2017年人教版七年级下册数学总复习讲义
人教版七年级数学下册知识点(全面精华详细)

七年级数学下册知识点归纳第五章相交线与平行线5.1 相交线一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
6、垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB垂直于直线CD,垂足为O”,则记为AB⊥ CD。
7、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a⊥b时,= = = = 90°。
反之,。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
(3线8角)1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
人教版七年级数学下册知识点总结归纳

人教版七年级数学下册各单元知识点汇总第五章相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b。
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
在同一平面内,过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
同位角、内错角、同旁内角5.2 平行线及其判定5.2.1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果b a,c a,那么b c.5.2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
同位角相等,两直线平行。
判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
内错角相等,两直线平行。
判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
同旁内角互补,两直线平行。
5.3 平行线的性质5.3.1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。
两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。
两直线平行,同旁内角互补。
5.3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。
如果题设成立,那么结论一定成立,这样的命题叫做真命题。
题设成立时,不能保证结论一定成立,这样的命题中做假命题。
2017年人教版七年级下册数学总复习讲义

第五章 相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角F (在两条直线的同一旁,第三条直线的同一侧)内错角Z (在两条直线内部,位于第三条直线两侧)同旁内角U (在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b 32,73πa x =2±±a a a a x =2a 也就是,在等式a x =2 (x≥0)中,规定a x =。
(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大; 当被开方数缩小时与它的算术平方根也缩小。
(4)正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(5)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
3、立方根(1)立方根的定义:如果一个数x 的立方等于a ,这个数叫做a 的立方根(也叫做三次方根),即如果3x a =,那么x 叫做a 的立方根(2)一个数a的立方根,读作:“三次根号a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。
人教版七年级数学下册各章节知识点归纳

人教版七年级数学下册各章节知识点归纳最新人教版七年级数学下册各章节知识点归纳七年级数学下册知识点归纳第五章相交线及平行线5.1相交线一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是订交的一种特殊情形,两条直线垂直,个中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线及已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点及直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这类位置干系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
5.2平行线及其判定(一)平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线及这条直线平行。
(完整版)人教版七年级数学下册重点知识点总结

数学下册重点知识汇总第五章平行线和相交线—序知识点5.1相交线St 1.1相交缆有一仆於其的加点"冷一条公共阿边…吊外一边互为反向莊长蜒.达样的两金黑叫做邻补角.两条直覽相变有4对邻补脅,有公共的逍点.角的爾边2为反向延长損.这样的两个宦叫做对期轴亠两条直线.相宜有2对才顶為.才顶命相等,5. L2两峯宜钱相交•蘭戌的四个角中有一个角是直帝.那么这两条直绝互相垂直. 其中一条宜張《jat另一条直践的垂线.它们的交点叫feiA.注意:⑴垂厳是一辜直螞■⑵具有垂直关杀的两衆世践所黒的4个帛都畏9上⑶垂宜是相兗的特珠情况。
(4)#直的记fife: alb, AB 1 CD.画已知直维的垂线有无数氛讨一占肓亓y由一•雄审陰与尸乜夕理至-酋连鞭包空外一应与直代上各虽的所有践段k汞践投说瓦简单说成:垂魂段最氟直護朴一点到洼条直钱的里娠段的*JT冈紈.克:到直坝的距蕊.久2平行纯"1平打裁在间-平面內.两条直纯没有交点•见这两莱直強互相甲行.记作:iJTb.在同一平面内两条直铁的羌泵只育两种:相变或平th半行公遅:经辻直県外一点,有旦日疽一条直茂与这条直线平行”如果两乂直咬都与第三眾直瓯平行’那么这两备直妊也互棺平行.5,2 2立敛平行的条件询条直蝗板芻三条直黄耶截*亞两条被截绞的司一・撷規的间一瘠、这擇的两个角叫做同位ft两茶卫也低第三条直更所栽,在两条戟截锲文同芋iLt>的酉个窗叫做内错角.两条直线祓芻三条直线歸杜.在两泉航裁线二旬.找蜿的同 F 辽样的蘭第六章《平而直角坐标系》一、知识点b・2H用坐标表示地理位置利用平面直倩坐标杀蛙制区城內「些地点介布1*况平而图的过程如F: ⑴建立坐标系,选择一个遗寻的藝照直为原駅扁定K轴.y帕的正卉向; 必遢齧具体问题摘龙适世的比倒尺.在坐标轴上标出单也匕度;刊寺坐标半面内画葩这姿点、写出各点附坐标知备个临.电的f总:一b・2・2用坐标叢示•乎樓在平面直墉坐标杲中,将点I X、八向右(或左)平移H个单位£度、可以律到对应点(x + Ai y>(或(""));将点(T* y)向上(或下)平移b牛单住鬟度,可以得到时应点(X, y*b)(或g y-b)k在字而直命坐标系内,如果把一个图册各个点的横坐标都加(威城击)一卜疋打棺应的新S1形就是把眾图形向右]成旬左)平務d个单位长度;钿果把它各个点的纵坐标撫加(或風去)一金正鞍氛相血的新困形就是把原雷器向上(或向下)平移&卜梓ft畏度.二.典型习題-V选幷(8L在半閒自孤坐赫蜿中.点F (-2< 3)< >扎窮-颐&.第二取腿J第三釦H 6 swamN如图,小明从戌。
人教版七年级下册数学知识点总结归纳

