SAS统计之第六章非线性回归
SPSS在非线性回归分

8.4 SPSS在非线性回归分析中的应用
8.4 SPSS在非线性回归分析中的应用
(5)线性回归和非线性回归的股票预测图
图8-35显示了原始数据、线性回归模型、非线性回归模型三者的比较。其中, “股票 A” 是实际曲线,“ Predicted Values” 是本案例建立的非线性回归方 程的预测曲线,“ Unstandardized Predicted Values” 是不考虑股票 B 、 C 交 互项的二元线性模型的预测曲线。可以明显看到,非线性回归的预测效果要好 于二元线性回归的预测效果,说明了这里我们引入股票B、C交互项的合理性。
单击【Save】按钮,弹出如下图所示的对话框。它表示要保存到数据文件中的 统计量。
Predicted Values:输出回归模型的预测值。
Residuals:输出回归模型的残差。 Derivatives:模型各个参数的一阶导数值。 Loss function values:损失函数值。
8.4 SPSS
在非线性回归分析中的应用
Step04:输入回归方程
在【Model Expression (模型表达式)】文本框中输入需要拟合的方程式,该方 程中包含自变量、参数变量和常数等。自变量从左侧的候选变量列表框中选 择,参数变量从左侧的【Parameters (参数)】列表框里选入。同时,拟合 方程模型中的函数可以从【Function (函数组)】列表框里选入;方程模型 的运算符号可以用鼠标从窗口“数字符号”显示区中点击输入。
非线性回归

非线性回归一、可化为线性回归的曲线回归在实际问题当中,有许多回归模型的被解释变量y 与解释变量x 之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为线性关系,利用线性回归求解未知参数,并作回归诊断。
如下列模型。
εββ++=x e y 10-------(1) εββββ+++++=p p x x x y 2210--------(2)εe ae y bx =--------------------(3) ε+=bx ae y -------------(4)对于(1)式,只需令x e x ='即可化为y 对x '是线性的形式εββ+'+=x y 10,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。
对于(2)式,可以令1x =x ,2x =2x ,…, p x =p x ,于是得到y 关于1x ,2x ,…, p x 的线性表达式εββββ+++++=p p x x x y 22110对与(3)式,对等式两边同时去自然数对数,得ε++=bx a y ln ln ,令 y y ln =',a ln 0=β,b =1β,于是得到y '关于x 的一元线性回归模型: εββ++='x y 10。
对于(4)式,当b 未知时,不能通过对等式两边同时取自然数对数的方法将回归模型线性化,只能用非线性最小二乘方法求解。
回归模型(3)可以线性化,而(4)不可以线性化,两个回归模型有相同的回归函数bx ae ,只是误差项ε的形式不同。
(3)式的误差项称为乘性误差项,(4)式的误差项称为加性误差项。
因而一个非线性回归模型是否可以线性化,不仅与回归函数的形式有关,而且与误差项的形式有关,误差项的形式还可以有其他多种形式。
乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为t y 本身是异方差的,而t y ln 是等方差的。
《非线性回归》课件

灵活性高
非线性回归模型形式多样,可以根据 实际数据和问题选择合适的模型,能 够更好地适应数据变化。
解释性强
非线性回归模型可以提供直观和易于 理解的解释结果,有助于更好地理解 数据和现象。
预测准确
非线性回归模型在某些情况下可以提 供更准确的预测结果,尤其是在数据 存在非线性关系的情况下。
缺点
模型选择主观性
势。
政策制定依据
政府和决策者可以利用非线性回归模型来评估不同政策方案的影响,从而制定更符合实 际情况的政策。例如,通过分析税收政策和经济增长之间的关系,可以制定更合理的税
