“世界读书日”的知晓情况C. 50名学生D. 每一名学生对“世界读书日”的知晓情况4. 下列几何体中,主视图和俯视图都为矩形的是()5. 下列运算正确的是()A. (x - 2)2=x2- 4B.(x2)3=x6C. x6十x3=x2D. x3?x4=x126 .不等式1 - 2x w 5的解集在数轴上表示为()--- ■ - — C B—... . B.:C ”D-? -1 0 1 * -2-10 17.下列命题中是真命题的是()A. 如果a2=b2,那么a=b、选择题(本题共D. 150°B. 对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D. 线段垂直平分线上的点与这条线段两个端点的距离相等&随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一•某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()9.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如颜色红黄白紫绿花的朵数123456/黄/紫/红y it^/白红白黄红11. 如图,在平行四边形ABCD中, E为CD 上一点,连接AE、BE、BD,且AE、BD交于点F, S^EF:S△ ABF=4: 25,贝y DE EC=( )A. 2: 3 B . 2: 5 C . 3: 5 D . 3: 2A. 15B. 16C. 21D. 1712. 如图,CD是O 0的弦,0是圆心,把O O的劣弧沿着CD对折,A是对折后劣弧上的一点,/ CAD=1O0 ,、填空题(本大题共5小题,每小题3分,共15分14.计算:13.方程(x+2)( x - 3) =x+2 的解是Rt△ ABC中,/ ABC=90°, DE垂直平分AC,垂足为O, AD// BC 且AB=3 BC=4 贝U AD216 .如图,二次函数y=ax+bx+c (a丰0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x= - 1,点B的坐标为(1, 0).下面的四个结论:①AB=4;②b2- 4ac > 0;③a b v 0;④a- b+c v 0,其中正确的结论是(填写序II\ i A\ -l\OI17.如图,已知菱形OABC勺两个顶点0( 0, 0), B (2, 2),若将菱形绕点O以每秒45°的速度则/B的度数是(D .50°15.如图,三、解答题(本大题共 8小题,共69分) 18 .化简:(1+—一)十一二“.a"-2a+l19. 在平面直角坐标系中,△ ABC 的位置如图所示如图,在△ ABC 中,CD 是AB 边上的中线,F 是CD 的中点,过点C 作AB 的平行线交BF 的延长线于点E ,连接AE. (1) 求证:EC=DA(2) 若AC 丄CB 试判断四边形 AECD 的形状,并证明你的结论.20. 如图,在△ ABC 中,CD 是 AB 边上的中线,F 是CD 的中点,过点 C 作AB 的平行线交BF 的延长线于点E ,连接AE (1) 求证:EC=DA(2) 若AC 丄CB 试判断四边形 AECD 的形状,并证明你的结论.21•体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次. (1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说 明);(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由. 22.曲靖市某楼盘准备以每平方米 4000元的均价对外销售,由于国务院有关房地产的新政策出台后,B逆时针旋转,则第 2017秒时,菱形两对角线交点 D的坐标为3购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.9折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月 1.4元,请问哪种方案更优惠?23. 如图,在平面直角坐标系中有Rt△ ABC已知/ CAB=90 , AB=AC A (- 2, 0), B (0, 1).(1)求点C的坐标;(2)将厶ABC沿x轴正方向平移,在第一象限内B, C两点的对应点B', C'恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y1,点B', C'所在的直线记为y2,请直接写出在第一象限内当y1< y2时x的取值范围.24. 如图,点D为O O上一点,点C在直径BA的延长线上,且/ CDA=/ CBD ( 1 )判断直线CD和O O的位置关系,并说明理由.(2)过点B作O O的切线BE交直线CD于点E,若AC=2 O O的半径是3,求/ BEC的正切值.25 .如图,Rt△ ABC中,/ C=90 , BC=8cm AC=6cm点P从B出发沿BA向A运动,速度为每秒1cm, 点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P, Q同时停止运动,设P, Q两点运动时间为t秒.(1)当t 为何值时,PQ// BC ?设四边形PQCB 勺面积为y ,求y 关于t 的函数关系式;四边形PQCB 面积能否是厶ABC 面积的 ?若能,求出此时t 的值;若不能,请说明理由; 5AEQ 为等腰三角形?(直接写出结果)参考答案与试题解析一、选择题(本题共 12个小题,每小题 3分,共36分) 1 .:的绝对值是( ) A. —B.丄C. 2D.— 22 2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答. 【解答】解:-一的绝对值是一. 故选:A.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0的绝对值是0.2 .如图,/ 1 = / 2,/ 3=30° 则/ 4 等于( )(2) (3)A. 120°B. 130°C. 145°D. 150°【考点】平行线的判定与性质.【专题】计算题.【分析】由/ 1=7 2,利用同位角相等两直线平行得到a与b平行,再由两直线平行同位角相等得到/ 3=7 5,求出/ 5的度数,即可求出/ 4的度数.【解答】解:•••/仁7 2,••• a// b,•••7 5= 7 3=30°,• 7 4=180°- 7 5, =150°,故选D【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.3•每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查•在这次调查中,样本是()A. 500名学生B. 所抽取的50名学生对“世界读书日”的知晓情况C. 50名学生D. 每一名学生对“世界读书日”的知晓情况【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的-部分个体,据此即可判断.【解答】解:样本是所抽取的50名学生对“世界读书日”的知晓情况.故选:B.【点评】本题考查了样本的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.4. 下列几何体中,主视图和俯视图都为矩形的是()【分析】分别分析四个选项中圆锥、圆柱、球体、三棱柱的主视图、俯视图,从而得出都为矩形的几何体. 【解答】解:A、圆锥的主视图是三角形,俯视图是带圆心的圆,故本选项错误;B、圆柱的主视图是矩形、俯视图是矩形,故本选项正确;C、球的主视图、俯视图都是圆,故本选项错误;D三棱柱的主视图为矩形和俯视图为三角形,故本选项错误.故选:B.【点评】本题考查了简单几何体的三视图,关键是培养学生的思考能力和对几何体三种视图的空间想象能力.5. 下列运算正确的是( )A、 ( x - 2) 2=x2- 4 B.( x2) 3=x6 C. x6十x3=x2 D. x3?x4=x12【考点】整式的混合运算.【专题】计算题;整式.【分析】A、原式利用完全平方公式化简得到结果,即可作出判断;B、原式利用幕的乘方运算法则计算得到结果,即可作出判断;C、原式利用同底数幕的除法法则计算得到结果,即可作出判断;D原式利用同底数幕的乘法法则计算得到结果,即可作出判断.【解答】解:A、原式=x - 4x+4,错误;B、原式=x6,正确;C、原式=x3,错误;D原式=x7,错误,故选B【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6 •不等式1 - 2x < 5的解集在数轴上表示为()【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】根据不等式的解集在数轴上表示出来( >,》向右画;v,w向左画),可得答案.【解答】解:由 1 - 2x w 5,解得x>- 2,故选:A.