人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
3.互斥事件:不可能同时发生的两个事件叫做互斥事件。
4.对立事件:即必有一个发生的互斥事件叫做对立事件。
5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。
如果两条直线只有一个公共点时,称这两条直线相交。
2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
新人教版七年级数学下册总复习知识点

新人教版七年级数学下册总复习知识点单元一:图形的认识- 了解点、线、面的概念与特征- 认识各种图形:直线、线段、射线、角、三角形、四边形、圆等- 掌握图形的命名和表示方法单元二:整数与分数- 理解整数的概念与性质- 掌握正整数、负整数的加减法- 认识分数的概念与性质- 掌握分数的加减法和乘除法单元三:代数初步- 掌握代数的基本概念:代数式、项、系数、常数项等- 进一步了解加减乘除法则- 认识代数式的值与未知数- 能够进行代数式的化简与展开单元四:比例与相似- 理解比例的概念和意义- 掌握解比例问题的方法- 了解相似的概念与判定条件- 能够判断并构造相似图形单元五:数据的收集和整理- 能够进行简单的数据收集和整理- 统计数据的频数和频率- 掌握用表格和图形表示数据的方法- 能够进行简单的数据分析与判断单元六:立体图形- 认识常见的立体图形:正方体、长方体、正圆柱、正棱柱等- 掌握立体图形的表面积和体积的计算方法单元七:二次根式初步- 了解二次根式的概念与性质- 掌握二次根式的四则运算- 能够在具体问题中应用二次根式的知识单元八:一次函数- 认识函数的概念和特征- 理解一次函数的概念和性质- 能够画出一次函数的图像- 能够通过一次函数解决实际问题单元九:统计与概率初步- 掌握频率和频率分布- 理解简单事件的概率- 能够通过实验和计算求解概率问题单元十:人口与环境- 了解人口数量的变化规律- 掌握人口统计的方法- 认识人口与环境的关系- 理解人口问题与可持续发展的关联以上是《新人教版七年级数学下册》的总复习知识点,希望可以帮到你!。
人教版七年级下册数学复习提纲(精选7篇)

