人教版初中九年级数学上册第二十三章《旋转》知识点复习(含答案解析)
人教版九年级数学第二十三章第1节图形的旋转解答题 12含解析.docx

第二十三章第1节《图形的旋转》解答题(12)一、解答题1.⑴解方程:X2- 5 = 4x.⑵如图,四边形ABCD中,ZC = 60°, ZBED = 110°, BD = BC,点E在AD ±,将BE绕点2.已知ZXABC中,ZABC=90°, ZC=30°, AB=1.若把AABC绕点B顺时针旋转得到厶EBD,(1) 如图1,当点E落在AC边上时,求旋转角度大小.(2) 如图2,当点E落在直线CD上时,求点C和点D之间的距离.图13.如图1,在平面直角坐标系中,直线C在线段OA上,将线段CB绕着点C顺时针旋转90。
得到CD,此时点D恰好落在直线AB 上,过点D作DE±x轴于点E.(1)求证:△BOC竺Z\CED;(2) 如图2,将ABCD沿X轴正方向平移得△B'C'D',当B'C'经过点D时,求ABCD平移的距离及点D的坐标;(3) 若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.4.如图(1),在AABC中,DE//BC.若将AADE绕点D顺时针旋转至卜理DE,使财续DE'与财线CB相交于点F (不与B、C重合).(1)如图(1),若ZEDE'= 125°,则ZBFD =—;(2)如图(2),连结EE',若4D丄47),试求出ZDE'E的度数;(3)请探究ZBFD与ZBZM'之间所满足的数量关系,并加以证明.5.基本图形:在RTAABC中,AB=AC, D为BC边上一点、(不与点B, C重合),将线段AD绕点A 逆时针旋转90。
得到AE.探索:(1)连接EC,如图①,试探索线段BC, CD, CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE, BD, CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,ZABC= ZACB= ZADC=45°,若BD=7, CD=2,则AD的长为 .图①6.如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段M,N在网格线上,(1)画出线段AB关于线段所在直线对称的线段A5,(点4目分别为A B的对应点);将线段目4,绕点顺时针旋转90。
(人教版)北京九年级数学上册第二十三章《旋转》经典复习题(答案解析)

一、选择题1.道路千万条,安全第一条,下列交通标志是中心对称图形的为()A.B.C.D.D解析:D【分析】根据中心对称图形定义可得答案.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.下列图形中,是中心对称但不是轴对称的图形是()A.平行四边形B.矩形C.菱形D.等边三角形A解析:A【分析】根据轴对称及中心对称的概念,结合选项进行判断.【详解】A、平行四边形是中心对称图形,不是轴对称图形,故本选项正确;B、矩形是中心对称图形,也是轴对称图形,故本选项错误;C、菱形是中心对称图形,也是轴对称图形,故本选项错误;D、等边三角形不是中心对称图形,但是轴对称图形,故本选项错误;故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.'',旋转角为3.如图,将等边ABC绕点C逆时针旋转得到A B C()060αα︒<<︒.若160BDA '∠=︒,则α的大小是( )A .20°B .40°C .60°D .80°A解析:A【分析】 利用旋转的性质结合等边三角形的性质和三角形外角的性质,可得出答案;【详解】解:如图,∵ABC 和A B C ''均为等边三角形,∴60A A '∠=∠=︒由旋转得,旋转角为ACA α'∠=,∵160BDA '∠=︒∴160DOA A ''∠+∠=︒∴100DOA '∠=︒∵DOA COA '∠=∠,180ACA CAA COA ''∠+∠+∠=︒ ∴20ACA '∠=︒∴α的大小是20°故选:A【点睛】本题主要考查旋转的性质以及等边三角形的性质和三角形外角的性质等知识,正确掌握旋转的性质是解题关键.4.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .1B解析:B【分析】 连接PC ,根据直角三角形斜边上的中线等于斜边的一半求出PC ,利用中点求出CM ,再根据三角形两边之和大于第三边即可求得PM 的最大值.【详解】解:如图连接PC .