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来( >,》向右画;<,<向左画),注意在表示解集时“》”,“w ”要用实心圆点表示;要用空心圆点表示.7.下列命题中是真命题的是()2 2A. 如果a =b,那么a=bB. 对角线互相垂直的四边形是菱形C. 旋转前后的两个图形,对应点所连线段相等D. 线段垂直平分线上的点与这条线段两个端点的距离相等【考点】命题与定理.【分析】利用菱形的判定、旋转的性质及垂直平分线的性质对每个选项进行判断后即可得到正确的选项. 【解答】解:A、例如3与-3,可判断A错误,故A是假命题;B、对角线互相垂直的平行四边形是菱形,错误,故B是假命题;C、旋转前后的两个图形,对应点所连线段不一定相等,错误,故C是假命题;D线段垂直平分线上的点与这条线段两个端点的距离相等,正确,故D是真命题,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是理解菱形的判定、旋转的性质及垂直平分线的性质.&随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()【考点】众数;条形统计图;中位数.【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【解答】解:捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:C.【点评】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.9. 把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体图),那么长方体下底面有()朵花.颜色红黄白紫绿花的朵数123456/黄/案/红/胚」7白红白黄红/A. 15B. 16C. 21D. 17(如【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.10. 在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()【考点】二次函数的图象;一次函数的图象.【分析】可先根据一次函数的图象判断a、b的符号,再判断二次函数图象与实际是否相符,判断正误.【解答】解:A、由一次函数y=ax+b的图象可得:a> 0,此时二次函数y=ax2+b的图象应该开口向上,故A 错误;B、由一次函数y=ax+b的图象可得:a v 0, b>0,此时二次函数y=ax +b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a v 0, b v 0,此时二次函数y=ax +b的图象应该开口向下,故错误;D由一次函数y=ax+b的图象可得:a v 0, b> 0,此时二次函数y=ax2+b的图象应该开口向下,故错误;故选:B.【点评】本题考查了二次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.11. 如图,在平行四边形ABCD中, E为CD 上一点,连接AE、BE、BD,且AE、BD交于点F, S^EF:【考点】相似三角形的判定与性质;三角形的面积;平行四边形的性质. 【专题】探究型.【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF^A BAF,再根据S ^DEF : S ^AB =4:10: 25即可得出其相似比,由相似三角形的性质即可求出 止的值,由AB=CD 即可得出结论.AB【解答】解:•••四边形 ABCD 是平行四边形, ••• AB// CD•••/ EAB=Z DEF / AFB=/ DFE• △ DEF^A BAF,T S A DE : S A ABF =4 : 25 , .DE 2…——=,AB 5•/ AB=CD • DE EC=2 3. 故选A.【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等 于相似比,面积的比等于相似比的平方是解答此题的关键.12. 如图,CD 是O 0的弦,0是圆心,把O O 的劣弧沿着CD 对折,A 是对折后劣弧上的一点,/ CAD=100 ,△ ABF=4: 25,贝y DE EC=(3: 2【分析】先求出/ A'=100,再利用圆内接四边形的性质即可.【解答】解:如图,翻折△ ACD点A落在A'处,•••/ A'= / A=100° ,•••四边形A'CBD是O 0的内接四边形,•••/ A'+ / B=180 ,•••/ B=80° ,故选B.【点评】此题是折叠问题,主要考查了折叠的性质,圆内接四边形的性质,解本题的关键是得出/ A'=100 ° .二、填空题(本大题共5小题,每小题3分,共15分13 .方程(x+2)( x - 3) =x+2 的解是x i= - 2, X2=4 .【考点】解一元二次方程-因式分解法.【分析】先移项,再提取公因式,求出x的值即可.【解答】解:原式可化为(x+2)( x - 3)-( x+2) =0,提取公因式得,(x+2)( x - 4) =0,故x+2=0 或x - 4=0,解得X i=- 2, X2=4.则/B的度数是()D .50°【考点】翻折变换(折叠问故答案为:X i =- 2, X 2=4.【点评】本题考查的是解一元二次方程,熟知因式分解法解一元二次方程的一般步骤是解答此题的 关键.【考点】二次根式的混合运算.【专题】计算题.【分析】先根据二次根式的乘法法则运算,然后化简后合并即可.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除 运算,然后合并同类二次根式.15. 如图,Rt △ ABC 中,/ ABC=90 , DE 垂直平分 AC,垂足为 O, AD// BQ 且 AB=3 BC=4 贝UAD【考点】勾股定理;全等三角形的判定与性质;线段垂直平分线的性质. 【专题】几何图形问题.【分析】先根据勾股定理求出 AC 的长,再根据 DE 垂直平分AC 得出OA 的长,根据相似三角形的判 定定理得出△CBA 由相似三角形的对应边成比例即可得出结论.【解答】解:••• Rt △ ABC 中,/ ABC=90 , AB=3, BC=4, ••• AC= 一「=5,■/ DE 垂直平分AC,垂足为0,1 5• 0A=_ AC= _ , / AOD M B=90° , •/AD// BC,14.计算:><丁:;」.=—【解答】解:原•••/ A=Z C,•△AOD^A CBA•W4,即二=〔,解得AD=.Atz Ow b Q Q25故答案为:..o【点评】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键._ 216. 如图,二次函数y=ax+bx+c (a丰0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x= - 1,点B的坐标为(1, 0).下面的四个结论:①AB=4;②b - 4ac > 0;③ab v 0;④a- b+c v 0,其中正确的结论是①②④(填写序号).【考点】二次函数图象与系数的关系.【分析】利用二次函数对称性以及结合b2- 4ac的符号与x轴交点个数关系,再利用数形结合分别分析得出答案.【解答】解:•••抛物线对称轴是直线x= - 1,点B的坐标为(1, 0),二 A (- 3, 0),••• AB=4,故选项①正确;•••抛物线与x轴有两个交点,• b2- 4ac>0,故选项②正确;•••抛物线开口向上,• a> 0,•••抛物线对称轴在y轴左侧,• a, b同号,• ab> 0,故选项③错误;当x=- 1时,y=a - b+c此时最小,为负数,故选项④正确;故答案为:①②④.【点评】此题主要考查了二次函数图象与系数的关系,正确判断a- b+c的符号是解题关键.17. 如图,已知菱形OABC勺两个顶点0( 0, 0), B (2, 2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2017秒时,菱形两对角线交点D的坐标为(0, _ ___ .【考点】坐标与图形变化-旋转;规律型:点的坐标;菱形的性质. 【分析】根据菱形的性质及中点的坐标公式可得点D 坐标,再根据旋转的性质可得旋转后点D 的坐标.【解答】解:菱形 OABC 勺顶点0( 0, 0), B (2, 2),得 D 点坐标为(二,’I ),即(1, 1).2 2每秒旋转45°,则第2017秒时,得45°X 2017, 45°X 2017 - 360=252.125 周,OD 旋转了 252周半,菱形的对角线交点 D 的坐标为(0, 7), 故答案为:(0,-).【点评】本题主要考查菱形的性质及旋转的性质,熟练掌握菱形的性质及中点的坐标公式、中心对 称的性质是解题的关键.三、解答题(本大题共 8小题,共69分) 18.化简: 1 a(1― i 八【考点】分式的混合运算.【分析】首先把括号内的式子通分相加,把除法转化为乘法,然后进行乘法运算即可.