收政策。
生物学领域
生态学研究
在生态学研究中,非线性回归模型被广 泛应用于分析物种数量变化、种群动态 和生态系统稳定性等方面。通过建立非 线性回归模型,可以揭示生态系统中物 种之间的相互作用和环境因素对种群变 化的影响。
模型诊断与检验
诊断图
通过绘制诊断图,可以直观地观察模型是否满足回归分析的假设条件,如线性关系、误差同方差性等 。
显著性检验
通过显著性检验,如F检验、t检验等,可以检验模型中各个参数的显著性水平,从而判断模型是否具 有统计意义。
04
非线性回归在实践中的应用
经济学领域
描述经济现象
非线性回归模型可以用来描述和解释经济现象,例如消费行为、投资回报、经济增长等 。通过建立非线性回归模型,可以分析影响经济指标的各种因素,并预测未来的发展趋
VS
生物医学研究
在生物医学研究中,非线性回归模型被用 于分析药物疗效、疾病传播和生理过程等 方面。例如,通过分析药物浓度与治疗效 果之间的关系,可以制定更有效的治疗方 案。
医学领域
流行病学研究
在流行病学研究中,非线性回归模型被用于 分析疾病发病率和死亡率与各种因素之间的 关系。通过建立非线性回归模型,可以揭示 环境因素、生活方式和遗传因素对健康的影 响。
《非线性回归》课件

挑战与未来发展趋势
• 数据收集和质量 • 参数估计和模型拟合 • 算法选择和性能评估 总结当前非线性回归面临的挑战,并展望其未来发展的趋势和应用前景。
3
Dropout
解释dropout技术如何防止过拟合,并提升模型的泛化能力。
4
Early Stopping
介绍early stopping方法来优化非线性回归模型的训练过程。
实例分析:Pytho n 实现
通过Python编程语言示例,演示如何使用非线性回归模型来解决实际问题。
非线性回归的应用案例
指数回归
1 背景
探索指数回归模型在描述 增长趋势时的优势。
2 应用
介绍指数回归在经济、生 物、市场等领域的实际应 用案例。
3 模型拟合
讨论如何通过最小二乘法 获取指数回归模型的参数。
对数回归
数学基础
介绍对数函数和对数回归模型的 数学原理。
金Байду номын сангаас市场预测
探索对数回归在金融市场预测中 的应用案例。
生物医学领域
非线性回归
探索非线性回归的概念、应用场景和解决方案。比较线性回归与非线性回归 的区别,并介绍求解非线性回归模型的最小二乘法。
多项式回归
1
简介
利用多项式函数逼近非线性关系,探索多项式回归的应用和优缺点。
2
示例
通过案例研究,展示如何使用多项式回归模型来拟合实际数据。
3
拟合度
介绍如何选择合适的多项式阶数以获得最佳拟合度。
展示对数回归在生物医学领域中 用于研究和分析的实际应用。
sas 课件第6讲 SAS系统与回归分析

简单线性回归模型
因变量Y和自变量x的n次观测数据(xi ,Yi) 可以用以下方程表示: Yi = 0 + 1 xi + i (i=1,2,. . .,n) Yi : 因变量的第 i 次观测值; xi : 自变量的第 i 次观测值;
0,1: 待估计的未知参数. 0是截距参数,它对应自变量为0时因变
35
一元线性回归分析
一元线性回归的计算--例子
•proc reg data=hbs.fitness ; • model oxygen = runtime ; •run; •proc reg data=hbs.fitness ; • model oxygen = runtime / p cli clm ; • id runtime; • output out=outfit p=poxy r=roxy • l95=l95oxy u95=u95oxy; •run;
相关系数(Correlation Coef.)
• 线性联系是描述变量间联系中最简单 和最常用的一种(Y=a1x1+a2x2+b);
• 相关系数是描述两个变量间线性联系 程度 的统计指标; • 相关系数的计算公式:
r
( X X )(Y Y ) ( X X ) (Y Y )
例:讨论英国11年有执照汽车数x(万辆)与车祸次数Y(千次)的
相关关系(数据见DATA步的数据行),并进行预测.
解:(1) 用编程,首先生成SAS数据集dreg.