在Rt △ABC 中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,''90A CB ACB ∠=∠=︒,∵P 是A B ''的中点,M 是BC 的中点,∴CM=BM=1,PC=12A′B′=2 又∵PM≤PC+CM ,即PM≤3,∴PM 的最大值为3(此时P 、C 、M 共线).故选:B .【点睛】本题考查旋转变换、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.5.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A.4B.5C.6D.8C解析:C【分析】由于将线段OP绕点O逆时针旋转60°得到线段OD,当点D恰好落在BC上时,易得:△ODP是等边三角形,根据旋转的性质可以得到△AOP≌△CDO,由此可以求出AP的长.【详解】解:当点D恰好落在BC上时,OP=OD,∠A=∠C=60°,如图.∵∠POD=60°∴∠AOP+∠COD=∠COD+∠CDO=120°,∴∠AOP=∠CDO,∴△AOP≌△CDO,∴AP=CO=6.故选:C.【点睛】此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.6.如图,等边△OAB的边OB在x轴上,点B坐标为(2,0),以点O为旋转中心,把△OAB逆时针转90︒,则旋转后点A的对应点A'的坐标是()A.(-13)B3-1)C.(31-,)D.(-2,1)C解析:C【分析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.利用全等三角形的性质解决问题即可.【详解】解:如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.∵B(2,0),△AOB是等边三角形,∴OA=OB=AB=2,∵AE⊥OB,∴OE=EB=1,∴AE=2222AO OE--,132==∵A′H⊥OH,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE,∴△A′OH≌△OAE(AAS),∴A′H=OE=1,OH=AE=3,∴A′(-3,1),故选:C.【点睛】本题考查坐标与图形变化-旋转,等边三角形的性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕A逆时针转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是 ( )A.2 B.3C.4 D.不能确定B解析:B【分析】B=°,当DQ⊥CQ时,DQ的长最小,再根据根据旋转的性质,即可得到∠ACQ=∠60勾股定理,即可得到DQ的最小值.【详解】解:由旋转可得∠ACQ=∠60B=°.因为点D是AC的中点,所以CD=4.当DQ⊥CQ时,DQ的长最小,此时∠CDQ=30︒.所以122CQ CD==,223422DQ=-=,所以DQ的最小值是23,故选B.【点睛】本题主要考查了旋转的性质,旋转前后的图形全等,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.8.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣23B.(﹣4,﹣3 C.(﹣2,﹣3)D.(﹣2,﹣23)D解析:D【解析】解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=30°,∴BC=4,∴AB3∴AD=AB ACBC⋅232⨯3∴BD=2ABBC223().∵点B坐标为(1,0),∴A点的坐标为(4,3).∵BD=3,∴BD1=3,∴D1坐标为(﹣2,0),∴A1坐标为(﹣23∵再向下平移2个单位,∴A′的坐标为(﹣232).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.9.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.D解析:D【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、是轴对称图形,但不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.10.如果齿轮A以逆时针方向旋转,齿轮E旋转的方向()A.顺时针B.逆时针C.顺时针或逆时针D.不能确定B解析:B【分析】根据图示进行分析解答即可.【详解】齿轮A以逆时针方向旋转,齿轮B以顺时针方向旋转,齿轮C以逆时针方向旋转,齿轮D 以顺时针方向旋转,齿轮E以逆时针方向旋转,故选B.