直线与圆的方程试卷

合集下载

直线与圆的方程试题——含答案

直线与圆的方程试题——含答案

高中数学必修2 第1页 共4页高中数学必修2 第 2 页 共 4页林口林业局中学 班级 姓名……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线……………………必修二数学测试(直线方程与圆的方程)(全卷三个大题,共20个小题;满分100分,考试时间90分) 题号 一 二 三 总分 得分一、选择题(每小题3分,共36分)1.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y x C. 01=-+y x D. 052=--y x2.圆012222=+--+y x y x上的点到直线2=-y x 的距离最大值是( )A .2B .21+C .221+D .221+3.圆0422=-+x y x在点)3,1(P 处的切线方程( )A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x4.若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为( )A .1-或3 B .1或3 C .2-或6 D .0或45.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y x C .03222=-++x y xD .0422=-+x y x6.已知圆C :22()(2)4(0)x a y a -+-=>及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a =( )A .2 B .22- C .12- D .12+7.两圆229x y +=和228690x y x y +-++=的位置关系是( )A .相离B .相交C .内切D .外切8.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .01=+-y xB .0=-y x C .01=++y x D .0=+y x9.若圆222)1()1(R y x =++-上有且仅有两个点到直线4x +3y =11的距离等于1,则半径R 的取值范围是 ( )A R >1B R <3C 1<R <3D R ≠2 10.若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直,则a 的值为( )A .3-B .1C .0或23-D .1或3- 11.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( )A.4)1()3(22=-++y x B. 4)3()1(22=-++y xC.4)3()1(22=++-y x D. 4)1()3(22=++-y x12. 对于任意实数k ,直线(32)20k x ky +--=与圆222220x y x y +---=的位置关系是( )A .相交B .相交或相切C .相交或相切或相离D .与k 值有关二、填空题(每小题4分,共16分)13.直线20x y +=被曲线2262150x y x y +---=所截得的弦长等于 。

上海上师初级中学选修一第二单元《直线和圆的方程》测试卷(包含答案解析)

上海上师初级中学选修一第二单元《直线和圆的方程》测试卷(包含答案解析)