=a - 1.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.19.在平面直角坐标系中,△ ABC 的位置如图所示(2015?巴彦淖尔)如图,在△ABC 中,CD 是AB边上的中线,F 是CD 的中点,过点C 作AB 的平行线交BF 的延长线于点E ,连接AE (1)求证:EC=DA(2) 若AC 丄CB 试判断四边形 AECD 勺形状,并证明你的结论.【解答】解:原式a . & aT (a-1 ) 2【考点】全等三角形的判定与性质;菱形的判定.【专题】证明题.【分析】(1)根据平行线的性质得出/ FECK DBF / ECF=Z BDF, F是CD的中点,得出FD=CF再利用AAS 证明△ FEC与厶DBF全等,进一步证明即可;(2)利用直角三角形的性质:斜边上的中线等于斜边的',得出CD=DA进一步得出结论即可.2【解答】(1)证明:T EC// AB,•••/ FEC=Z DBF / ECFK BDF,••• F是CD的中点,•FD=CF在厶FEC与△ DBF中,r ZFEC=ZDBF•ZECF=ZBDF,FD=CF•△FEC^A DBF,•EC=BD又••• CD是AB边上的中线,•BD=AD•EC=AD(2)四边形AECD是菱形.证明:••• EC=AD EC// AD,•四边形AECD是平行四边形,•/ ACL CB CD是AB边上的中线,•CD=AD=BD•四边形AECD是菱形.【点评】此题考查三角形全等的判定与性质,平行四边形的判定以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.20. 如图,在△ ABC中,CD是AB边上的中线,F是CD的中点,过点C作AB的平行线交BF的延长线于点E,连接AE(1) 求证:EC=DA(2) 若AC丄CB,试判断四边形AECD的形状,并证明你的结论.【考点】全等三角形的判定与性质;菱形的判定.【专题】证明题.【分析】(1)根据平行线的性质得出/ FECK DBF / ECF=Z BDF F是CD的中点,得出FD=CF再利用AAS证明△ FEC与厶DBF全等,进一步证明即可;(2)利用直角三角形的性质:斜边上的中线等于斜边的【解答】(1)证明:T EC// AB,•••/ FEC=Z DBF, / ECF=/ BDF,••• F是CD的中点,•FD=CF在厶FEC与△ DBF中,'ZFEC=ZDBF•ZECF=ZBDF,FD-CP•△FEC^A DBF,•EC=BD又••• CD是AB边上的中线,•BD=AD•EC=AD(2)四边形AECD是菱形.证明:••• EC=AD EC// AD,•四边形AECD是平行四边形,—得出CD=DA进一步得出结论即可.•/ ACL CB CD是AB边上的中线,••• CD=AD=BD•••四边形AECD是菱形.【点评】此题考查三角形全等的判定与性质,平行四边形的判定以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.21•体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明);(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.【考点】列表法与树状图法.【专题】数形结合;分类讨论.【分析】(1)列举出所有情况,看足球踢到了小华处的情况数占所有情况数的多少即可;(2)可设球从小明处先开始踢,得到3次踢球回到小明处的概率,进而根据树状图可得球从其他2位同学处开始,3次踢球回到小明处的概率,比较可得可能性最小的方案.【解答】解:(1)如图:小强第一次小明筆二;欠小强力洋小明• P (足球踢到小华处)=小需(2)应从小明开始踢如图:第一次第二次第三次小琶若从小明开始踢,P (踢到小明处)h =8 4同理,若从小强开始踢,P (踢到小明处)=.8若从小华开始踢,P (踢到小明处)=:(理由3分)8【点评】考查用列树状图的方法解决概率问题;分类得到3次踢球踢到小明处的情况数是解决本题的难点;用到的知识点为:概率等于所求情况数与总情况数之比.22. 曲靖市某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.9折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月 1.4元,请问哪种方案更优惠?【考点】一元二次方程的应用.【分析】(1 )设出平均每次下调的百分率为x,利用预订每平方米销售价格X( 1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.(2)分别计算两种方案的优惠价格,比较后发现方案②更优惠.【解答】解:(1)设平均每次下调的百分率是x,依题意得,4000 (1 - x) 2=3240解之得:x=0.仁10%或x=1.9 (不合题意,舍去)所以,平均每次下调的百分率是10%(2)方案①优惠=100X 3240 X( 1 - 99% =3240 元方案②优惠=100X 1.4 X 12X 2=3360元故选择方案②更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.23. 如图,在平面直角坐标系中有Rt△ ABC已知/ CAB=90 , AB=AC A (- 2, 0), B (0, 1).(1)求点C的坐标;(2)将厶ABC沿x轴正方向平移,在第一象限内B, C两点的对应点B', C'恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y i,点B', C'所在的直线记为y2,请直接写出在第一象限内当y i v y2时x的取值范围.【考点】反比例函数综合题.【分析】(1)作CN L x轴于点N,根据HL证明Rt△ CA阵Rt △ AOB求出NO的长度,进而求出d;(2)设厶ABC沿x轴的正方向平移c个单位,用c表示出C'和B',根据两点都在反比例函数图象上,求出k的值,进而求出c的值,即可求出反比例函数和直线B' C'的解析式;(3)直接从图象上找出y i v y2时,x的取值范围.【解答】解:(1 )作CNL x轴于点N,••• A (- 2, 0) B ( 0, 1).••• OB=1, AO=2在Rt△ CAN和Rt △ AOBI AC=AB•Rt△ CANP Rt △ AOB( HL),•AN=BO=1 CN=AO=2 NO=NA+AO=3又•••点C在第二象限,•- C (- 3 , 2);(2)设厶ABC沿x轴的正方向平移c个单位,则C' (- 3+c, 2),贝U B'( c, 1)又点C'和B'在该比例函数图象上,把点C'和B'的坐标分别代入y1=_,得-6+2c=c,解得c=6,即反比例函数解析式为y i= ,(3) 此时C'( 3, 2), B'( 6, 1),设直线B' C'的解析式y2=mx+n2=3m+nl=6m+riifF•••直线C' B'的解析式为y2=-—x+3;由图象可知反比例函数y i和此时的直线B' C'的交点为C'( 3, 2), B'( 6, 1),.•.若y i v y2 时,贝U 3v x V 6.【点评】本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的知识,解决第(2)问关键求出c的值,此题难度不是很大.24. 如图,点D为O O上一点,点C在直径BA的延长线上,且/ CDA=/ CBD ( 1 )判断直线CD和o 0的位置关系,并说明理由.(2)过点B作O 0的切线BE交直线CD于点E,若AC=2 O 0的半径是3,求/ BEC的正切值.【考点】切线的性质;直线与圆的位置关系;解直角三角形.【专题】综合题.【分析】(1)连接OD证明OD L CE,所以需证明/ CDA+Z ODA=90 ;(2)根据已知条件在Rt △ CDO中,由勾股定理求得:CD=4又CE切O 0于D, EB切O O于B,由切线长定理得DE=EB 设DE=EB=x 在Rt△ CBE中,由勾股定理得:C^=BE2+BC2,贝U ( a+x) 2=x2+ (5+3) 2,解得:x=6,即BE=6,然后由正切函数的定义解得/ BEC的正切值.【解答】解:(1)直线CD与O 0的位置关系是相切.理由:连接0D如图所示:•/ AB是O 0的直径,•••/ ADB=90 ,•••/ DAB+Z DBA=90 ,•••/ CDA=/ CBD•Z DAB+Z CDA=0°,•/ OD=OA•Z DAB=Z ADO•Z CDA+Z ADO=90 ,即: ODL CE•直线CD是O O的切线.即:直线CD与O O的位置关系是相切.(2)v AC=2 O O的半径是3 ,•OC=2=3=5 OD=3在Rt△ CDO中 ,由勾股定理得:CD=4.