【点睛】此题考查旋转问题,关键是根据图示进行解答.二、填空题11.如图,在平面直角坐标系xOy 中,若点A 的坐标为(3,33),经过点A ,作AB x ⊥轴于点B ,将ABO 绕点B 逆时针旋转60︒得到CBD ,则点C 的坐标为______,D 点坐标为______.()【分析】如图作CE ⊥x 轴于E 点过点D 作DF ⊥x 轴于F 根据A 点坐标可得OBAB 的长利用旋转的性质得到BC =BABD=OB ∠ABC =60°∠OBD=60°则∠CBE =30°然后根据含30°角的直角三解析:33,322⎛⎫- ⎪⎝⎭(32,332-) 【分析】如图,作CE ⊥x 轴于E 点,过点D 作DF ⊥x 轴于F ,根据A 点坐标可得OB 、AB 的长,利用旋转的性质得到BC =BA ,BD=OB ,∠ABC =60°,∠OBD=60°,则∠CBE =30°,然后根据含30°角的直角三角形三边的关系,在Rt △CBE 中计算出CE 和BE 的长,进而求出OE 的长,从而可得到C 点坐标;根据等边三角形的性质可得∠ODF=30°,根据含30°角的直角三角形的性质求出DF 、OF 的长即可得得D 坐标.【详解】如图,作CE x ⊥于点E ,∵(3,33)A ,AB x ⊥轴,∴33AB =OB=3,由旋转性质得:33BC AB ==,60ABC ∠=︒,BD=OB=3,∠OBD=60°, ∴30CBE ∠=︒,∴CE=12BC=332,BE=22BC CE -92=, ∴32OE BE OB =-=, ∴33,322C ⎛⎫- ⎪⎝⎭. ∵∠OBD=60°,OB=BD ,∴△OBD 是等边三角形,∵DF ⊥x 轴,∴∠ODF=12∠ODB=30°, ∴OF=12OB=32,DF=22OD OF -=332, ∵将ABO 绕点B 逆时针旋转60︒得到CBD ,∴点D 在第四象限,∴点D 坐标为(32,332-), 故答案为:33,322⎛⎫-⎪⎝⎭,(32,332-) 【点睛】本题考查了坐标与图形变换−旋转、等边三角形的判定与旋转及含30°角的直角三角形的旋转;图形或点旋转之后对应边相等、对应角相等;30°角所对的直角边等于斜边的一半;熟练掌握旋转的旋转是解题关键.12.如图所示,在直角坐标系中,点()0,6A ,点()3,4P 将AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,则PP '=_______________. 【分析】根据旋转的性质绕点顺时针方向旋转了90°则△POP´为等腰直角三角形且OP=OP´利用勾股定理求出OP 的长进而可求得PP´的长【详解】解:∵绕点顺时针方向旋转使边落在x 轴上∴∠POP´=∠A 解析:52【分析】根据旋转的性质,AOP 绕点O 顺时针方向旋转了90°,则△POP´为等腰直角三角形,且OP=OP´,利用勾股定理求出OP 的长,进而可求得PP´的长.【详解】解:∵AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,∴∠POP´=∠AOA´=90°,OP=OP´,∴△POP´为等腰直角三角形,∵点P 坐标为(3,4), ∴OP=22345+=,∴PP´=2252OP OP '+=,故答案为:52.【点睛】本题考查了坐标与图形变换-旋转变换、勾股定理、等腰三角形的判定与性质,掌握旋转的性质,结合旋转的角度得到△POP´为等腰直角三角形是解答的关键.13.如图,O 是正方形ABCD 的中心,M 是ABCD 内一点,90DMC ∠=︒,将DMC 绕O 点旋转180°后得到BNA .若3MD =,4CM =,则MN 的长为______.【分析】延长BN 交CM 与E 判定△NME 为等腰直角三角形求出NE 的长再据勾股定理可计算得MN 的长【详解】解:如下图在正方形ABCD 中延长BN 交CM 于E 由题意据中心对称的性质得∠ABE=∠CDM ∠MDC 解析:2【分析】延长BN 交CM 与E ,判定△NME 为等腰直角三角形,求出NE 的长,再据勾股定理可计算得MN 的长.【详解】解:如下图在正方形ABCD 中延长BN 交CM 于E ,由题意据中心对称的性质,得∠ABE=∠CDM ,∠MDC 与∠MCD 互余,∠ABE 与∠EBC 互余∴∠EBC=∠DCM ;同理可得∠MCB=∠ABN又∠ABN=∠CDM∴∠MCB=∠MDC又BC=CD∴△BEC ≌△CMD∴∠BEC=∠CMD=90° BE=CM=4 CE=DM=3∴ME=CM-CE=1,NE=BE-BN=1所以△MNE 为等腰直角三角形,且∠NEM 是直角,ME=NE=1,由勾股定理得22MN=2NE ME +=故答案为:2.