一、选择题1.如果直线:5l y kx =-与圆22240x y x my +-+-=交于M 、N 两点,且M 、N 关于直线20x y +=对称,则直线l 被圆截得的弦长为( )A .2B .3C .4D .2.若P 是直线l :3490x y +-=上一动点,过P 作圆C :2240x y x ++=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( )A B .CD .3.若P 是直线l :260x y ++=上一动点,过P 作圆C :22230x y x ++-=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( ) A .1B .2C .3D .44.设P 为直线2x +y +2=0上的动点,过点P 作圆C :x 2+y 2-2x -2y -2=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值时直线AB 的方程为( ) A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=05.已知M (3,),N (-1,),F (1,0),则点M 到直线NF 的距离为( )A B .C .D .6.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( ) A .1 B .2CD .7.在平面直角坐标系xOy 中,直线240x y +-=与两坐标轴分别交于点A 、B ,圆C 经过A 、B ,且圆心在y 轴上,则圆C 的方程为( ) A .226160x y y ++-= B .226160x y y +--= C .22890x y y ++-=D .22890x y y +--=8.设点M 为直线2x =上的动点,若在圆22:3O x y +=上存在点N ,使得30OMN ∠=︒,则M 的纵坐标的取值范围是( )A .[1,1]-B .11,22⎡⎤-⎢⎥⎣⎦C .[-D .⎡⎢⎣⎦9.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( ) A .32B .32-C .32±D .12±10.一艘海监船上配有雷达,其监测范围是半径为26 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10 km/h 这艘外籍轮船能被海监船监测到且持续时间长约为( ) 小时A .1B .2C .3D .411.若点()1,1P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为( ) A .230x y +-= B .210x y -+= C .230x y +-= D .210x y --=12.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( )A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,124二、填空题13.已知直线l 经过点(2,1),且和直线30x --=的夹角等于30,则直线l 的方程是_________.14.若P 为直线40x y -+=上一个动点,从点P 引圆2240y x C x +-=:的两条切线PM ,PN (切点为M ,N ),则MN的最小值是________.15.直线l 过点()2,3P -且与x 轴、y 轴分别交于,A B 两点,若P 恰为线段AB 的中点,则直线l 的方程为_________.16.若直线l :y kx =23-60x y +=的交点位于第一象限,则直线l 的倾斜角的取值范围是___________.17.已知直线l 过点(4,1)A -20y -+=的夹角为30°,则直线l 的方程为____________.18.设圆222:()0O x y r r +=>,定点(3,4)A ,若圆O 上存在两点到A 的距离为2,则r 的取值范围是________.19.在直角坐标系xoy 中,已知圆C :()222824580x y m x my m m +---+-=,直线l 经过点()2,1,若对任意的实数m ,直线l 被圆C 截得弦长为定值,则直线l 方程为______.20.已知过抛物线2:4C y x =焦点F 的直线交抛物线C 于P ,Q 两点,交圆2220x y x +-=于M ,N 两点,其中P ,M 位于第一象限,则11PM QN+的最小值为_____.参考答案三、解答题21.已知ABC 的顶点()5,1A ,B 的平分线所在直线方程为0x y -=,C ∠的平分线所在直线方程为20x -=. (1)求BC 边所在的直线方程;(2)求B .22.圆心为C 的圆经过点(4,1)A -和(3,2)B -,且圆心C 在直线:20l x y --=上. (1)求圆心为C 的圆的方程;(2)过点(5,8)P 作圆C 的切线,求切线的方程.23.已知在平面直角坐标系xOy 中,点()0,3A ,直线l :24y x =-.圆C 的半径为1,圆心C 在直线l 上.(1)若直线34120x y +-=与圆C 相切,求圆C 的标准方程;(2)已知动点(),M x y ,满足2=MA MO ,说明M 的轨迹是什么?若点M 同时在圆C 上,求圆心C 的横坐标a 的取值范围.24.已知圆C :222440x y x y +-+-=,斜率为1的直线l 与圆C 交于A 、B 两点. (1)化圆的方程为标准形式,并指出圆心和半径;(2)是否存在直线l ,使以线段AB 为直径的圆过原点?若存在,求出直线l 的方程,若不存在,说明理由;(3)当直线l 平行移动时,求CAB △面积的最大值.25.(1)如图,已知直线l : 0mx ny r ++=(0mn ≠)外一点P (a ,b ),请写出点P 到直线l 的距离PH 的公式及公式的推导过程.....(2)一质点从点(4,0)A 处沿向量(1,1)a =-方向按每秒2个单位速度移动,求几秒后质点与点(2,4)B 距离最近. 26.如图,已知ABC 的边AB 所在直线的方程为360x y --=,()2,0M 满足BM MC =,点()1,1T -在AC 边所在直线上且满足0AT AB ⋅=.(1)求AC 边所在直线的方程; (2)求ABC 外接圆的方程;(3)求过()2,0N -的ABC 外接圆的切线方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意推出圆心在直线上,求出m ,求出圆的半径与弦心距,利用圆心距、半径、半弦长满足勾股定理,求出弦长. 【详解】因M 、N 关于直线20x y +=对称,故圆心(1,)2m-在直线20x y +=上,4m ∴=. 又因为直线20x y +=与:5l y kx =-垂直,21K ∴-⨯=-,12K ∴=, 设圆心(1,2)-,到直线1502x y --=的距离为d ,d ∴==圆的半径为3r ==.4MN ∴==.故选:C . 【点睛】关键点点睛:本题的关键是利用对称性可知圆心在直线20x y +=上.2.B解析:B 【分析】画出图象,根据对称性可得四边形PACB 面积2PACS S=,利用勾股定理可得PA =PC 最小时,PA 最小,面积最小,根据点到直线距离公式,即可求得答案. 【详解】圆C :22(2)4x y ++=,圆心为(-2,0)半径2AC r ==,画出图象,如图所示:因为直线与圆相切,所以90PAC PBC ∠=∠=︒,且PAC PBC ≌ 所以四边形PACB 面积12222PACS S AC PA PA ==⨯⨯⨯=,又2224PA PC AC PC =-=-所以当PC 最小时,PA 最小,四边形PACB 面积的最小值, 由图象可得,PC 最小值即为点C 到直线3490x y +-=的距离, 所以min 223(2)9334PC ⨯--==+,所以min 945PA =-所以四边形PACB 面积的最小值225S PA == 故选:B 【点睛】解题的关键是画出图象,根据几何关系,得到PC 最小时,面积最小,再求解,将动点问题转化为点到直线距离问题,考查分析理解,计算求值的能力,属中档题.3.B解析:B 【分析】根据题意得要使四边形PACB 面积的最小值,只需PC 取最小即可,再根据几何关系求解即可. 【详解】解:根据题意:要使四边形PACB 面积的最小值,则只需切线长,PA PB 最小, 进而只需PC 取最小即可.由于()2214x y ++=,故圆心为()1,0-,2r,由于P 是直线l :260x y ++=上一动点, 所以过圆心作直线l 的垂线,垂足即为P ,此时1655CP -+==此时切线长541PA PB ==-=,此时四边形PACB 面积为122S =⨯=. 即四边形PACB 面积的最小值为2. 故选:B. 【点睛】本题考查直线与圆的位置关系,考查化归转化思想和运算求解能力,是中档题.解题的关键是将问题转化为求PC 取最小值,再结合点到线的距离即可解答.4.D解析:D 【分析】根据圆的切线性质可知四边形PACB 的面积转化为直角三角形的面积,结合最小值可求直线AB 的方程. 【详解】由于,PA PB 是圆()()22:114C x y -+-=的两条切线,,A B 是切点,所以2||||2||PACB PAC S S PA AC PA ∆==⋅=== 当||PC 最小时,四边形PACB 的面积最小, 此时PC :11(x 1)2y -=-,即210.y x --= 联立210,220y x x y --=⎧⎨++=⎩得1,,(1,0),0x P y =-⎧-⎨=⎩PC的中点为1(0,),||2PC ==以PC 为直径的圆的方程为2215(),24x y +-=即2210x y y +--=,两圆方程相减可得直线AB 的方程210,x y ++=故选:D.5.B解析:B 【分析】首先利用题中所给的点N (-1,,F (1,0),求出直线NF 的方程,之后利用点到直线的距离公式求得结果. 【详解】易知NF 的斜率kNF 的方程为y(x -1),+y=0. 所以M 到NF.故选:B.【点睛】思路点睛:该题考查的是有关点到直线的距离的问题,解题思路如下:(1)根据题意首先求出直线的方程,可以先求斜率,利用点斜式求,也可以直接利用两点式求;(2)之后利用点到直线的距离公式直接求结果.6.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.7.A解析:A 【分析】求出点A 、B 的坐标,设圆心坐标为()0,b ,由AC BC =可求出圆心C 的坐标,并求出圆的半径,由此可求得圆C 的方程. 【详解】易知,直线240x y +-=交x 轴于点()4,0A ,交y 轴于点()0,2B ,设圆心C 的坐标为()0,b ,由AC BC =2b =-,解得3b =-, 所以,圆C 的半径为325BC =--=,因此,圆C 的方程为()22325x y ++=,即为226160x y y ++-=.