•/ CE切O O于D, EB BO O于B , • DE=EB Z CBE=90 ,设 DE=EB=x在Rt △ CBE 中,有勾股定理得: CE=BE+BC , 则(a+x ) 2=x 2+ (5+3) 2,解得:x=6, 即 BE=6 , ••• tan / BEC=—,6 3即:tan / BEC='.3【点评】本题考查了切线的性质、直线与圆的位置关系、解直角三角形,解题的关键是①掌握直线 与圆的三种位置关系及其判定方法,②掌握圆的切线的性质及勾股定理的应用、正切函数的定义.25.( 12 分)(2017?莘县一模)如图, Rt △ ABC 中,/ C=90 ,BC=8cm AC=6cm 点 P 从 B 出发沿BA 向A 运动,速度为每秒 1cm,点E 是点B 以P 为对称中心的对称点,点 P 运动的同时,点 Q 从A 出发沿AC 向C 运动,速度为每秒 2cm,当点Q 到达顶点C 时, 动时间为t 秒.【分析】(1)先在Rt △ ABC 中,由勾股定理求出 AB=10,再由 由PQ/ BC,根据平行线分线段成比例定理得出4-^ 1,列出比例式一 =•,求解即可;10 6AB AC(2)根据S 四边形P QC =S A ACB - S A AP 」AC?B G *AP?AQ?sinA 即可得出 y 关于t 的函数关系式;P, Q 同时停止运动,设 P, Q 两点运(1) 当t 为何值时,PQ// BC ?(2) 设四边形PQCB 勺面积为y ,求y 关于t 的函数关系式; (3) 四边形PQCB 面积能否是厶ABC 面积的 ?若能,求出此时5t 的值;若不能,请说明理由;AEQ 为等腰三角形?(直接写出结果)BP=t , AQ=2t ,得出 AP=10- t ,然后10 6 【专题】压轴5(3) 根据四边形 PQCB 面积是△ ABC 面积的 ,列出方程 t 2- 8t+24「X 24,解方程即可;55 5(4) A AEQ 为等腰三角形时,分三种情况讨论:①AE=AQ ②EA=EQ ③QA=QE 每一种情况都可以 列出关于t 的方程,解方程即可.【解答】解:(1) Rt △ ABC 中,•••/ C=90 , BC=8cm AC=6cm /• AB=10cm •/ BP=t , AQ=2t , ••• AP=AB - BP=10- t .•/ PQ/ BC, •璧=翌••-「T = …-="r ,解得t=;13=24- [t (10- t )5:2=_t - 8t+24 ,5即y 关于t 的函数关系式为y=m 2- 8t+24 ;&3(3)四边形PQCB 面积能是△ ABC 面积的 ,理由如下:5由题意,得 4t 2- 8t+24=』X 24,5 5整理,得 t 2- 10t+12=0, 解得t i =5-,12=5^ - ■■:(不合题意舍去).故四边形PQCB 面积能是△ ABC 面积的亠,此时t 的值为5 - •—;(2) •/ S 四边形 PQC =S A ACB _S A AP QAC?B G AP?AQ?si nA2 2•巴X 6X 8 -<X(10 - t ) ?2t?8 10。
山东省聊城一中2014届下学期高三适应性测试(一)数学试卷(文科) 有答案

山东省聊城一中2014届下学期高三年级高考适应性测试(一)数学试卷(文科)第Ⅰ卷(选择题共50分)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)山东中学联盟1.设集合M ={x|x2+x-6<0},N ={x|1≤x≤3},则M∩N =A [1,2) B[1,2] C( 2,3] D[2,3]2.命题“存在”的否定是()A.不存在B.存在C.对任意的D. 对任意的3.根据表格中的数据,可以断定方程的一个根所在的区间是()A.(-1,0)B.(0,1) C.(1,2) D.(2,3)4.已知命题p:若m >0,则关于x的方程x2+x-m=0有实根.q是p的逆命题,下面结论正确的是()A.p真q真B.p假q假C.p真q假D.p假q真5.为了得到函数的图像,只需把函数的图像上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度6.关于x的不等式ax-b>0的解集为(1, +∞),则关于x的不等式的解集()A.(-1, 2) B.(-∞, -1)∪(2, +∞)C.(1, 2) D.(-∞, -2)∪(1, +∞)7.已知集合A={x|ax2-ax+1< 0},若A=,则实数a的集合为()A.{a|0<a<4} B.{a|0≤a<4} C.{a|0<a≤4} D.{a|0≤a≤4}8.如图是一份从2000年初到2003年初的统计图表,根据此图表得到以下说法中,正确的有()①这几年人民生活水平逐年得到提高;②人民生活费收入增长最快的一年是2000年;③生活价格指数上涨速度最快的一年是2001年;④虽然2002年生活费收入增长较缓慢,但由于生活价格指数也略有降低,因而人民生活有较大的改善.A.1项B.2项C.3项 D.4项9.A. B.C. D.10.二次函数与指数函数的图象只可能是( )(非选择题共100分)二.填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.已知函数,则.12.已知,,则(用,表示).13..=____________.14.已知实数,函数,若,则的值为________15.定义在R上的函数满足:,当时,,则=__________ .三.解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本题满分12分)已知函数(1)作出其图像;山东中学联盟(2)由图像指出函数的单调区间;(3)由图像指出当x取何值时,函数有最值,并求出最值.17.(本题满分12分)已知函数的定义域与函数的定义域相同,求函数的值域.18.(本题满分12分)已知,是二次函数,是奇函数,且当时,的最小值为1,求的表达式.19. (本小题满分14分)已知函数。
山东莘县一中2014中考第一次模拟考试数学试卷

山东莘县一中2014中考第一次模拟考试数学试卷一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的答案写在下面的答题栏中)1.∣-1∣的平方根是( )A .1B .±1C .-1D .不存在2.如图所示的几何体的左视图...是( )3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A .19.4³109B .0.194³1010C .1.94³1010D .1.94³1094.下列图形中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .5.下列运算中,正确的是( ) A.134=-a a B.2222)(b a ab = C 23633a a a =÷ D.32a a a =⋅6.已知点M (1-2m ,m -1)关于x 轴的对称点...在第一象限,则m 的取值范围在数轴上表示正确的是( )7. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个 B.2个 C.3个 D.4个8.如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC且交BC于E,AD=6cm,则OE的长为()A.6cmB.4 cmC.3 cmD.2 cm9. 某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中S2如上表所示,如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是()A.甲B.乙C.丙D.丁10.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则A. B. C. D.A B第14题 图中αβ∠+∠的度数是( )A .180 B .220 C .240 D .30011. 某市为处理污水需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设10米,结果提前20天完成任务.设原计划每天铺设管道x 米,则可得方程( )12. 如图,双曲线y = m x与直线y =kx +b 交于点M 、N ,并且点M 的坐标为(1,3),点N 的纵坐标为-1.根据图象信息可得关于x 的方程 m x=kx +b 的解为( ) A .-3,1 B .-3,3 C .-1,1 D .-1,313. 如图,O 是△ABC的内心,过点O作EF∥AB,与AC 、BC分别交于点E、F,则( )A .EF >AE+BFB .EF<AE+BFC .EF=AE+BFD .EF≤AE+BF14.如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方向径直走到B 处,这一过程中他在该路灯灯光下的影子( )A .逐渐变短B .逐渐变长C .先变短后变长D .先变长后变短15. 在平面直角坐标系中,将抛物线24y x =-先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( ) A .2(2)2y x =++ B.2(2)2y x =--C. 2(2)2y x =-+ D.2(2)2y x =+-16. 