【点睛】此题考查综合运用中心对称的性质解决问题.其关键是要运用中心对称的性质找全等条件,证明△BEC ≌△CMD .14.如图,在平面直角坐标系中,将ABC 绕点A 顺时针旋转到111A B C △的位置,点B ,O (分别落在点1B ,1C 处,点1B 在x 轴上,再将11AB C △绕点1B 顺时针旋转到112A B C 的位置,点2C 在x 轴上,再将112A B C 绕点2C 顺时针旋转到222A B C △的位置,点2A 在x 轴上,依次进行下去,…,若点(3,0),(0,4),5A B AB =,则点2021B 的坐标为________.【分析】先计算出的值再根据至的变化规律得到B 点的变化规律从而得到的坐标【详解】解:由题意可得:即由上可知从纵坐标为0不变横坐标变为:∵20=8+12×∴的横坐标为故答案为(121280)【点睛】本题解析:(12128,0)【分析】先计算出13B B ,的值,再根据1B 至 3B 的变化规律,得到B 点的变化规律,从而得到2021B 的坐标.【详解】解:由题意可得:()()()123,0,3503540A B C +++,,,, ()()2335430,354350A B +++++++,,,即()()()()()12233,0,80120150,200A B C A B ,,,,,,, 由上可知,从13B B →,纵坐标为0不变,横坐标变为:1222238843520B C C A A B +++=+++=,∵20=8+12×312-,∴2021B 的横坐标为 202118128101012121282-+⨯=+⨯=, 故答案为(12128,0).【点睛】本题考查旋转的应用,根据旋转的性质找出相等的线段是解题关键. 15.如图,在Rt ABC △中,C 为直角顶点,20ABC ∠=︒,O 为斜边AB 的中点,将OA 绕点O 逆时针旋转()0180θθ︒<<︒至OP ,当BCP 恰为以BC 为腰的等腰三角形时,θ的值为______.40°或100°【分析】由题意可以分为BC=BP 或BC=PC 两种情况说明讨论【详解】解:当时如图1∵为斜边的中点∴∴∴∴;当时如图2同理可证∴∴∴故答案为40°或100°【点睛】本题考查直角三角形和解析:40°或100°【分析】由题意可以分为BC=BP 或BC=PC 两种情况说明讨论.【详解】解:当BC BP =时,如图1.∵90ACB ∠=︒,O 为斜边AB 的中点,∴CO OA OP OB ===,∴COB POB ≌△△,∴20ABP ABC ∠=∠=︒,∴22040θ=⨯︒=︒;当BC PC =时,如图2,同理可证COB COP ≌△△,∴20P ABC OCB OCP ∠=∠=∠=∠=︒,∴140COP COB ∠=∠=︒,∴14040100θ=︒-︒=︒.故答案为40°或100°.【点睛】本题考查直角三角形和等腰三角形的综合运用,熟练掌握直角三角形斜边上中线的性质、三角形全等的判定和性质、等腰三角形等边对等角的性质是解题关键.16.如图,在平面直角坐标系中,等腰Rt △OA 1B 1的斜边OA 1=2,且OA 1在x 轴的正半轴上,点B 1落在第一象限内.将Rt △OA 1B 1绕原点O 逆时针旋转45°,得到Rt △OA 2B 2,再将Rt △OA 2B 2绕原点O 逆时针旋转45°,又得到Rt △OA 3B 3,……,依此规律继续旋转,得到Rt △OA 2019B 2019,则点B 2019的坐标为_____. (﹣11)【分析】观察图象可知点B1旋转8次为一个循环利用这个规律解决问题即可【详解】解:观察图象可知点B1旋转8次一个循环∵2018÷8=252余数为2∴点B2019的坐标与B3(﹣11)相同∴点 解析:(﹣1,1)【分析】观察图象可知,点B 1旋转8次为一个循环,利用这个规律解决问题即可.【详解】解:观察图象可知,点B 1旋转8次一个循环,∵2018÷8=252余数为2,∴点B 2019的坐标与B 3(﹣1,1)相同,∴点B 2019的坐标为(﹣1,1).故答案为(﹣1,1).【点睛】本题考查坐标与图形的变化−旋转,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.17.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1 cm,则BF=__________cm.2+【详解】过点E作EM⊥BD于点M如图所示:∵四边形ABCD为正方形∴∠BAC=45°∠BCD=90°∴△DEM为等腰直角三角形∵BE平分∠DBCEM⊥BD∴EM=EC=1cm∴DE=EM=cm由解析:2+2【详解】过点E作EM⊥BD于点M,如图所示:∵四边形ABCD为正方形,∴∠BAC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∵BE平分∠DBC,EM⊥BD,∴EM=EC=1cm,∴DE=2EM=2cm.