故选:A. 【点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线;(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.8.C解析:C【分析】在OMN 中,由正弦定理可得22223My+=,从而得到()223sin4My ONM=±∠-,再根据角ONM∠的取值范围,求出My的取值范围,即可得解;【详解】解:设()2,MM y,在OMN中,由正弦定理得sin sinOM ONONM OMN=∠∠因为30OMN∠=︒,3ON=,所以22232312My+==整理得()223sin4My ONM=±∠-由题意知0150ONM︒<∠<︒,所以(]sin0,1ONM∠∈,所以sin1ONM∠=时,My取得最值,即直线MN为圆22:3O x y+=的切线时,M y取值最值,所以22,22My⎡⎤∈-⎣⎦故选:C【点睛】本题考查直线与圆的综合应用,解答的关键转化到OMN中利用正弦定理计算,考查转化思想;9.A解析:A 【分析】先根据半径和周长计算弦长AB =即可. 【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r,故ABC的周长为4+24r AB +=+AB =又直线与圆相交后的弦心距d ==,故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A. 【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.10.B解析:B 【分析】根据题意建立合适平面直角坐标系,将问题转化为求直线被圆所截得的弦长问题,然后根据弦长对应的距离求解出监测时间. 【详解】根据题意以海监船的位置为坐标原点,其正东方向为x 轴,正北方向为y 轴, 所以()()40,0,0,30A B ,圆22:676O x y +=,记从N 处开始被监测,到M 处监测结束, 所以:14030AB x yl +=,即:341200AB l x y +-=, 因为O 到:341200AB l x y +-=的距离为24OO '==,所以20MN ==,所以监测时间持续2010=2小时, 故选:B.【点睛】思路点睛:建立平面直角坐标系求解直线与圆的有关问题的思路:(1)选择合适坐标原点(方便求解直线、圆的方程),建立平面直角坐标系; (2)根据题意写出直线与圆的方程;(3)根据直线与圆的位置关系,采用几何法计算相关长度,完成问题的求解.11.D解析:D 【分析】求得圆心坐标为(3,0)C ,根据斜率公式求得PC k ,再由根据圆的弦的性质,得到2MN k =,结合直线点斜式方程,即可求解.【详解】由题意,圆2260x y x +-=,可得22(3)9x y -+=,所以圆心坐标为(3,0)C ,半径为3, 又由斜率公式,可得011312PC k -==--, 根据圆的弦的性质,可得1PC MN k k ⋅=-,所以2MN k =, 所以弦MN 所在直线方程为12(1)y x -=-,即210x y --=, 所以弦MN 所在直线方程为210x y --=. 故选:D. 【点睛】本题主要考查了直线方程的求解,以及圆的弦的性质,其中解答中熟练应用圆的弦的性质是解答的关键,着重考查推理与运算能力.12.D解析:D 【分析】 易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解.曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径,23221kk -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.二、填空题13.或【分析】分析可得已知直线的倾斜角为则直线的倾斜角为或分类讨论并利用点斜式方程求解即可【详解】由已知可得直线的斜率所以倾斜角为因为直线与的夹角为所以直线的倾斜角为或当倾斜角为时直线为即为;当倾斜角为解析:1y =32310x y --=分析可得已知直线的倾斜角为30,则直线l 的倾斜角为0或60,分类讨论并利用点斜式方程求解即可. 【详解】 由已知可得直线333y x =-的斜率33k =,所以倾斜角为30, 因为直线l 与33y x =-的夹角为30,所以直线l 的倾斜角为0或60, 当倾斜角为60时,直线l 为()132y x -=-,即为31230x y -+-=; 当倾斜角为0︒时,直线l 为1y =, 故答案为:1y =或31230x y -+-=. 【点睛】本题考查直线与直线的夹角,关键点是求出直线330x y --=的倾斜角得到l 的倾斜角,考查求直线方程,考查分类讨论思想.14.【分析】根据题意得当的长度最小时取最小值进而根据几何关系求解即可【详解】如图由题可知圆C 的圆心为半径要使的长度最小即要最小则最小因为所以当最小时最小因为所以当最小时最小因为所以所以由于所以故答案为: 解析:47【分析】根据题意得当||MN 的长度最小时,||PC 取最小值,进而根据几何关系求解即可. 【详解】如图,由题可知圆C 的圆心为(2,0)C ,半径2r.要使||MN 的长度最小,即要MCN ∠最小,则MCP ∠最小. 因为||||tan 2PM PM MCP r ∠==,所以当||PM 最小时,||MN 最小因为PM =∣, 所以当||PC 最小时,||MN 最小.因为min ||PC ==,所以cos3MCP ∠==,所以sin MCP ∠=由于1in 2s 2MCP MN∠=所以min ||3MN =.故答案为:3. 【点睛】本题解题的关键是根据已知当||MN 的长度最小,即要MCN ∠最小,进而得当||PC 最小时,||MN 最小.由于||PC 的最小值为C 点到直线40x y -+=,故min ||PC =.考查化归转化思想和运算能力,是中档题.15.3x ﹣2y+12=0【详解】设A (x0)B (0y )由中点坐标公式得:解得:x=﹣4y=6由直线过点(﹣23)(﹣40)∴直线的方程为:即3x ﹣2y+12=0故答案为3x ﹣2y+12=0解析:3x ﹣2y+12=0 【详解】设A (x ,0)、B (0,y ),由中点坐标公式得:002322x y++=-=, 解得:x=﹣4,y=6,由直线l 过点(﹣2,3)、(﹣4,0),∴直线l 的方程为:320342y x -+=--+, 即3x ﹣2y+12=0. 故答案为3x ﹣2y+12=016.【解析】若直线与直线的交点位于第一象限如图所示:则两直线的交点应在线段上(不包含点)当交点为时直线的倾斜角为当交点为时斜率直线的倾斜角为∴直线的倾斜角的取值范围是故答案为解析:(,)62ππ 【解析】若直线:3l y kx =-与直线2360x y +-=的交点位于第一象限,如图所示:则两直线的交点应在线段AB 上(不包含,A B 点), 当交点为()0,2A 时,直线l 的倾斜角为2π,当交点为()3,0B 时,斜率(03330k -==-l 的倾斜角为6π ∴直线的倾斜角的取值范围是,62ππ⎛⎫⎪⎝⎭. 故答案为,62ππ⎛⎫⎪⎝⎭17.或【分析】分析可得已知直线的倾斜角为则直线的倾斜角为或分类讨论并利用点斜式方程求解即可【详解】由题直线的倾斜角为则直线的倾斜角为或当倾斜角为时直线为即为;当倾斜角为时直线为故答案为:或【点睛】本题考解析:4x =-334330x y -+= 【分析】分析可得已知直线的倾斜角为60︒,则直线l 的倾斜角为30或90︒,分类讨论,并利用点斜式方程求解即可 【详解】 由题,直线32y x =+的倾斜角为60︒,则直线l 的倾斜角为30或90︒,当倾斜角为30时,直线l 为)3143y x -=+,334330x y -+=; 当倾斜角为90︒时,直线l 为4x =-, 故答案为:4x =-334330x y -+= 【点睛】本题考查直线倾斜角与斜率的关系,考查求直线方程,考查分类讨论思想18.【分析】将问题转化为以为圆心为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可得答案【详解】解:根据题意设以为圆心为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆O 上存在两点到A 的距离为 解析:()3,7【分析】将问题转化为以(3,4)A 为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可得答案. 【详解】解:根据题意设以(3,4)A 为圆心,2为半径的圆为圆A , 所以圆222:()0O x y r r +=>,圆心为()0,0O ,半径为r ,则两圆圆心距为:5OA =, 因为圆O 上存在两点到A 的距离为2, 所以圆O 与圆A 相交,所以252r r -<<+,解得:37r <<. 所以r 的取值范围是:()3,7. 故答案为:()3,7 【点睛】本题考查圆与圆的位置关系,考查回归转化思想,是中档题.19.【分析】先将圆的方程化为标准形式求出圆心和半径通过分析可以看出圆心在一条直线上若对于任意的实数直线被圆截得弦长为定值可得直线与圆心所在的直线平行即可得出结论【详解】圆:化为标准形式可得:所以圆心半径 解析:25x y +=【分析】先将圆的方程化为标准形式,求出圆心和半径,通过分析可以看出,圆心在一条直线上,若对于任意的实数m ,直线l 被圆C 截得弦长为定值,可得直线l 与圆心所在的直线平行,即可得出结论. 【详解】圆C :()222824580x y m x my m m +---+-=化为标准形式可得:()()224216x m y m --+-=⎡⎤⎣⎦ ,所以圆心()4,2C m m - ,半径4r =, 令4,2x m y m =-= ,可得28x y += ,所以圆心在28x y +=上,又因为直线l 经过点()2,1,若对任意的实数m ,直线l 被圆C 截得弦长为定值, 所以直线l 与圆心所在的直线平行,, 所以设直线l 的方程为:2x y c +=, 将()2,1代入得:5c =, 所以则直线l 方程为:25x y +=. 故答案为:25x y += 【点睛】本题主要考查了圆的标准方程,直线和圆的位置关系,考查分析解决问题的能力,属于基础题.20.【分析】设根据题意可设直线的方程为将其与抛物线方程联立可求出结合图形及抛物线的焦半径公式可得再利用基本不等式即可求出的最小值【详解】圆可化为圆心坐标为半径为抛物线的焦点可设直线的方程为设由得所以又所 解析:2【分析】设11(,)P x y ,22(,)Q x y ,根据题意可设直线PQ 的方程为1x my =+,将其与抛物线C 方程联立可求出121=x x ,结合图形及抛物线的焦半径公式可得12||||1PM QN x x ⋅==,再利用基本不等式,即可求出11PM QN+的最小值. 