data dreg; input year y x @@; cards; 1947 166 352 1948 153 1950 201 441 1951 216 1953 227 529 1954 238 1956 268 692 1957 274 ;
非线性回归分析简介

非线性回归分析简介在统计学和机器学习领域,回归分析是一种重要的数据分析方法,用于研究自变量和因变量之间的关系。
在实际问题中,很多情况下自变量和因变量之间的关系并不是简单的线性关系,而是呈现出一种复杂的非线性关系。
因此,非线性回归分析应运而生,用于描述和预测这种非线性关系。
本文将介绍非线性回归分析的基本概念、方法和应用。
一、非线性回归分析概述1.1 非线性回归模型在回归分析中,最简单的模型是线性回归模型,即因变量和自变量之间的关系可以用一个线性方程来描述。
但是在实际问题中,很多情况下因变量和自变量之间的关系并不是线性的,而是呈现出曲线、指数、对数等非线性形式。
这时就需要使用非线性回归模型来拟合数据,通常非线性回归模型可以表示为:$$y = f(x, \beta) + \varepsilon$$其中,$y$为因变量,$x$为自变量,$f(x, \beta)$为非线性函数,$\beta$为参数向量,$\varepsilon$为误差项。
1.2 非线性回归分析的优势与线性回归相比,非线性回归分析具有更强的灵活性和适用性。
通过使用适当的非线性函数,可以更好地拟合实际数据,提高模型的预测能力。
非线性回归分析还可以揭示数据中潜在的复杂关系,帮助研究人员更好地理解数据背后的规律。
1.3 非线性回归分析的挑战然而,非线性回归分析也面临一些挑战。
首先,选择合适的非线性函数是一个关键问题,需要根据实际问题和数据特点进行合理选择。
其次,非线性回归模型的参数估计通常比线性回归模型更复杂,需要使用更为复杂的优化算法进行求解。
因此,在进行非线性回归分析时,需要谨慎选择模型和方法,以确保结果的准确性和可靠性。
二、非线性回归分析方法2.1 常见的非线性回归模型在实际应用中,有许多常见的非线性回归模型,常用的包括多项式回归模型、指数回归模型、对数回归模型、幂函数回归模型等。
这些模型可以根据实际问题的特点进行选择,用于描述和预测自变量和因变量之间的非线性关系。
非线性回归分析简介

非线性回归分析简介非线性回归分析是一种用于建立非线性关系模型的统计方法。
与线性回归不同,非线性回归可以更好地拟合非线性数据,提供更准确的预测结果。
在许多实际问题中,数据往往呈现出非线性的趋势,因此非线性回归分析在实际应用中具有广泛的应用价值。
一、非线性回归模型的基本形式非线性回归模型的基本形式可以表示为:y = f(x, β) + ε其中,y是因变量,x是自变量,β是模型参数,f(x, β)是非线性函数,ε是误差项。
非线性函数可以是任意形式的函数,如指数函数、对数函数、幂函数等。
二、非线性回归模型的参数估计与线性回归不同,非线性回归模型的参数估计不能直接使用最小二乘法。
常见的非线性回归参数估计方法有以下几种:1. 非线性最小二乘法(NLS)非线性最小二乘法是一种常用的参数估计方法,它通过最小化残差平方和来估计模型参数。
具体而言,通过迭代的方式不断调整参数,使得残差平方和最小化。
2. 非线性广义最小二乘法(GNLS)非线性广义最小二乘法是对非线性最小二乘法的改进,它在最小化残差平方和的同时,还考虑了误差项的方差结构。
通过引入权重矩阵,可以更好地处理异方差性的数据。
3. 非线性加权最小二乘法(WNLS)非线性加权最小二乘法是对非线性广义最小二乘法的进一步改进,它通过引入加权矩阵,对不同数据点赋予不同的权重。
可以根据数据的特点,调整权重矩阵,提高模型的拟合效果。
三、非线性回归模型的评估指标在进行非线性回归分析时,需要对模型进行评估,以确定模型的拟合效果。
常见的评估指标有以下几种:1. 残差分析残差分析是一种常用的评估方法,通过分析残差的分布情况,判断模型是否符合数据的分布特征。
如果残差呈现随机分布,说明模型拟合效果较好;如果残差呈现一定的规律性,说明模型存在一定的问题。
2. 决定系数(R-squared)决定系数是衡量模型拟合优度的指标,其取值范围为0到1。
决定系数越接近1,说明模型对数据的解释能力越强;决定系数越接近0,说明模型对数据的解释能力越弱。
非线性回归分析

非线性回归分析
非线性回归分析是一种分析异种资料之间的、结果变量不能用简单线性回归方法分析
的关系的统计技术。
它弥补了线性回归分析不能有效应用于某些呈非线性关系的数据组合。
非线性回归分析用来描述两个或多个变量之间的相关关系,当这种关系不是以线性方式表
示出来而且也不容易转化成一个简单的线性模型时,就需要使用非线性回归分析来评估这
种关系。
非线性回归主要解决的是自变量和因变量之间的相互关系,它可以用来进行数据