如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +617. 如图梯形ABCD 中AD ∥BC ,AB =CD ,AD =2,BC =6,∠B =60°,则梯形ABCD 的周长是()A .12B .14C .16D .1818. 已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,第16题则O 1O 2的长是( )A .1 cmB .5 cmC .1 cm 或5 cmD .0.5cm 或2.5cm19. 一元二次方程()22x x x -=-的根是( )A.-1B. 2C. 1和2D. -1和220. 如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形D C B A ''''与正方形ABCD 是以AC 的中点O '为中心的位似图形,已知AC ,若点A '的坐标为(1,2),则正方形D C B A ''''与正方形ABCD 的相似比是( )A二、填空题(请将答案直接填写在横线上)21.如图,将矩形纸片ABCD 折叠,使点A 与C 重合,若∠CEB=45°,∠CFE =________.22.无论a取什么实数,点P(a-1,2a-3)都在直线l上,Q(m,n)是直线上的点,则(2m-n+3)2的值等于。
山东省聊城一中2014届高考适应性考试(聊城一中2014一模)数学理试题

聊城一中2014届高考适应性考试数学(理科)测试一第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.把正确答案涂在答题卡上.1.若复数z 满足45iz i =-(i 为虚数单位),则z 的共轭复数z 为A. 54i -B. 54i -+C. 54i +D. 54i --2.已知集合203x M xx -⎧⎫=<⎨⎬+⎩⎭,集合{}23N x x =-≤<,则M N ⋂为 A. ()2,3- B. (]3,2-- C. [)2,2- D. (]3,3-3.已知a ,b ,c ,d 为实数,且d c >,则“a b >”是“a c b d +>+”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.某工厂对一批产品进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分散直方图,其中产品净重的范围是[]96,106,样本数据分组为[)[)[)[)[)96,98,98,100,100,102,102,104104,106.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于102克的产品的个数是A.90B.75C.60D.455.已知平行四边形ABCD 中,AC 为一条对角线,若()()2,4,1,3,AB AC AD BD ==⋅=则A. 8-B. 6-C.6D.86.某算法的程序框图如图所示,如果输出的结果是26,则判断框内应为中学联盟网A. 1K >B. 2K >C. 3K >D. 4K >7. 一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF-BCE 内自由飞翔,由它飞入几何体F-AMCD 内的概率为A.34B. 23C. 13D. 128.函数()[)c os 0f x x x =-+∞在,内 A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点9.已知双曲线()22122:100y x C a b a b-=>>,的离心率为2,若抛物线()22:20C y px p =>的焦点到双曲线1C 的渐近线的距离是2,则抛物线2C 的方程是A. 28y x =B. 23y x =C. 23y x =D. 216y x =10.将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有一个小球,且每个盒子里的小球个数都不相同,则不同的放法有( )种A.15B.18C.19D.21二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填在答题卡相应的位置上.11.设()0sin cos a x x dx π=+⎰,则二项式6⎛ ⎝的展开式的常数项是_________. 12. 设曲线()()1*11n y x n N +=∈在点,处的切线与x 轴的交点的横坐标为12399,lg n n n x a x a a a a =+++⋅⋅⋅+令,则的值为_________.13.若将函数sin 2y x =的图象向右平移()0ϕϕ>个单位,得到的图象关于直线6x π=对称,则ϕ的最小值为_________. 14. 设,x y 满足约束条件()36020,0,00,0x y x y a b x y --≤⎧⎪-+≥>>⎨⎪≥≥⎩若z=ax+by 的最大值为12,则1123a b +的最小值为________.15.若对任意(),,x A y B A B R ∈∈⊆、有唯一确定的(),f x y 与之对应,称(),f x y 为关于x 、y 的二元函数.现定义满足下列性质的二元函数(),f x y 为关于实数x 、y 的广义“距离”:(1)非负性:(),0f x y ≥,当且仅当0x y ==时取等号;(2)对称性:()(),,f x y f y x =;(3)三角形不等式:()()(),,,f x y f x z f z y ≤+对任意的实数z 均成立.今给出四个二元函数:①()22,;f x y x y =+②()()2,f x y x y =-③(),f x y =()(),sin f x y x y =-.能够成为关于的x 、y 的广义“距离”的函数的所有序号是___________.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤.16.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c 。
山东省聊城市莘县2014届九年级上学期期中学业水平检测数学试题

山东省聊城市莘县2014届九年级(上)期中数学试卷一.选择题(每题3分,共36分)1.下列为一元二次方程的是()C.a x2+bx+c=0 D.2x2+2y=0A.x2﹣3x+1=0 B.x2+﹣2=02.能判定四边形ABCD为平行四边形的题设是()A.A B∥CD,AD=BC B.∠A=∠B,∠C=∠D C.A B=CD,AD=BC D.A B=AD,CB=CD 3.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)4.等腰梯形的腰长为13cm,两底差为10cm,则高为()A.cm B.12cm C.69cm D.144cm5.已知矩形一条对角线与一边的夹角是40度,则两条对角线所成锐角的度数为()A.50度B.60度C.70度D.80度6.在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=9,则该梯形的中位线长是()A.30 B.15 C.7.5 D.607.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()D.60,A.30,2 B.60,2 C.60,8.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=99.某城市政府为了申办冬奥委,决定改善城市容貌,绿化环境,计划经过两年时间,希望绿地面积可以增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%10.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0C.k<D.k≥且k≠011.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1B.2C.1或2 D.012.根据下列表格中的对应值,关于x的方程ax2+bx+c=0(a≠0)的一个解x得范围正确的是()x 3.23 3.24 3.25 3.26ax2+bx+c=0 ﹣0.06 ﹣0.02 0.03 0.07A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x<3.26二.填空题(每题3分,共27分)13.某花木场有一块形如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,测量得对角线AC=10m,现想用篱笆围成四边形EFGH的场地,则篱笆的总长度是_________m.14.已知菱形两条对角线的长分别为6cm和8cm,则这个菱形一边上的高为_________cm.15.