【详解】圆2220x y x +-=可化为22(1)1x y -+=,圆心坐标为(1,0),半径为1,抛物线C 的焦点(1,0)F ,可设直线PQ 的方程为1x my =+,设11(,)P x y ,22(,)Q x y ,由214x my y x=+⎧⎨=⎩,得2440y my --=,所以124y y =-, 又2114y x =,2224y x =,所以222121212()14416y y y y x x =⋅==,因为1212||||(||||)(||||)(11)(11)1PM QN PF MF QF NF x x x x ⋅=--=+-+-==, 所以111122PM QN PM QN+≥⋅=,当且仅当||||1PM QN ==时,等号成立. 所以11PM QN+的最小值为2. 故答案为:2 【点睛】本题主要考查抛物线的几何性质,基本不等式求最值,考查基本运算能力,属于中档题.三、解答题21.(1)23y x =+;(2)4arccos 5B ∠=. 【分析】(1)求出点()5,1A 关于直线0x y -=和20x -=对称的点,利用两个对称点都在直线BC 上,即可求得BC 边所在的直线方程;(2)联立直线方程求出,B C 两点的坐标,利用两点间距离公式求出ABC 三条边长,再利用余弦定理即可求得B . 【详解】(1)作点()5,1A 关于B 的平分线0x y -=的对称点()11,5A , 作点()5,1A 关于C ∠的平分线20x -=的对称点()21,1A -, 由题意得B ,1A ,2A ,C 四点共线, 所以直线BC 的方程为511(1)11y x --=++,即23y x =+; (2)由023x y y x -=⎧⎨=+⎩得()3,3B --,由2023x y x -=⎧⎨=+⎩得()2,7C ,又()5,1A ,所以AB ==AC ==BC ==由余弦定理得2224cos25AB BC AC B AB BC +-===⨯, 所以4arccos 5B ∠=. 【点睛】关键点点睛:根据角的两边所在的直线关于角的平分线所在的直线对称,可得BA 与BC 关于直线0x y -=对称,CB 与CA 关于直线20x -=对称,所以点()5,1A 关于直线0x y -=,20x -=对称的点都在直线BC 上,即可求得BC 边所在的直线方程;第二问求角B 要想到利用余弦定理,因此需要求,B C 两点的坐标,利用两点间距离公式求三边长.22.(1)22(2)25x y ++=;(2)5x =或34170x y -+=. 【分析】(1)联立点A 和B 的中垂线与直线l ,求出圆心坐标,算出圆心与A 距离,写出圆的标准方程即可;(2)讨论斜率存在与不存在,将直线与圆相切转化为d r =,解出k ,代回直线方程化简即可. 【详解】(1)根据题意可得2113(4)AB k -==---,,A B 中点坐标为73(,)22-,所以AB 的中垂线为7322y x ⎛⎫=-++ ⎪⎝⎭,即2y x =--, 联立方程202x y y x --=⎧⎨=--⎩可得圆心坐标(0,2)-,又222(0(3))(22)25r =--+--=, 所以圆C 的方程为22(2)25x y ++=.(2)①过点P 斜率不存在的直线为5x =,与圆C 相切; ②过点P 斜率存在的直线设斜率为k , 则(5)8y k x =-+,即580kx y k --+= 圆心(0,2)-到切线的距离为5=,解得34k =综上,切线的方程为5x =或34170x y -+=. 【点睛】求圆的方程的两种方法:(1)几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; (2)待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F ,代入标准方程或一般方程. 23.(1) 22(3)(2)1x y -+-=或22232()()11111x y -+-=(2)120,5⎡⎤⎢⎥⎣⎦【分析】(1)设圆心C 为(a ,2a -4),利用直线与圆相切,求解a ,得到圆心坐标,求出圆的方程. (2)由2=MA MO ,求出动点M 的轨迹方程,说明轨迹,通过点M 同时在圆C 上,说明圆C 与圆D 有公共点,利用两个圆的位置关系,转化求解圆心C 的横坐标a 的取值范围即可. 【详解】(1)因为圆心C 在直线l 上,所以圆心C 可设为(a ,2a -4),|1128|15a -==,即|1128|5a -=, 所以11285a -=±,解得3a =或2311a =, 所以圆心C 的坐标为(3,2)或232,1111⎛⎫⎪⎝⎭, 所以圆C 的标准方程为22(3)(2)1x y -+-=或22232()()11111x y -+-=(2) 由2=MA MO ,= 化简得:22230x y y ++-=, 即22(1)4x y ++=,所以动点M 的轨迹是以D (0,-1)为圆心,半径是2的圆, 若点M 同时在圆C 上,则圆C 与圆D 有公共点, 则21||21CD -≤≤+,即1 3.≤≤整理得:2251280,5120a a a a ⎧-+≥⎨-≤⎩解得1205a ≤≤, 所以圆心C 的横坐标a 的取值范围为[0,125]. 【点睛】关键点点睛:判断两圆位置关系式,只需求出两圆圆心的距离,比较与两圆半径的关系即可,本题根据两圆有公共点可得21||21CD -≤≤+,解不等式即可求解,属于中档题. 24.(1)()()22129x y -++=;圆心()1,2C -,3r =;(2)存在;;1y x =+或4y x =-;(3)92. 【分析】(1)将一般方程化为标准方程后即可得到结果;(2)设:l y x m =+,与圆的方程联立得到根与系数的关系,利用OA OB ⊥,即12120x x y y +=,由此整理可得方程求得m ,进而得到所求方程;(3)设:l y x m =+,由垂径定理表示出AB ,将所求面积表示为关于圆心到直线距离d 的函数,利用函数最值的求法可求得结果. 【详解】(1)由222440x y x y +-+-=得:()()22129x y -++=.∴圆C 的圆心为:()1,2C -,半径3r =.(2)假设存在直线l ,设方程为y x m =+,()11,A x y ,()22,B x y ,以AB 为直径的圆过圆心O ,∴OA OB ⊥,即12120x x y y +=.由222440y x m x y x y =+⎧⎨+-+-=⎩消去y 得:()22221440x m x m m ++++-=. 由()()22418440m m m ∆=+-+->得:33m -<<.由根与系数关系得:()121x x m +=-+,212442m m x x +-=,()()()212121212y y x m x m x x m x x m ∴=++=+++,()21212121220x x y y x x m x x m ∴+=+++=,解得:1m =或4-.∴直线l 方程为:1y x =+或4y x =-.(3)设圆心C 到直线l :y x m =+的距离为d,则AB =12CABSd ∴=⨯== ∴当2d =()max 92CAB S=, ∴圆心到直线距离2d ==,解得:0m =或6m =-, ∴当直线l 的方程为y x =或6y x =-时,CAB △面积取得最大值92. 【点睛】方法点睛:处理直线与圆问题中的三角形面积的最值或取值范围问题时,通常结合垂径定理和点到直线距离公式将所求面积表示为关于圆心到直线距离d 或者半径r 的函数关系式的形式,利用函数最值的求解方法求得结果. 25.(1)PH =2)2. 【分析】(1)根据直线PH 的斜率与l 的斜率的关系得到方程,再将l 的方程与所得方程联立并化简,即可推导出P 到直线l 的距离PH 的公式;(2)先确定出质点的运动轨迹对应的直线方程,然后根据点到直线的距离公式求解出最近距离,由此确定出质点的运动时间. 【详解】(1)P 到直线l的距离PH =设(),H x y ,所以1PH l k k ⋅=-,所以1y b m x a n -⎛⎫⋅-=- ⎪-⎝⎭,所以10y b m x a n mx ny r ⎧-⎛⎫⋅-=-⎪ ⎪-⎝⎭⎨⎪++=⎩,所以()()()()()0m y b n x a m x a n y b ma nb r ⎧---=⎪⎨-+-=-++⎪⎩, 所以()()()()()()()222222+=m y b n x a m x a n y b m n x a y b ⎡⎤----+-+-+-⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()2ma nb r =++,所以()()()22222ma nb r x a y b m n++⎡⎤-+-=⎣⎦+,所以()()2222ma nb r x a y b m n ++-+-=+ 又因为()()22P a y b H x -+-=,所以22ma nb rm PH n ++=+;(2)由条件可知:质点运动轨迹所在直线方程为()1041y x -=--,即40x y +-=, 如下图,作BC l ⊥,垂足为C ,显然质点运动到C 时离B 点最近,又244211BC +-==+,()()22420425AB =-+-=,所以2232AC AB BC =-=,所以质点运动时间为322秒.【点睛】关键点点睛:解答问题的关键是选用合理的方法推导出点到直线的距离公式,第二问即可使用点到直线的距离公式进行分析求解.26.(1)320x y ++=;(2)22(2)8x y -+=;(3)20x y -+=或20x y ++=.【分析】(1)求出直线AC 的斜率后可得直线AC 的方程.(2)求出点A 的坐标,结合圆心坐标可求圆的半径,从而可得圆的方程.(3)利用点到直线的距离为半径可求切线的斜率,从而可得所求的切线的方程.【详解】(1)0AT AB ⋅=,AT AB ∴⊥,又T 在AC 上,AC AB ∴⊥,ABC ∴为Rt ABC ∆,又AB 边所在直线的方程为360x y --=,∴直线AC 的斜率为3-, 又点()1,1T -在直线AC 上,AC ∴边所在直线的方程为13(1)y x -=-+,即320x y ++=.(2)AC 与AB 的交点为A ,∴由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-, BM MC =,()2,0M ∴为Rt ABC 斜边上的中点,即为Rt ABC 外接圆的圆心,又||r AM ===从而ABC 外接圆的方程为22(2)8x y -+=.(3)设切线方程为(2)y k x =+=,解得1k =或1-.所以切线方程为20x y -+=或20x y ++=.【点睛】思路点睛:(1)确定直线的方程往往需要两个独立的条件,比如直线所过的两个不同点,或直线所过的一个点和直线的斜率;(2)确定圆的方程,关键是圆心坐标和半径的确定;(2)直线与圆的位置关系,往往通过圆心到直线的距离与半径的大小关系来判断.。