由旋转的性质可知:CF=CE=1cm,∴BF=BC+CF=CE+DE+CF=1+2+1=2+2cm.故答案为2+2.18.如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.9【分析】根据旋转的性质得到△ABC≌△A1BC1A1B=AB=6所以△A1BA是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S阴影=S△A1BA+S△A1BC1﹣S△ABC=解析:9【分析】根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA 是等腰三角形,∠A1BA=30°,∴S△A1BA= 12×6×3=9,又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故答案为9.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.19.如图,在Rt△ABC中,∠ABC=90°,∠BAC=32°,斜边AC=6,将斜边AC绕点A逆时针方向旋转26°到达AD的位置,连接CD,取线段CD的中点N,连接BN,则BN的长为_________.【分析】设M为AC中点连接ANBMMN根据直角三角形斜边中点定理得出MB=MN=同时算出∠BMN=90°最后利用勾股定理算出BN的长【详解】解:设M为AC中点连接ANBMMN由旋转可知:AC=AD=解析:32【分析】设M为AC中点,连接AN,BM,MN,根据直角三角形斜边中点定理得出MB=MN=132AC ,同时算出∠BMN=90°,最后利用勾股定理算出BN的长.【详解】解:设M为AC中点,连接AN,BM,MN,由旋转可知:AC=AD=6,∠CAD=26°,∵∠BAC=32°,∠ABC=90°,∴∠ACB=58°,∵AC=AD ,N 为CD 中点,M 为AC 中点,∴MB=MC=MN=3,∴∠MBC=∠MCB=58°,∠MCN=∠MNC=(180-26)÷2=77°,∴∠BMC=64°,∠CMN=26°,∴∠BMN=90°,即△BMN 为等腰直角三角形,∴BN=223332+=.故答案为:32.【点睛】本题考查了直角三角形的性质,等腰三角形的判定和性质,旋转的性质,三角形内角和,解题的关键是找出AC 中点M ,构造等腰直角三角形.20.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.-12【分析】两个点关于原点对称时它们的横坐标互为相反数纵坐标也互为相反数直接利用关于原点对称点的性质得出mn 的值进而得出答案【详解】∵点B (5)与点A (4)关于原点成中心对称∴∴∴故答案为:【点睛解析:-12【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m ,n 的值,进而得出答案.【详解】∵点B (3n +,5)与点A (4,m )关于原点成中心对称,∴34n +=-,5m =-,∴5m =-,7n =-,∴()5712m n +=-+-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称点的坐标性质,正确记忆关于原点对称点的坐标性质是解题关键.三、解答题21.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出平面直角坐标系,并标出A,C两点的坐标.解析:(1)见解析;(2)见解析;A(0,1),C(-3,1)【分析】(1)根据图形旋转的性质画出△AB1C1即可;(2)根据B点坐标,作出平面直角坐标系,即可写出各点坐标.【详解】(1)解:旋转后图形如图所示(2)解:由B点坐标,建立坐标系如图所示,则A(0,1),C(-3,1).【点睛】本题考查的是作图-旋转变换,熟知图形旋转的性质是解答此题的关键.22.已知ABC 是边长为4的等边三角形,边AB 在射线OM 上,且6OA =,点D 是射线OM 上的动点,当点D 不与点A 重合时,将ACD △绕点C 逆时针方向旋转60°得到BCE ,连接DE .(1)如图1,求证:CDE △是等边三角形.(2)设OD t =,①如图2,当610t <<时,CDE △的周长存在最小值,请求出此最小值;②如图1,若06t <<,直接写出以D 、E 、B 为顶点的三角形是直角三角形时t 的值.