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_________度.16.若x=a是方程x2﹣x﹣505=0的根,则代数式2a2﹣2a﹣505的值为_________.17.若a+b+c=0,且a≠0,则一元二次方程ax2+bx+c=0必有一个定根,它是_________.18.若(x2+y2+1)(x2+y2﹣4)=0,则x2+y2=_________.19.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=_________.20.如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是_________m(可利用的围墙长度超过6m).21.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D 是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为_________.三.解答题(共57分)22.(16分)解方程:(1)2x2﹣5x﹣1=0(2)x2﹣8x﹣10=0(用配方法)(3)3(2﹣x)2=x(x﹣2)(4)(x+2)2=(3x﹣1)2.23.(10分)(2010•烟台)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣1,1),C(﹣1,3).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;(3)将△A2B2C2平移得到△A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,﹣1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标.24.(7分)如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:AB=CE.25.(12分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?26.(12分)(2013•平凉)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.参考答案一.选择题(每题3分,共36分)1.A2.C3.C4.B5.D6.C7.C8.C9.B10.B11.B12.C二.填空题(每题3分,共27分)13.20.14.cm.15.22.5度.16.505.17.1.18.4.19.2.解答:解:∵A(1,0)转化为A1(2,a)横坐标增加了1,B(0,2)转化为B1(b,3)纵坐标增加了1,则a=0+1=1,b=0+1=1,故a+b=1+1=2.故答案为:2.20.1m.21.(2,4)或(3,4)或(8,4).解:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD﹣DE=5﹣3=2,∴此时点P坐标为(2,4);(2)如答图②所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===3,∴此时点P坐标为(3,4);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===3,∴OE=OD+DE=5+3=8,∴此时点P坐标为(8,4).综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).三.解答题(共57分)22.解:(1)2x2﹣5x﹣1=0,∵a=2,b=﹣5,c=﹣1,∴△=25﹣4×2×(﹣1)=33,∴x==,∴x1=,x2=;(2)x2﹣8x﹣10=0,移项得:x2﹣8x=10,配方得:x2﹣8x+16=10+16,即(x﹣4)2=26,∴x﹣4=±,∴x1=4+,x2=4﹣;(3)3(2﹣x)2=x(x﹣2)移项,得3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或2x﹣6=0,x1=2,x2=3;(4)(x+2)2=(3x﹣1)2,x+2=±(3x﹣1),x+2=3x﹣1,或x+2=﹣(3x﹣1),x1=,x2=﹣.23.解:(1)点C1的坐标(﹣1,﹣3).(2)C2(3,1).(3)A3(2,﹣2),B3(2,﹣1).24.证明:∵AD∥BC,∴∠DBC=∠ADB.又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.∵AD∥BC,AE∥CD,∴四边形ADCE为平行四边形,∴AD=CE,∴AB=CE.25.解:设每张贺年卡应降价x元,现在的利润是(0.3﹣x)元,则商城多售出=1000x张.(0.3﹣x)(500+1000x)=120,150﹣200x﹣1000x2=120,1000x2+200x﹣30=0,100x2+20x﹣3=0,(10x+3)(10x﹣1)=0,解得x1=﹣0.3(降价不能为负数,不合题意,舍去),x2=0.1.答:每张贺年卡应降价0.1元.26.解:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴▱AFBD是矩形......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!。
山东省聊城市莘县一中2014-2015学年高一上学期第一次月考数学试题

山东省聊城市莘县一中2014-2015学年高一上学期第一次月考数学试题2014.10注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡和Ⅱ卷答题纸上.2.回答第I 卷时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题纸上.写在本试卷上无效.4.本试卷满分120分,考试时间100分钟,考试结束后,将答题卡一并交回.第Ⅰ卷 (共50分)一、选择题(本题包括10小题,每小题5分,每小题只有一个选项......符合题意) 1.下列关系式或说法正确的是( )A.N ∈QB. {}0φ⊆C.空集是任何集合的真子集D.(1,2){})2,1(⊆2.已知集合{}30|<<=x x M ,集合{}41|<<=x x N ,则=N M ( )[ 优高考网]A .{}31|<<x xB .{}40|<<x xC .{}43|<<x xD .{}10|<<x x 3.若13x <) A. 31x - B. 13x - C. ()213x - D.非以上答案4.方程组⎩⎨⎧=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-5.函数2)1(2)(2+-+=x a x x f 在]4,(-∞上是减函数,则实数a 的取值范围是( )A. 5≤a B . 3-≥a C. 3-≤a D . 3≥a6.函数()1f x x =-的图象是( )7.已知偶函数)(x f 在),0[+∞上单调递减,则)1(f 和)10(-f 的大小关系为( )A. )1(f >)10(-fB. )1(f <)10(-fC. )1(f =)10(-fD.)1(f 和)10(-f 关系不定[ 优高考网]8.下列函数中在)0,(-∞上单调递减的是 ( ) A.1+=x x y B .x x y +=2 C. x y -=1 D .21x y -=[ 优高考网gkstk]9. 设奇函数()f x 在区间(0,)+∞上为增函数,且(1)0f -=,则不等式()()0f x f x x--<的解集为( ) A.(1,0)(1,)-⋃+∞ B.(,1)(0,1)-∞-⋃C.(,1)(1,)-∞-⋃+∞D.(1,0)(0,1)-⋃10. 设函数3()f x ax bx c =++的图像如图所示,则()()f a f a +-的值( )A.大于0B.等于0C.小于0D.以上结论都不对第Ⅱ卷(非选择题,共70分)[ 优高考网gkstk]二、填空题(本题包括5小题,共20分)11若集合}{3,2,1=A ,{}4,3,1=B ,则B A U 的真子集个数为 .[ 优高考网gkstk]12.函数0y =定义域 .(区间表示) 13.设集合}|{},1|{a x x N x x M >=≤=,要使∅=N M ,则实数a 的取值范围是 .14.已知函数(]2()22,3,1f x x x x =+-∈-,则()f x 的值域为 .15. 设212,1()1,11x x f x x x⎧--≤⎪=⎨>⎪+⎩,则)]21([f f = . 三、解答题题(本题包括5大题,共50分,要写出必要的文字说明、解题步骤)16. (本小题满分8分)计算:(1)0a >已知,化简(2)1122120331125343216π-⎡⎤⎛⎫⎢⎥++- ⎪⎢⎥⎝⎭⎣⎦.17(本小题满分10分)已知集合}0198|{22=+-+-=a a ax x x A ,}034|{2=+-=x x x B ,}0127|{2=+-=x x x C ,满足A B φ≠,φ=C A ,求实数a 的值.18.