(完整版)直线与圆的方程测试题(含答案)

(完整版)直线与圆的方程测试题(含答案)

直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。

高三数学一轮复习高考总复习测评卷 直线和圆的方程 章末质量检测 文 试题

高三数学一轮复习高考总复习测评卷 直线和圆的方程 章末质量检测 文 试题

·创 作人:历恰面 日 期: 2020年1月1日金版新学案?高考总复习配套测评卷——高三一轮数学『文科』卷(七)直线和圆的方程————————————————————————————————————— 【说明】 本套试卷分为第Ⅰ、Ⅱ卷两局部,请将第一卷选择题之答案填入答题格内,第二卷可在各题后直接答题,一共150分,考试时间是是120分钟.第一卷 (选择题 一共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案个选项里面,只有一项是哪一项符合题目要求的)1.下面各组方程中,表示一样曲线的是( )A .y =x 与yx=1 B .|y |=|x |与y 2=x 2C .|y |=2x +4与y =2|x |+4D.⎩⎪⎨⎪⎧x =sin θ(θ为参数)y =cos 2θ与y =-x 2+12.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是( )A .-x +2y -4=0B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=03.“a =1”是“直线x +y =0和直线x -ay =0互相垂直〞的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.过点P (5,-2),且与直线x -y +5=0相交成45°角的直线l 的方程是( )A .y =-2B .y =2,x =5C .x =5D .y =-2,x =55.假设PQ 是圆x 2+y 2=9的弦,PQ 的中点是(1,2),那么直线PQ 的方程是( )A .x +2y -3=0B .x +2y -5=0C .2x -y +4=0D .2x -y =06.假设k ,-1,b 三个数成等差数列,那么直线y =kx +b 必经过定点( )A .(1,-2)B .(1,2)C .(-1,2)D .(-1,-2)7.D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,所确定的平面区域,那么圆x 2+y 2=4在区域D 内的弧长为( )A.π4B.π2C.3π4D.3π28.A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM |+|BM |为最短,那么点M 的坐标为( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎪⎫225,0D.⎝⎛⎭⎪⎫0,2259.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,假设目的函数z =ax +by (a >0,b >0)的最大值为12,那么2a +3b的最小值为( )A.256B.83C.113D .410.在平面直角坐标系中,O 为坐标原点,A (3,1),B (-1,3),假设点C 满足|+|=|-|,那么C 点的轨迹方程是( )A .x +2y -5=0B .2x -y =0C .(x -1)2+(y -2)2=5 D .3x -2y -11=011.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=012.台风中心从A 地以每小时20千米的速度向东北方向挪动,离台风中心30千米内的地区为危险区,城B 在A 的正东40千米处,那么B 城处于危险区内的时间是为( )A .小时B .1小时C .小时D .2小时第二卷 (非选择题 一共90分)二、填空题(本大题一一共4小题,每一小题5分,一共20分.把答案填在题中横线上) 13.将直线y =x +3-1绕它上面一点(1,3)沿逆时针方向旋转15°,那么所得直线的方程为________.14.在坐标平面内,与点A (1,3)的间隔 为2,且与点B (3,1)的间隔 为32的直线一共有__________条.15.直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E ,F 两点,那么△EOF (O 为坐标原点)的面积等于________.16.在直角坐标平面上,不等式组⎩⎪⎨⎪⎧x 2+y 2-4x -6y +4≤0,|x -2|+|y -3|≥3表示的平面区域的面积是________.三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤)17.(本小题满分是10分)△ABC 的两条高所在直线的方程为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.18.(本小题满分是12分)如图,直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B 的坐标为(0,-22),顶点C 在x 轴上.(1)求BC 边所在直线的方程.(2)圆M 是△ABC 的外接圆,求圆M 的方程.19.(本小题满分是12分)△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0.AC 边上的高BH 所在直线为x -2y -5=0.求:(1)顶点C 的坐标; (2)直线BC 的方程.20.(本小题满分是12分)甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地,东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和元/吨,乙煤矿运往东车站和西车站的运费价格分别为元/吨和元/吨.要使总运费最少,煤矿应怎样编制调运方案?21.(本小题满分是12分)圆C :x 2+y 2=r 2(r >0)经过点(1,3). (1)求圆C 的方程;(2)是否存在经过点(-1,1)的直线l ,它与圆C 相交于A ,B 两个不同点,且满足=12+32(O 为坐标原点)关系的点M 也在圆C 上?假如存在,求出直线l 的方程;假如不存在,请说明理由.22.(本小题满分是12分)圆M 的方程为:x 2+y 2-2x -2y -6=0,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E 、F 两点,圆内的动点D 使得|DE |、|DO |、|DF |成等比数列,求·的取值范围;(3)过点M 作两条直线分别与圆N 相交于A 、B 两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行?请说明理由. 答案:卷(七)一、选择题1.B 用排除法做.A 、C 易排除,∵点坐标范围明显不一致.D 中前者x ∈[-1,1],y ∈[0,1],后者x ∈R ,y ∈(-∞,1],故排除D.2.D 选D.由题意知所求直线与2x -y -2=0垂直. 又2x -y -2=0与y 轴交点为(0,-2). 故所求直线方程为y +2=-12(x -0),即x +2y +4=0.3.C 当a =1时,直线x +y =0与直线x -y =0垂直成立;当直线x +y =0与直线x -ay =0垂直时,a =1.所以“a =1〞是“直线x +y =0与直线x -ay =0互相垂直〞的充要条件. 4.D (1)假设直线l 的斜率存在,设为k ,由题意,tan 45°=⎪⎪⎪⎪⎪⎪k -11+k ,得k =0,所求l 的直线方程为y =-2.(2)假设直线l 的斜率不存在,那么直线l 的方程为x =5,且与直线x -y +5=0相交成45°角.应选D.5.B 结合圆的几何性质易知直线PQ 过点A (1,2),且和直线OA 垂直,故其方程为:y -2=-12(x -1),整理得x +2y -5=0.6.A ∵k ,-1,b 成等差数列, ∴k +b =-2.∴当x =1时,y =k +b =-2. 即直线过定点(1,-2).7.B 如图阴影局部表示⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,确定的平面区域,所以劣弧AB 的弧长即为所求.∵k OB =-13,k OA =12,∴tan ∠BOA =12-⎝ ⎛⎭⎪⎫-131+12×⎝ ⎛⎭⎪⎫-13=1,∴∠BOA =π4.