人教版七年级下册数学复习提纲〔精选7篇〕篇1:人教版七年级下册数学复习提纲人教版七年级下册数学复习提纲1、用不等号表示不等关系的式子叫不等式,不等号主要包括: > 、篇2:人教版七年级下册数学复习提纲第五章相交线与平行线5.1 相交线对顶角(vertical angles)相等。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
5.2 平行线经过直线外一点,有且只有一条直线与这条直线平行(parallel)。
假如两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:两条直线被第三条直线所截,假如同位角相等,那么两直线平行。
两条直线被第三条直线所截,假如内错角相等,那么两直线平行。
两条直线被第三条直线所截,假如同旁内角互补,那么两直线平行。
5.3 平行线的性质两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题(proposition)。
第六章平面直角坐标系6.1 平面直角坐标系含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。
第七章三角形7.1 与三角形有关的线段三角形(triangle)具有稳定性。
7.2 与三角形有关的角三角形的内角和等于180度。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角7.3 多边形及其内角和n边形内角和等于:(n-2)•180度多边形(polygon)的外角和等于360度。
篇3:人教版七年级下册数学复习提纲第八章二元一次方程组8.1 二元一次方程组方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相交线与平行线1、两条直线相交所成得四个角中,相邻得两个角叫做邻补角,特点就是两个角共用一条边,另一条边互为反向延长线,性质就是邻补角互补;相对得两个角叫做对顶角,特点就是它们得两条边互为反向延长线。
性质就是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角F(在两条直线得同一旁,第三条直线得同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成得四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线得垂线,她们得交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线得距离:直线外一点到这条直线得垂线段得长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线得判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线得性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合得两条直线之间得位置关系为_______或________14、平移:①平移前后得两个图形形状大小不变,位置改变。
②对应点得线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定得距离,图形得这种移动叫做平移平移变换,简称平移。
对应点:平移后得到得新图形中每一点,都就是由原图形中得某一点移动后得到得,这样得两个点叫做对应点。
15、命题:判断一件事情得语句叫命题。
命题分为题设与结论两部分;题设就是如果后面得,结论就是那么后面得。
命题分为真命题与假命题两种;定理就是经过推理证实得真命题。
用尺规作线段与角1.关于尺规作图:尺规作图就是指只用圆规与没有刻度得直尺来作图。
2.关于尺规得功能直尺得功能就是:在两点间连接一条线段;将线段向两方向延长。
圆规得功能就是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
第六章实数一、实数得概念及分类1、实数得分类2、无理数(1)开方开不尽得数,如等;(2)有特定意义得数,如圆周率π,或化简后含有π得数,如+8等;(3)有特定结构得数,如0、1010010001…等;二、实数得倒数、相反数与绝对值实数与数轴上点得关系:每一个无理数都可以用数轴上得一个点表示出来,数轴上得点有些表示有理数,有些表示无理数,实数与数轴上得点就就是一一对应得,即每一个实数都可以用数轴上得一个点来表示;反过来,数轴上得每一个点都就是表示一个实数。
三、平方根、算数平方根与立方根1、平方根(1)平方根得定义:如果一个数x得平方等于a,那么这个数x就叫做a得平方根.即:如果,那么x叫做a得平方根.(2)开平方得定义:求一个数得平方根得运算,叫做开平方.开平方运算得被开方数必须就是非负数才有意义。
(3)平方与开平方互为逆运算:3得平方等于9,9得平方根就是3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a得正得平方根可用表示,也就是a得算术平方根;正数a得负得平方根可用表示.2、算术平方根(1)算术平方根得定义:一般地,如果一个正数x得平方等于a,即,那么这个正数x叫做a得算术平方根.a得算术平方根记为,读作“根号a”,a叫做被开方数.规定:0得算术平方根就是0、也就就是,在等式(x≥0)中,规定。
(2)得结果有两种情况:当a就是完全平方数时,就是一个有限数;当a不就是一个完全平方数时,就是一个无限不循环小数。