(本小题满分10分)[ 优高考网] 函数22,0(),0x x f x x x x ⎧-<⎪=⎨⎪≥⎩(1)若()1f a =,求a 的值;(2)确定函数()f x 在区间(,0)-∞上的单调性,并用定义证明.19. (本小题满分10分)函数()f x 的定义域为D ,若存在0x D ∈,使等式00(x )f x = 成立,则称0x x = 为函数()f x 的不动点,若1x =± 均为函数22()x a f x x b+=+ 的不动点. (1)求,a b 的值; (2)求证:()f x 是奇函数.20. (本小题满分12分)已知函数)(x f 是定义在R 上的偶函数,且当0≤x 时, x x x f 2)(2+=.(1)求函数R x x f ∈),(的解析式;(2)写出函数R x x f ∈),(的增区间(直接写出结果,不必写出求解过程);(3)若函数[]2,1,22)()(∈+-=x ax x f x g ,求函数)(x g 的最小值()h a .出题人:沈鹏正 审题人:王春兰莘县一中2014~2015学年第一学期质量检测高一数学试题 答案一、BABDC BACDB二、11. 15 12. ()()2,11,---+∞ 13. 1a ≥14. []3,1- 15. []3,1-三、解答题16. (1) 712a (或(2) 417.解: }{0342=+-=x x x B =}{3,1…………………………2 }{01272=+-=x x x c =}{4,3......................................4 又 A ⋂C=∅∴A ∉3 (5)A ⋂B ≠∅,∴A ∈1 (6)⎪⎩⎪⎨⎧≠+-+-=+-+-∴0198990198122a a a a a a .............................................8 ∴a=5 (10)18. 解:(1)2a =-或1a = (5)(2)()f x 在区间(,0)-∞上单调递减.证明如下:任取()12,,0x x ∈-∞,且12x x <则 ……………………………6 1212121212211222()()()()112()()2()(1)f x f x x x x x x x x x x x x x -=---=---=-+ ………………………8 1221121212020,10()()0()()x x x x x x f x f x f x f x <<∴->+>∴->∴> (9)∴函数()f x 在区间(,0)-∞上单调递减. ……………………10[ 优高考网gkstk]19.解:(1)根据题意得211211a b a b +⎧=⎪⎪+⎨-⎪=-⎪+⎩ , ………………………3[ 优高考网gkstk]得01a b =⎧⎨=⎩ ...........................5 (2)证明:函数()f x 的定义域为R , (6)因为对定义域内的每一个x ,都有 ………………………7 ()()2222()()11x x f x f x x x --==-=-+-+ ……………………9 所以,函数22()1x f x x =+为奇函数. ……………………10 20.(1)222,0()2,0x x x f x x x x ⎧+≤⎪=⎨->⎪⎩ ........................3 (2)()()1,01,-+∞和 (5)(3)①当11a +≤时,即0a ≤ min ()(1)12g x g a ==- (7)②当112a <+<时,即01a << 2min ()(1)21g x g a a a =+=--+ ……………………9 ③当12a +≥时,即1a ≥ min ()(2)22g x g a ==-……………………11 综上:212,0()21,0124,1a a h a a a a a a -≤⎧⎪=--+<<⎨⎪-≥⎩ (12)。
山东省聊城一中2014届下学期高三年级高考适应性测试(一)数学试卷(理科) 有答案

山东省聊城一中2014届下学期高三年级高考适应性测试(一)数学试卷(理科)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.把正确答案涂在答题卡上. 1.若复数z 满足45iz i =-(i 为虚数单位),则z 的共轭复数z 为 A. 54i -B. 54i -+C. 54i +D. 54i --2.已知集合203x M x x -⎧⎫=<⎨⎬+⎩⎭,集合{}23N x x =-≤<,则M N ⋂为A. ()2,3-B. (]3,2--C. [)2,2-D. (]3,3-3.已知a ,b ,c ,d 为实数,且d c >,则“a b >”是“a c b d +>+”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4.某工厂对一批产品进行了抽样检测,图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分散直方图,其中产品净重的范围是[]96,106,样本数据分组为[)[)[)[)[)96,98,98,100,100,102,102,104104,106.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于102克的产品的个数是 A.90B.75C.60D.455.已知平行四边形ABCD 中,AC 为一条对角线,若()()2,4,1,3,AB AC AD BD ==⋅=则 A. 8-B. 6-C.6D.86.某算法的程序框图如图所示,如果输出的结果是26,则判断框内应为中学联盟网 A. 1K >B. 2K >C. 3K >D. 4K >7. 一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF-BCE 内自由飞翔,由它飞入几何体F-AMCD 内的概率为A.34 B.23 C. 13D.128.函数()[)cos 0f x x =+∞在,内A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点9.已知双曲线()22122:100y x C a b a b-=>>,的离心率为2,若抛物线()22:20C y px p =>的焦点到双曲线1C 的渐近线的距离是2,则抛物线2C 的方程是A. 28y x =B. 2y x =C. 2y x =D. 216y x =10.将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有一个小球,且每个盒子里的小球个数都不相同,则不同的放法有( )种 A.15 B.18 C.19 D.21二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填在答题卡相应的位置上. 11.设()0sin cos a x x dx π=+⎰,则二项式6⎛⎝的展开式的常数项是_________.12. 设曲线()()1*11n y x n N +=∈在点,处的切线与x 轴的交点的横坐标为12399,lg n n n x a x a a a a =+++⋅⋅⋅+令,则的值为_________.13.若将函数sin 2y x =的图象向右平移()0ϕϕ>个单位,得到的图象关于直线6x π=对称,则ϕ的最小值为_________.14. 设,x y 满足约束条件()36020,0,00,0x y x y a b x y --≤⎧⎪-+≥>>⎨⎪≥≥⎩若z=ax+by 的最大值为12,则1123a b+的最小值为________. 15.若对任意(),,x A y B A B R ∈∈⊆、有唯一确定的(),f x y 与之对应,称(),f x y 为关于x 、y 的二元函数.现定义满足下列性质的二元函数(),f x y 为关于实数x 、y 的广义“距离”: (1)非负性:(),0f x y ≥,当且仅当0x y ==时取等号; (2)对称性:()(),,f x y f y x =;(3)三角形不等式:()()(),,,f x y f x z f z y ≤+对任意的实数z 均成立.今给出四个二元函数:①()22,;f x y x y =+②()()2,f x y x y =-③(),f x y =④()(),s i n f x y x y =-.能够成为关于的x 、y 的广义“距离”的函数的所有序号是___________.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九周数学综合练习一、选择题(每题5分,共50分)1.若复数z 满足3)6i z i =(i 是虚数单位),则z =( )A .32-B .32-C .32+D .32- 2. 函数x e x f x ln )(=在点))1(,1(f 处的切线方程是( )A.)1(2-=x e yB.1-=ex yC.)1(-=x e yD.e x y -= 3. 