∴劣弧A B 的长度为2×π4=π2.8.B 点B (2,2)关于x 轴的对称点为B ′(2,-2),连接AB ′,易求得直线AB ′的方程为2x +y -2=0,它与x 轴交点M (1,0)即为所求.9.A 不等式组表示的平面区域如下图阴影局部,当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目的函数z =ax +by (a >0,b >0)获得最大值12,即4a +6b =12,即2a +3b =6,而2a +3b=⎝ ⎛⎭⎪⎫2a +3b ·2a +3b 6 =136+⎝ ⎛⎭⎪⎫b a +a b ≥136+2 =256, 应选A10.C 由|+|=|-|知⊥,所以C 点的轨迹是以两个端点A 、B 为直径的圆,圆心坐标为线段AB 的中点(1,2),半径等于5,所以C 点的轨迹方程是(x -1)2+(y -2)2=5.11.D 由条件知M 点在圆内,故当劣弧最短时,l 应与圆心与M 点的连线垂直, 设圆心为O ,那么O (2,0), ∴K OM =2-01-2=-2.∴直线l 的斜率k =12,∴l 的方程为y -2=12(x -1).即x -2y +3=0.12.B 如图,以A 为坐标原点,建立平面直角坐标系,那么B (40,0),台风中心挪动的轨迹为射线y =x (x ≥0),而点B 到射线y =x 的间隔 d =402=202<30,故l =2302-(202)2=20,故B 城处于危险区内的时间是为1小时. 二、填空题13.【解析】 直线y =x +3-1的斜率为1,故倾斜角为45°,旋转后的直线的倾斜角为60°,斜率为3,故所求直线方程为y -3=3(x -1),即3x -y =0.【答案】3x -y =014.【解析】 以A (1,3)为圆心,以2为半径作圆A ,以B (3,1)为圆心,以32为半径作圆B .∵|AB |=(1-3)2+(3-1)2=22=32-2, ∴两圆内切, 公切线只有一条. 【答案】 1 15.【解析】 如图圆心O 1(2,-3)到直线l :x -2y -3=0的间隔 为5,那么|EF |=29-5=4,O 到l 的间隔 d =35,故S △OEF =12d |EF |=655.【答案】65516.【解析】 区域为圆面(x -2)2+(y -3)2=9内挖去了一个内接正方形. 【答案】 9π-18三、解答题17.【解析】 可以判断A 不在所给的两条高所在的直线上,那么可设AB ,AC 边上的高所在的直线方程分别为2x -3y +1=0,x +y =0,那么可求得AB ,AC 所在的直线方程为y-2=-32(x -1),y -2=x -1,即3x +2y -7=0,y -x -1=0.由⎩⎪⎨⎪⎧3x +2y -7=0x +y =0得B (7,-7),由⎩⎪⎨⎪⎧y -x -1=02x -3y +1=0得C (-2,-1),所以直线BC 的方程为2x +3y +7=0. 18.【解析】 (1)设C (x 0,0), 那么k AB =-220-(-2)=- 2.k BC =0+22x 0-0=22x 0. ∵AB ⊥BC ,∴k AB ·k BC =-1, 即-2×22x 0=-1,∴x 0=4,∴C (4,0),∴k BC =22, ∴直线BC 的方程为y -0=22(x -4),即y =22x -2 2. (2)圆M 以线段AC 为直径,AC 的中点M 的坐标为(1,0),半径为3, ∴圆M 的方程为x 2+y 2-2x -8=0. 19.【解析】 直线AC 的方程为:y -1=-2(x -5),即2x +y -11=0,解方程组⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得⎩⎪⎨⎪⎧ x =4,y =3,那么C 点坐标为(4,3).设B (m ,n ),那么M (m +52,n +12),⎩⎪⎨⎪⎧ 2m +52-n +12-5=0m -2n -5=0, 整理得⎩⎪⎨⎪⎧ 2m -n -1=0m -2n -5=0, 解得⎩⎪⎨⎪⎧ m =-1n =-3那么B 点坐标为(-1,-3)直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.20.【解析】 设甲煤矿向东车站运x 万吨煤,乙煤矿向东车站运y 万吨煤,那么总运费z =x +1.5(200-x )+y +1.6(300-y )(万元),即z =780-x -y . x 、y 应满足⎩⎪⎨⎪⎧x ≥0,y ≥0,200-x ≥0,300-y ≥0,x +y ≤280,200-x +(300-y )≤360, 作出上面的不等式组所表示的平面区域如下图.设直线x +y =280与y 轴的交点为M ,那么M (0,280),把直线l :x +y =0向上平移至经过点M 时,z 的值最小. ∵点M 的坐标为(0,280),∴甲煤矿消费的煤全部运往西车站,乙煤矿向东车站运280万吨、向西车站运20万吨时,总运费最少. 21.【解析】 (1)由圆C :x 2+y 2=r 2,再由点(1,3)在圆C 上,得r 2=12+(3)2=4所以圆C 的方程为 x 2+y 2=4;(2)假设直线l 存在,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0)①假设直线l 的斜率存在,设直线l 的方程为:y -1=k (x +1),联立⎩⎪⎨⎪⎧ y =k (x +1)+1x 2+y 2-4=0消去y 得,(1+k 2)x 2+2k (k +1)x +k 2+2k -3=0,由韦达定理得x 1+x 2=-2k (k +1)1+k 2=-2+2-2k 1+k 2,x 1x 2=k 2+2k -31+k 2=1+2k -41+k 2, y 1y 2=k 2x 1x 2+k (k +1)(x 1+x 2)+(k +1)2=2k +41+k 2-3, 因为点A (x 1,y 1),B (x 2,y 2)在圆C 上,因此,得x 21+y 21=4,x 22+y 22=4, 由=12+32得x 0 =x 1+3x 22,y 0=y 1+3y 22,由于点M 也在圆C 上,那么⎝ ⎛⎭⎪⎫x 1+3x 222+⎝ ⎛⎭⎪⎫y 1+3y 222 =4,整理得,x 21+y 214+3x 22+y 224+32x 1x 2+123y 1y 2=4, 即x 1x 2+y 1y 2=0,所以1+2k -41+k 2+(2k +41+k2-3)=0, 从而得,k 2-2k +1=0,即k =1,因此,直线l 的方程为 y -1=x +1,即x -y +2=0,②假设直线l 的斜率不存在,那么A (-1,3),B (-1,-3),M ⎝ ⎛⎭⎪⎫-1-32,3-32 ⎝ ⎛⎭⎪⎫-1-322+⎝ ⎛⎭⎪⎫3-322 =4-3≠4,故点M 不在圆上与题设矛盾综上所知:k =1,直线方程为x -y +2=022.【解析】 圆M 的方程可整理为:(x -1)2+(y -1)2=8,故圆心M (1,1),半径R =2 2.(1)圆N 的圆心为(0,0),因为|MN |=2<22,所以点N 在圆M 内,故圆N 只能内切于圆M .设其半径为r .因为圆N 内切于圆M ,所以有:|MN |=R -r , 即2=22-r ,解得r = 2.所以圆N 的方程为x 2+y 2=2.(2)由题意可知:E (-2,0),F (2,0).设D (x ,y ),由|DE |、|DO |、|DF |成等比数列,得|DO |2=|DE |×|DF |, 即:(x +2)2+y 2×(x -2)2+y 2=x 2+y 2,整理得:x 2-y 2=1.而=(-2-x ,-y ),=(2-x ,-y ),·=(-2-x )(2-x )+(-y )(-y )=x 2+y 2-2=2y 2-1,由于点D 在圆N 内,故有⎩⎪⎨⎪⎧ x 2+y 2<2x 2-y 2=1,由此得y 2<12,所以·∈[-1,0). (3)因为直线MA 和直线MB 的倾斜角互补,故直线MA 和直线MB 的斜率存在,且互为相反数,设直线MA 的斜率为k ,那么直线MB 的斜率为-k .故直线MA 的方程为y -1=k (x -1),直线MB 的方程为 y -1=-k (x -1),由⎩⎪⎨⎪⎧ y -1=k (x -1)x 2+y 2=2, 得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点M 在圆N 上,故其横坐标x =1一定是该方程的解,可得x A =k 2-2k -11+k 2, 同理可得:x B =k 2+2k -11+k 2, 所以k AB =y B -y A x B -x A= -k (x B -1)-k (x A -1)x B -x A= 2k -k (x B +x A )x B -x A=1=k MN . 所以,直线AB 和MN 一定平行.。