(3)当被开方数扩大时,它得算术平方根也扩大;当被开方数缩小时与它得算术平方根也缩小。
(4)正数与零得算术平方根都只有一个,零得算术平方根就是零。
(0);注意得双重非负性:(<0) 0(5)平方根与算术平方根两者既有区别又有联系:区别在于正数得平方根有两个,而它得算术平方根只有一个;联系在于正数得正平方根就就是它得算术平方根,而正数得负平方根就是它得算术平方根得相反数。
3、立方根(1)立方根得定义:如果一个数x得立方等于,这个数叫做得立方根(也叫做三次方根),即如果,那么叫做得立方根(2)一个数得立方根,记作,读作:“三次根号”,其中叫被开方数,3叫根指数,不能省略,若省略表示平方。
(3) 一个正数有一个正得立方根;0有一个立方根,就是它本身;一个负数有一个负得立方根;任何数都有唯一得立方根。
(4)利用开立方与立方互为逆运算关系,求一个数得立方根,就可以利用这种互逆关系,检验其正确性,求负数得立方根,可以先求出这个负数得绝对值得立方根,再取其相反数,即。
(5),这说明三次根号内得负号可以移到根号外面。
第七章平面直角坐标系1、对应关系:平面直角坐标系内得点与有序实数对一一对应。
2、平面内两条互相垂直、原点重合组成得数轴组成平面直角坐标系。
水平得数轴称为x轴或横轴,习惯上取向右为正方向;竖直得数轴为y轴或纵轴,取向上为正方向;两个坐标轴得交点为平面直角坐标系得原点。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应得数a,b分别叫点P得横坐标与纵坐标。
象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上得点不在任何一个象限3、三大规律(1)平移规律:点得平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。
图形得平移规律找特殊点(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。
(3)位置规律各象限点得坐标符号:(注意:坐标轴上得点不属于任何一个象限)常见得类型有:分配问题、追及问题、顺流逆流、药物配制、行程问题顺流逆流公式:第九章不等式与不等式组不等式得解:使不等式成立得未知数得值,叫做不等式得解。
不等式得解集:一个含有未知数得不等式得所有解,组成这个不等式得解集。
一元一次不等式:不等式得左、右两边都就是整式,只有一个未知数,并且未知数得最高次数就是1,像这样得不等式,叫做一元一次不等式。
一元一次不等式组:一般地,关于同一未知数得几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
一元一次不等式组得解集:一元一次不等式组中各个不等式得解集得公共部分,叫做这个一元一次不等式组得解集。
1、不等式:含有“”、“”、“”、“”、“”得式子2、一元一次不等式:一个未知数,未知数得次数就是1得不等式3、不等式得性质:①不等式两边加(或减)同一个数(或式子),不等号得方向改变。
②不等式两边乘(或除以)同一个正数,不等号得方向不变。
③不等式两边乘(或除以)同一负数,不等号得方向改变。
4、不等式得解法:步骤:去分母,去括号,移项,合并同类项,系数化为一;注意:去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号得方向就是否发生改变得问题。
5、不等式组得解:“大大取大”,“小小取小”,“大小小大中间找”,“大大小小找不了”。
6、不等式组得解集得确定方法(a>b):自己将表格补充完整:抽样调查:调查部分数据,根据部分来估计总体得调查方式称为抽样调查。
总体:要考察得全体对象称为总体。
个体:组成总体得每一个考察对象称为个体。
样本:被抽取得所有个体组成一个样本。
样本容量:样本中个体得数目称为样本容量。
频数:一般地,我们称落在不同小组中得数据个数为该组得频数。
频率:频数与数据总数得比为频率。
组数与组距:在统计数据时,把数据按照一定得范围分成若干各组,分成组得个数称为组数,每一组两个端点得差叫做组距。
1、数据处理一般包括收集数据、整理数据、描述数据与分析数据等过程。
(1)通过调查收集数据得一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论(2)收集数据常用得方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都就是媒体调查。
2、数据得表示方法:(1)统计表:直观地反映数据得分布规律(2)折线图:反映数据得变化趋势(3)条形图:反映每个项目得具体数据(4)扇形图:反映各部分在总体中所占得百分比(5)频数分布直方图:直观形象地反映频数分布情况6)频数分布折线图:在频数分布直方图得基础上,取每一个长方形上边得中点,与左右频数为零与直方图相距半个组距得两个点3、调查方式:(1)全面调查,优点就是可靠,、真实; (2)抽样调查,优点就是省时、省力,减少破坏性;随机抽样调查具有广泛性与代表性。
4、总体与样本:(1)总体:要考察得所有对象(2)个体:组成总体得每一个考察对象(3)样本:从总体中抽出得所有实际被调查得对象组成一个样本。
(4)样本容量:样本中给个体得数目5、组距:每个小组两个端点之间得距离6、画直方图得一般步骤:(1)计算最大值与最小值得差;(2)决定组距与组数,先根据数据个数确定组距,再计算组数,注意无论整除与否,组数总就是比商得整数位数多1;(3)确定分点,并分组;(4)列频数分布表;(5)绘制频数分布直方图。