函数2))(2(a x a x y -+=的导数为( )A .)(222a x -B .)(322a x +C .)(322a x -D .)(222a x + 4.对于ab b a R b a 2,,≥+∈+……大前提xx x x 121⋅≥+……小前提 所以21≥+xx ……结论 以上推理过程中的错误为( ) A .大前提 B .小前提C .结论D .无错误5. 已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( )A.11或18B.11C.18D.17或18 6. 已知m x x x f +-=2362)((m 为常数)在[]2,2-上有最大值3,那么此函数在[]2,2-上的最小值为( )A .37-B .29-C .5-D .11-7.函数3()1f x ax x =++有极值的充要条件是 ( )A .0a >B .0a <C .0a ≥D .0a ≤ 8. 双曲线04422=-+t ty x 的虚轴长等于( )A.t 2 B .-2t C .t -2 D .49. 函数ln xy x=的最大值为( ) A.1e B .e C .2e D .10310. 过双曲线22221(0,0)y x a b a b-=>>的左焦点F 作圆222x y a +=的两条切线,切点分别为A 、B ,双曲线左顶点为M ,若0120AMB ∠=,则该双曲线的离心率为( )A..3 D . 2 二、填空题(每题5分,共25分)11. 已知椭圆2212516x y +=上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离为 . 12. 曲线sin xy x=在点(,0)M π处的切线方程为 . 13. 已知1)6()(23++++=x a ax x x f 既有极大值又有极小值,则a 的取值范围为 .14. 设0a <,2()97a f x x x=+-, 若1)(+≥a x f 对一切..0x >恒.成立,则a 的取值范围为 .15. 某商品每件成本9元,售价30元,每星期卖出432件,如果降低价格,销售量增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,030x ≤≤)的平方成正比,已知商品单价降低2元是,一星期多卖出24件,当定价为 元时,才能使一个星期的销售利润最大.三、解答题(解答题应写出必要的文字说明、演算步骤、推理过程) 16.求下列函数的导数 (1) 2(34)(21)y x x x =-+(2) 2cos y x x = (3) ln x y e x =17. (1) 已知复数z 在复平面内对应的点在第四象限,且1z =,1z z +=,求z ;(2) 已知复数25(15)3(2)12m z i m i i=-+-+-为纯虚数,求实数m 的值.18. 已知函数()32f x x ax bx c =-+++图象上的点))1(,1(f P 处的切线方程为31y x =-+,函数3)()(2+-=ax x f x g 是奇函数.(1)求函数)(x f 的表达式; (2)求函数)(x f 的极值.19. 已知函数()x f x e =,()x R ∈(1) 求()f x 在点(1,)e 处的切线方程;(2) 证明: 曲线()y f x =与曲线2112y x x =++有唯一公共点;20.在平面直角坐标系xoy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.21. 已知函数32()212f x mx nx x =+-的减区间是(2,2)- (1)试求,m n 的值;(2)求过点(1,11)A -且与曲线()y f x =相切的切线方程;(3)过点(1,)A t ,是否存在与曲线()y f x =相切的3条切线,若存在,求实数t 的取值范围;若不存在,请说明理由.第十九周数学综合练习参考答案一、选择题ACCBC ABCAD 二、填空题11. 7 12. 0x y ππ+-= 13. 63>-<a a 或14. 78-≤a 15. 18三、解答题16. 解: (1) '218104y x x =-- (2) '22cos sin y x x x x =-(3) '1(ln )x y e x x=+18. 解:(1) ()'232fx x ax b =-++,函数()f x 在1x =处的切线斜率为-3,∴()'1323f a b =-++=-,即20a b +=,又()112f a b c =-+++=-得1a b c ++=-,又函数3)(3+++-=c bx x x g 是奇函数,∴ 3.c =- ∴2,4,3a b c =-==-, ∴()32243f x x x x =--+-.(2))2)(23(443)(2'+--=+--=x x x x x f ,令,0)(=x f 得32=x 或2-=x ,∴,极小11)2()(-=-=f x f .2741)32()(-==f x f 极大19. (1) ()x f x e '=,则(1)f e '=,()f x 点(1,)e 处的切线方程为:(1)y e e x -=-,y ex =(2) 令 2211()()1122x h x f x x x e x x =---=---,x R ∈, 则'()1x h x e x =--,''()1xh x e =-,且(0)0h =,'(0)0h =,''(0)0h =因此,当0x <时,''()0h x <,'()y h x =单调递减; 当0x >时,''()0h x >,'()yh x =单调递增.所以'()'(0)0y h x h =≥=,所以()y h x =在R 上单调递增, 又(0)0h =,即函数()h x 有唯一零点0x =, 所以曲线()y f x =与曲线2112y x x =++有唯一公共点(0,1). 20. (1)因为椭圆C 1的左焦点为F 1(-1,0),所以c =1.将点P (0,1)代入椭圆方程x 2a 2+y 2b2=1,得1b2=1,即b =1.所以a 2=b 2+c 2=2.所以椭圆C 1的方程为x 22+y 2=1.(2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m消去y 并整理得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0. 整理,得2k 2-m 2+1=0,①由⎩⎪⎨⎪⎧y 2=4x ,y =kx +m 消y ,得 k 2x 2+(2km -4)x +m 2=0.∵直线l 与抛物线C 2相切,∴Δ2=(2km -4)2-4k 2m 2=0,整理,得km =1,②联立①、②,得⎩⎪⎨⎪⎧k =22,m =2,或⎩⎪⎨⎪⎧k =-22,m =-2, ∴l 的方程为y =22x +2或y =-22x - 2. 21.解:⑴m=1,n=0.⑵ ∵3()12f x x x =-,∴2()312f x x '=-, ∵3(1)112111f =-⋅=-当A 为切点时,切线的斜率 (1)3129k f '==-=-,∴切线为119(1)y x +=--,即920x y ++=;当A 不为切点时,设切点为00(,())P x f x ,这时切线的斜率是200()312k f x x '==-,切线方程为000()()()y f x f x x x '-=-,即23003(4)2y x x x =-- 因为过点A (1,-11), 2300113(4)2x x -=--, ∴3202310,x x -+=200(1)(21)0x x -+=, ∴ 01x =或012x =-,而01x =为A 点,即另一个切点为147(,)28P -, ∴ 1145()312244k f '=-=⨯-=-, 切线方程为 4511(1)4y x +=--,即 45410x y +-= 所以,过点(1,11)A -的切线为920x y ++=或45410x y +-=. ⑶ 存在满足条件的三条切线. 设点00(,())P x f x 是曲线3()12f x x x =-的切点,则在P 点处的切线的方程为 000()()()y f x f x x x '-=-即23003(4)2y x x x =--因为其过点A (1,t ),所以,23320003(4)22312t x x x x =--=-+-, 由于有三条切线,所以方程应有3个实根, 设32()2312g x x x t =-++,只要使曲线有3个零点即可. 设 2()66g x x x '=-=0, ∴ 01x x ==或分别为()g x 的极值点, 当(,0)(1,)和x ∈-∞+∞时()0g x '>,()g x 在(,0)-∞和 (1,)+∞上单增, 当(0,1)x ∈时()0g x '<,()g x 在(0,1)上单减, 所以,0x =为极大值点,1x =为极小值点.所以要使曲线与x 轴有3个交点,当且仅当(0)0(1)0g g >⎧⎨<⎩即120110t t +>⎧⎨+<⎩,解得 1211t -<<-.。