2022-2023人教A版高二数学上学期同步讲义第二章 直线和圆的方程章末检测卷(二)

2022-2023人教A版高二数学上学期同步讲义第二章 直线和圆的方程章末检测卷(二)

直线和圆的方程章末检测卷(二)说明:1.本试题共4页,满分150分,考试时间120分钟。

2.答题前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、试室号、座位号填写在答题卷上。

3. 答题必须使用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷上各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卷整洁,考试结束后,将答题卷交回,试卷自己保存。

第I 卷(选择题 共60分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.)1.设a 为实数,若直线20x ay a ++=与直线10ax y a +++=平行,则a 值为( ) A .1-B .1C .±1D .2【解析】由题意210a -=,1a =±,1a =时,212a a =+=,两直线重合,舍去,1a =-时,22a =-,10a +=,满足两直线平行.所以1a =-.故选:A .2.已知过点()2,2P 的直线与圆()2215x y -+=相切,且与直线10ax y -+=垂直,则=a ( )A .12-B .12C .2-D .2【解析】设过点(2,2)P 的直线的斜率为k ,则直线方程(22)y k x -=-,即220kx y k -+-=,=12k =-,由于直线220kx y k -+-=与直线10ax y -+=,因此112a -⨯=-,解得2a =,故选:D.3.若圆221:4C x y +=与圆222:680C x y x y m +--+=外切,则实数m 的值是( ) A .24-B .16-C .24D .16【解析】圆221:4C x y +=的圆心为()0,0,半径为2;圆222:680C x y x y m +--+=的圆心为()3,4,半径为5=.由于两个圆外切,所以25=,解得16m =. 故选:D4.已知梯形ABCD 中,AB ∥CD ,并且点A (4,0),点B (6,6),点C (0,2),则此梯形的高为( ) ABCD【解析】根据题意,点A (4,0),点B (6,6), 则直线AB 的斜率k 6064-==-3,则直线AB 的方程为y ﹣0=3(x ﹣4),即3x ﹣y ﹣12=0; 点C 到直线AB 的距离d =梯形ABCD 中,AB ∥CD ,则此梯形的高就是点C 到直线AB; 故选:C.5.唐代诗人李颀的诗《古从军行》开头两句为“白日登山望烽火,黄昏饮马傍交河”,其中隐含了一个有趣的数学问题——“将军饮马”,即将军在白天观望烽火台之后黄昏时从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,已知军营所在的位置为()2,0B -,若将军从山脚下的点1,03A ⎛⎫⎪⎝⎭处出发,河岸线所在直线方程为23x y +=,则“将军饮马”的最短总路程为( )AB .5 CD .163【解析】如图所示,设点()2,0B -关于直线23x y +=的对称点为()11,C x y ,在直线23x y +=上取点P ,连接PC ,则PB PC =.由题意可得1111112222322y x x y ⎧⎛⎫⋅-=- ⎪⎪+⎪⎝⎭⎨-⎪+⨯=⎪⎩,解得1104x y =⎧⎨=⎩,即点()0,4C ,所以PA PB PA PC AC +=+≥==A ,P ,C 三点共线时等号成立,所以“将军饮马” 故选:A .6.已知直线:10l x my m -+-=,则下叙述正确的是( ) A .直线l 的斜率可以等于0B .原点到直线l 的距离的最大值为32C .直线l 可以表示过点(1,1)的所有直线D .若直线l 的横纵截距相等,则1m =±【解析】:10l x my m -+-=,当0m =时,:10l x -=是垂直于x 轴的直线,斜率不存在;当0m ≠时,变为点斜式: ()111y x m -=-,恒过定点A ()1,1,由于10m≠,所以直线l 的斜率不会等于0,故A 错误;且:10l x my m -+-=不能表示过点(1,1)的所有直线,C 错误;设原点为O ,因为直线恒过点A ,所以当直线:10l x my m -+-=与线段OA 垂直时,原点到直线l 的距离最大,此时的最大距离就是线段OA 的长,OA B 错误;直线化为截距式:当1m =时,:l y x =,此时横纵截距为0,横纵截距相等;当1m ≠时,:111x my l m m +=--,令11m m m--=,解得:1m =-,综上:若直线l 的横纵截距相等,则1m =±,D 正确. 故选:D7.已知点()()0,2,1,1A B ,且点P 在圆22:(2)4C x y -+=上,C 为圆心,则下列说法错误的是( )A .PA PB + B .当PAB ∠最大时,APB △的面积为2C .PA PC -的最大值为D .PA PB -【解析】如图,当P 为线段AB 与圆C 的交点时,即PA PB AB +==此时PA PB +A 正确;由题可知点B 在圆C 内,当AP 与圆C 相切时,PAB ∠最大,此时P 与O 重合,此时12112APB S =⨯⨯=△,故B 错误;因为点P 在圆22:(2)4C x y -+=上,C 为圆心,则2PC r ==,所以当PA 最大时,PA PC -也最大,当A ,C ,P 三点共线,且C 在A ,P 之间时,其最大值为||AC =C 正确;当P 为射线BC 与圆C 的交点时,PA PB -取得最大值||AB =D 正确. 故选:B.8.在平面直角坐标系xOy 中,已知圆22221,1(9)O x y C x y ++=+=::,直线l 与圆O 相切,与圆C 相交于,A B 两点,分别以点,A B 为切点作圆C 的切线12l l ,.设直线12l l ,的交点为P ,则OP 的最小值为( )A .9B .7C .D .72【解析】设点(),P m n ,()11,A x y ,()22,B x y ,()1,0C -,因为分别以点,A B 为切点作圆C 的切线12l l ,.设直线12l l ,的交点为P , 所以CA AP ⊥,则0CA AP ⋅=,即1111(1)()()0x m x y n y +-+-=,所以22111110x x mx m y y n +--+-=,因为2211(1)9x y ++=,所以11(1)80m x ny m +++-=,即()11,x y 是方程(1)80m x ny m +++-=的解, 所以点()11,A x y 在直线(1)80m x ny m +++-=上, 同理可得()22,B x y 在直线(1)80m x ny m +++-=上, 所以切点弦AB 的方程为(1)80m x ny m +++-=, 因为直线AB 与圆O 相切,1=,解得263180n m =-≥,即72m ≤所以||OP所以当72m =时,直线AB 方程为1x =,此时min 7||2OP = 所以OP 的最小值为72.故选:D二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求。

历年高考直线与圆真题以及解析

历年高考直线与圆真题以及解析
(2)假设存在满足题意的直线l,设M(x1,y1)N(x2,y2),联立直线与圆的方程,由直线与圆相交可得△=(2k+4)2﹣16(1+k2)>0,由数量积的计算公式可得 • =(1+k2) + +4=6,解可得k的值,验证是否满足△>0,即可得答案.
【详解】(1)根据题意,圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,
【详解】(1) 直线 与直线 垂直,
,解得 .
(2)当 时,直线 化为: 不满足题意.
当 时,可得直线 与坐标轴的交点 , .
直线 在两轴上的截距相等,
,解得: .
该直线的方程为 ,即 .
11.
(1) ;(2)存在,理由见解析
【分析】
(1)根据题意得到 ,再解不等式即可得到答案.
(2)首先假设存在得以 为直径的圆过原点,设 , ,直线与圆联立得到 ,再根据韦达定理和圆的性质即可得到答案.
化简可得: 即为点Q的轨迹方程.
【点睛】本题考查直线与圆的位置关系,考查直线被圆截得的弦长公式的应用,考查直线恒过定点问题和轨迹问题,属于中档题.
10.
(1) ;(2) .
【分析】
(1)利用两条直线垂直的条件列方程,解方程求得 的值.
(2)分成 和 两种情况,结合直线 在两轴上的截距相等求得 ,由此求得所求直线方程.
②当切线斜率存在时,设切线斜率为 ,
则切线方程为 ,即
因为圆心到切线距离等于半径,
所以 ,解得 ,此时切线方程为 ,
综上所述,过点 的圆的切线方程为 和 .
(2)因为 即 , 为圆上任意一点,
所以 即原点到圆上一点的直线的斜率,
令 ,则原点到圆上一点的直线的方程为 ,即

直线与圆练习题(带答案解析)

直线与圆练习题(带答案解析)