分析,建立非线性模型,对模型的准确性进行验证,并且可以对系统带有非线性特征的数
据系统进行有效控制。
非线性回归分析非常有效,特别是在虚拟验证中,表现比线性回归分析要好。
它可以
解决多种形式,灵活性和可靠性都较高,适用于非线性数据分析,同时能够用于解决复杂
系统间的互动关系。
使用此方法,可以解释出复杂系统的新特征,可以提供基于数学的标
准化算法,以及定义具有可靠性的度量标准。
非线性回归分析比线性回归分析更灵活和实用,也更复杂。
但非线性回归分析也有一
些缺点,其中最大的缺陷是模型的复杂度对计算机压力要求较高,它数据精度、特征复杂
度要求较高,如果数据不够准确,它都会给出不准确的结果。
而且它也需要更多的参数来
计算,这也增加了计算量。
因此,要想使用这项技术来正确估算和预测复杂的非线性数据,应当选择性能更好的计算机,拥有更多内存,准确的数据特征和足够的参数分析等来支持
分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y a b ln x
化为: y a bx'
实例2:曲线回归 计算:
SSx ' x ' x ' / n
2 2
208.313 56.423 / 16
2
9.341
SPx ' y x' y x' y / n 1234.864 56.423 428.5 / 16 276.214
实例1:曲线回归 散点图:
y
40 35 30 25 20 15 10 5 0 0 5 10 15 20 25 30 35
x
采用指数曲线模型: y
ae
bx
实例1:曲线回归 曲线模型直线化
ln y ln a bx
令: y ' ln 则:
y a ln a
y' a'bx
实例1:曲线回归
3. 线性化方法 整理后,取自然对数得:
令
得: y ' a 'bx
k y ln y ln a bx k y a' ln a,y ' ln y
第一节 可转化为直线的曲线回归
k值的计算 (1)k若是累积百分数,则 k=100% (2)否则取接近 x2 ( x1 x3 ) 2 关系 的三对观察值 ( x1 , y1 ), ( x2 , y2 ), ( x3 , y3 )
a y 'bx 2.302 0.095415.0 0.8705
实例1:曲线回归
a ln a
ae e
a
0.8705
2.388
得指数曲线模型:
ˆ ae 2.388e y
bx
0.0954 x
实例1:曲线回归 决定系数:R
2 xy
0.9831
回归系数b检验:
函数表达式比较复杂很难或不能转化为 直线回归模型的曲线回归模型。
第六章 非线性回归
非线性回归的三种类型
3、多项式回归
一元多项式回归(一个自变量,有一次项、二
次项…高次项等,图形是曲线。)
多元多项式回归(两个或多个自变量,各有一
次项、二次项…高次项和交叉乘积项等,图形是曲面。)
反应面回归(多个自变量、一次或二次多项式回
实例1:指数曲线的拟合
序号 1 2 3 4 5 6 7 合计 天数 x 0 5 10 15 20 25 30 105 枝稍生长 量y 2.1 3.7 6.4 12.2 18.1 26.3 34.5 103.3
y' ln y
0.742 1.308 1.856 2.501 2.896 3.270 3.541 16.114
第二节 不可转化为直线的曲线回归
2.回归系数的计算
用最小二乘法估计回归系数β,使 残差平方和:
1 1 Qe ( ) E ' E (Y F ( )) '(Y F ( )) 2 2
达到最小值。
非线性回归系数的计算一般采用数 值迭代法来进行。
第二节 不可转化为直线的曲线回归
0.9965
回归系数b的显著性检验: t 63.31 ,df n 2 14
| t | t0.01 (14) 2.977
y 和x’线性回归关系达极显著
ˆ 131.05 29.568ln x 对数回归方程:y
第二节 不可转化为直线 的曲线回归
第二节 不可转化为直线的曲线回归
归,图形是曲面。)
第一节 可以转化为直线 的曲线回归
第一节 可转化为直线的曲线回归
一、
第一节 可转化为直线的曲线回归
二、
第一节 可转化为直线的曲线回归
三、
第一节 可转化为直线的曲线回归
四、S形曲线(Logistic曲线)
1. 基本形式 2. 图形 k
k y bx 1 ae
第一节 可转化为直线的曲线回归
第三节 多项式回归
3. 回归系数的计算
对于n对观测数据,令
y1 y 2 Y yn
1 1 X 1 1 x1 x2 x3 xn x12
2 x2 2 x3
2 xn
x1k b0 b k x2 1 k B b2 x3 k xn bm
第三节 多项式回归 1.多项式回归模型
在数学上,一般函数都可以用多项 式来逼近,当两个变量间的关系复杂 难于确定时,可以使用多项式回归来 拟合。 k次多项式回归模型:
y = b0+b1x1+b2x2+…+bkxk+ε
第三节 多项式回归 2. 回归次数的初步确定
拟合多项式回归的两个变量有n对观察 值时,最多可以配到k=n-1次多项式。 根据散点图所表现的曲线趋势,回归 k =1(波谷)+1=2 k =2(波峰)+1(波谷)+1=4 模型的次数为: k = 波峰数 + 波谷数 + 1 若波动较大或峰谷两侧严重不对称, 可再增加一次。
第六章 非线性回归
1.可以转化为直线的曲线回归 2.不可转化为直线的曲线回归
3.Байду номын сангаас项式回归
第六章 非线性回归
非线性回归的三种类型
1、可转化为直线回归的曲线回归 包括指数函数曲线、对数函数曲线、幂 函数曲线、S型函数曲线和双曲线函数等回 归模型,可以通过数学变换方法转化为直线 回归问题来解决。 2、不可转化为直线回归的曲线回归
lnx
1.609 2.303 2.708 2.996 3.219 3.401 3.555 3.689
y
82.0 65.0 52.0 44.0 36.0 30.0 25.0 21.0
x
45 50 55 60 65 70 75 80
lnx
3.807 3.912 4.007 4.094 4.174 4.248 4.317 4.382
第三节 多项式回归
5. 回归系数的假设检验
2.F检验 H0 :β i=0
b / c(i 1)(i 1) U i 统计量: F Q / n k 1 Q / n k 1
其中:Ui 为xi对y的回归平方和,Q 为误差平方和 C(i+1)(i+1)为矩阵(X’X)-1的(i+1)(i+1)元素
将三对观察值带入下式,可解得:
y ( y1 y3 ) 2 y1 y2 y3 k 2 y2 y1 y3
2 2
第一节 可转化为直线的曲线回归
五、
第一节 可转化为直线的曲线回归
常用的可转化为直线的曲线模型: 第 1 种曲线模型: y=a+bx*x. 第 2 种曲线模型: y=a+bx*x*x. 第 3 种曲线模型: y=1/(a+bx) 第 4 种曲线模型: y=1/(a+b*exp(-x)) 第 5 种曲线模型: y=1/(a+bx*x) 第 6 种曲线模型: y=1/(a+bx*x*x) 第 7 种曲线模型: y=a*exp(bx) 第 8 种曲线模型: y=a*exp(bx*x) 第 9 种曲线模型: y=a*b^(x*x*x) 第 10 种曲线模型:y=(a+bx)/x
1.非线性回归模型
y = F(x1,x2,x3…xm;β)+ε
其中:F 为数学函数关系表达式 β=(β1,β2,…,βm)’ 为回归系数 ε 为随机误差
第二节 不可转化为直线的曲线回归
将观测值带入非线性回归模型 简记为:
Y = F(β)+E
其中:Y=(y1,y2,…,yn)’ 为y的观察值向量 β=(β1,β2,…,βm)’为回归系数 E=(ε1,ε2,…,εn)’为随机误差向量
2 i
自由度:df1=1 df2=n-m-1
第三节 多项式回归
6. 多项式回归注意事项
多项式回归模型通常只能用于描述 变量试验范围内的变量回归关系,外 推一般并不可靠。
由于(X’X)-1的计算复杂而且也不稳 定,可以采用正交多项式来进行多项 式回归。
SP xy xy x y / n 308.515 10516.114/ 7 66.805
SSx x x / n
2 2
2275 105 / 7
2
700
实例1:曲线回归
66.808 b 0.0954 SSx 700 SP xy
回归系数的数值迭代法计算步骤
1.选定回归系数β的初始值β0 2.选择适当的搜索方向向量Δ和步长t 3.计算新回归系数 β= β0 + t· Δ 使得 Qe(β) < Qe (β0) 4.重复上述2-3步的过程,直至Qe(β) 达到最小值为止
第二节 不可转化为直线的曲线回归
1974年,Bard给出了使Qe(β)下降的 充要条件: Δ = PG‘(Y-F(β)) 得到迭代公式 β = β0 + t· Δ = β0 + tPG‘(Y-F(β)) 其中:P 为任意正定矩阵 G 为F 函数的梯度 t 满足Qe(β)<Qe (β0)的正实数
第一节 可转化为直线的曲线回归
第 11 种曲线模型: y=a+b*ln(x) 第 12 种曲线模型: y=a+b*√x 第 13 种曲线模型: y=x/(a+bx) 第 14 种曲线模型: y=a*(x^b) 第 15 种曲线模型: y=a*(b^√x) 第 16 种曲线模型: y=1/(a+b*ln(x)) 第 17 种曲线模型: y=1/(a+b*√x) 第 18 种曲线模型: y=a*exp(b/x) 第 19 种曲线模型: y=L+K/(1+a*exp(bx)) 第 20 种曲线模型:y=b0+b1*x+b2*x*x 第 21 种曲线模型:y=b0+b1*x+b2*x*x+b3*x*x*x