..直线方程、直线与圆练习1.如果两条直线l 1:260ax y ++=与l 2:(1)30x a y +-+=平行,那么a 等 A .1 B .-1 C .2 D .23【答案】B 【解析】试题分析:两条直线平行需满足12211221A B A B A C A C =⎧⎨≠⎩即122112211A B A B a AC A C =⎧⇒=-⎨≠⎩,故选择B考点:两条直线位置关系2. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是 A .4y x =-+ B .y x = C .4y x =+ D .y x =- 【答案】A 【解析】试题分析:由题意可得:AB 中点C 坐标为()2,2,且31131AB k -==-,所以线段AB 的垂直平分线的斜率为-1,所以直线方程为:()244y x y x -=--⇒=-+,故选择A考点:求直线方程3.如图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++=与直线10x y +-=的交点在A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D 【解析】试题分析:由图形可知0b a c >>>,由010ax by c x y ++=⎧⎨+-=⎩得0b c x b a a c y b a +⎧=>⎪⎪-⎨--⎪=<⎪-⎩所以交点在第四象限考点:圆的方程及直线的交点4.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点 A .(1,2)- B .(1,2) C .(1,2)- D .(1,2)-- 【答案】A 【解析】试卷第2页,总48页试题分析:由中点坐标公式可得2k b +=-,所以直线y kx b =+化为()212y kx k k x y =--∴-=+,令10,201,2x y x y -=+=∴==-,定点(1,2)-考点:1.中点坐标公式;2.直线方程5.过点(1,3)P -且平行于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x【答案】D 【解析】试题分析:设直线方程:02=+-c y x ,将点(1,3)P -代入方程,06-1-=+c ,解得7=c ,所以方程是072=+-y x ,故选D . 考点:直线方程 6.设(),P x y 是曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)上任意一点,则y x 的取值范围是()A .3,3⎡⎤-⎣⎦B .(),33,⎤⎡-∞-⋃+∞⎦⎣C .33,33⎡⎤-⎢⎥⎣⎦ D .33,,33⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【答案】C 【解析】试题分析:曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)的普通方程为:()()2221,,x y P x y ++=是曲线()22:21C x y ++=上任意一点,则yx 的几何意义就是圆上的点与坐标原点连线的斜率, 如图:33,33y x ⎡⎤∈-⎢⎥⎣⎦.故选C .考点:1.直线与圆的位置关系;2.直线的斜率;3.圆的参数方程.7.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +..(A )最小值为15 (B )最小值为55 (C )最大值为15 (D )最大值为55【答案】A【解析】试题分析:直线ax+by=1与线段AB 有一个公共点,则点A(1,0)B(2,1)应分布在直线ax+by-1=0两侧,将(1,0)与(2,1)代入,则(a-1)(2a+b-1)≤0,以a 为横坐标,b 为纵坐标画出区域如下图:则原点到区域内点的最近距离为OA ,即原点到直线2a+b-1=0的距离,OA=55,22a b +表示原点到区域内点的距离的平方,∴22a b +的最小值为15,故选A.考点:线性规划.8.点()11-,到直线10x y -+=的距离是( ). A .21 B .23 C .22D .223【答案】D【解析】试题分析:根据点到直线的距离公式,()221(1)132211d --+==+-,故选D 。

第二章 直线和圆的方程(基础过关)(原卷版)附答案.pdf

第二章 直线和圆的方程(基础过关)(原卷版)附答案.pdf

第二章直线和圆的方程基础过关卷班级___________ 姓名___________ 学号____________ 分数____________(考试时间:120分钟试卷满分:150分)一、单项选择题:(本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.过三点A(1,﹣1),B(1,4),C(4,﹣2)的圆的方程是( )A.x2+y2﹣7x﹣3y+2=0B.x2+y2+7x﹣3y+2=0C.x2+y2+7x+3y+2=0D.x2+y2﹣7x+3y+2=02.点P,Q在圆x2+y2+kx﹣4y+3=0上(k∈R),且点P,Q关于直线2x+y=0对称,则该圆的半径为( )A.B.C.1D.23.在圆M:x2+y2﹣4x﹣4y﹣1=0中,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( )A.6B.12C.24D.364.圆心为M(1,3),且与直线3x﹣4y﹣6=0相切的圆的方程是( )A.(x﹣1)2+(y﹣3)2=9B.(x﹣1)2+(y﹣3)2=3C.(x+1)2+(y+3)2=9D.(x+1)2+(y+3)2=35.直线y=kx+3被圆(x﹣2)2+(y﹣3)2=4截得的弦长为2,则直线的倾斜角为( )A.B.或C.或D.或6.直线l:mx﹣y+1﹣4m=0(m∈R)与圆C:x2+(y﹣1)2=25交于两点P、Q,则弦长|PQ|的取值范围是( )A.[6,10]B.[6,10)C.(6,10]D.(6,10)7.已知点M为直线x+y﹣3=0上的动点,过点M引圆x2+y2=1的两条切线,切点分别为A,B,则点P(0,﹣1)到直线AB的距离的最大值为( )A.B.C.D.8. 已知点P(x,y)是直线kx+y+2=0(k>0)上一动点,PA、PB是圆C:x2+y2﹣2x=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( )A.2B.C.D.二、多项选择题:(本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011—2012学年度第二学期
2010级数学期中试卷
姓名班级成绩
一、单项选择:(10*4)
1、已知直线L的方向向量为(1、2),则直线的斜率K=()
A、1
B、2
C、3
D、4
2、已知直线L的倾斜角为45゜,则直线的斜率K=()
A、1
B、2
C、3
D、4
3、已知直线L上的两个点A(1、2)、B(
4、14),则直线的斜率
K=()
A、1
B、2
C、3
D、4
4、判断下列关系错误的是()。

A、与一条直线平行的非零向量叫做这条直线的方向向量
B、与一条直线垂直的非零向量叫做这条直线的法向量
C、一条直线 L向上的方向与X轴正方向所成的最小正角a,
叫做直线L的倾斜角
D、斜截式方程:y=kx+b中,k是它的斜率,而b称为
直线 L在X轴上的截距
5、判断下列关系错误的是()。

A、方程式:Ax+By+C=0 (A,B不全为零)称为直线的一般式方程,
而向量(A、B)为直线Ax+By+C=0的一个法向量
B、方程式:Ax+By+C=0 (A,B不全为零)称为直线的一般式方程,
而向量(B、-A)或(-B、A)为直线Ax+By+C=0的一个方向向量
C、如果已知直线的斜率为K,则(1、K)是该直线的一个方向向量
D、方程式:x²+y²+Dx+Ey+F=0所表示的曲线一定是圆
6、圆:(x-1) ²+(y-3)²=5中,圆心坐标为()。

A、(1、3)
B、(-1、3 )
C、(3、-1)
D、(-1、-3)
7、圆:(x-1) ²+(y-3)²=25中,则该圆的半径为()。

A、1
B、3
C、5
D、25
8、直线:3x-4y-1=0的一个法向量为()
A、(3、4)
B、(3、-4 )
C、(4、3)
D、(4、-3)
9、已知直线a:2x-4y+7=0和直线b: x-2y +5=0,则两直线的
位置关系为()。

A、平行
B、相交
C、重合
D、无法判断
10、判断下列关系错误的是()。

A、与直线Ax+By+C=0 (A,B不全为零)平行的直线都可以表示成
Ax+By+D=0 (D≠C)
B、与直线Ax+By+C=0 (A,B不全为零)垂直的直线都可以表示成
Bx-Ay+D=0 (D≠C)
C、圆的方程式:(x-a) ²+(y-b)²=r²称为圆的标准方程式
D、圆的方程式:x²+y²+Dx+Ey+F=0称为圆的标准方程式
二、填空题:(6*4)
11、过点P(1、2),且一个法向量为(3、4)的直线方程为
12、过点P(1、-2),且一个方向向量为(-1、3)的直线方程
为。

13、已知直线L过点P(1、2),且斜率为-2,则直线L的方程式
为。

14、圆心坐标为(-2、1),半径为2的圆的标准方程式为
15、圆的一般方程式为:x²+y²+4x-6y-12=0,则圆心坐标为
该圆的半径为
三、计算与证明:(36)
16、求两直线x-y-1=0和x+y-3=0的交点坐标(6)
17、求过点(1、-3),且与直线2x+y-5=0垂直的直线方程式。

(6)
18、求点P(-1、2)到直线2x+y-5=0的距离(6)19、已知直线y-3=k(x-5)过点P(-1、-2),求K的值(6)
20、求直线L:4x-3y-12=0与x轴,y轴的交点坐标,并画出直线L(6)
21、已知圆的方程是(x-4)²+(y+1)²=25,直线方程为4x-3y+6=0,判断该圆与直线的位置关系(6)。

相关文档
最新文档