解析:(1)见解析;(2)①3②2【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC ,即可得到结论;(2)①存在,由等边三角形的性质可得△CDE 的周长=3CD ,当CD ⊥AB 时,CD 有最小值,即可求解;②由题意可得∠BED=90°,由直角三角形的性质可求解.【详解】解:(1)∵证明:将ACD △绕点C 逆时针方向旋转60°得到BCE ,∴60DCE ∠=︒,DC EC =,∴CDE △是等边三角形:(2)①∵CDE △是等边三角形,∴CDE △的周长3CD =,当610t <<时,由垂线段最短可知,当CD AB ⊥时,CDE △的周长最小,此时,CD =∴CDE △的最小周长3CD ==②存在,当0<t <6时,由旋转可知,∠ABE=60°,∠BDE <60°,∴∠BED=90°,由(1)可知,△CDE 是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA ,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA-DA=6-4=2,∴t=2.【点睛】本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,直角三角形的性质,垂线段最短等知识,灵活运用这些性质解决问题是本题的关键.23.把两个全等的等腰直角三角板ABC 和EFG 叠放在一起(如图①),两直角三角板的直角边长均为4,且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕O 点按顺时针方向旋转(旋转角α满足条件:090α︒<<︒),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH 与CK 有怎样的数量关系:________.(2)四边形CHGK 的面积有何变化?证明你发现的结论.(3)连接HK ,在上述旋转过程中,设BH x =,GKH △的面积为y ,求y 与x 之间的关系,并通过“配方法”求出GKH △面积的最小值.解析:(1)BH CK =;(2)不变,证明见解析;(3)2482x x y -+=;2 【分析】(1)连接CG ,可通过证明KCG HBG ≅△△则可证得BH=CK ;(2)由KCG HBG ≅△△可得它们的面积相等,进而得出四边形CHGK 的面积不变; (3)过点G 作GQ BC ⊥于点Q ,利用等腰三角形的性质和勾股定理可求得222248GH GQ QH x x =+=-+,再利用KCG HBG ≅△△证得KGH 为等腰直角三角形,再根据三角形的面积公式可得到y 与x 之间的关系式,然后利用二次函数的最值求法即可解答.【详解】(1)连接CG ,如图:∵ABC 为等腰直角三角形,G 为AB 中点,∴CG BG =,45ACG CBG ∠=∠=︒,90CGB ∠=︒,∵90KGC CGF ∠+∠=︒, 90CGF FGB ∠+∠=︒,∴KGC FGB ∠=∠,∴在KCG △与HBG 中,KCG HBG CG BGCGK BGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()KCG HBG ASA ≅△△,∴BH CK =,故答案为:BH=CK .(2)∵KCG HBG ≅△△,∴CGK S △=GHB S∴CHGK CGK CGH S S S =+△△四边形CGH GHB S S =+△△CGB S =△12ABC S =△ 4=.故四边形CHGK 面积不变,为4.(3)过点G 作GQ BC ⊥于点Q , ∵ABC 为等腰直角三角形,G 为AB 中点,∴2GQ =,2BQ =, ∴2QH x =-.故222248GH GQ QH x x =+=-+.由(1)可知GH KG =,又∵90KGH ∠=︒,∴GKH △为等腰直角三角形, ∴212GKH S GH =⨯△, ∴2482x x y -+=. ∵旋转角度为090α<<︒,∴x 的取值范围为02x <≤.又GKH △的面积:2482x x y -+= 2(2)42x -+= 2(2)2(02)2x x -=+<≤∵()220x -≥, ∴022y ≥+=(当x=2时取等号).故GKH △面积最小值为2.【点睛】本题考查了旋转的性质、等腰三角形的性质、同角的余角相等、全等三角形的判定与性质、勾股定理、二次函数的性质,通过全等三角形将面积进行转换是解答的关键,综合性很强,平时应加强对各知识的综合运用.24.如图,将矩形ABCD 绕点C 旋转得到矩形EFGC ,点E 在AD 上.延长AD 交FG 于点H .求证:EDC HFE ≅.解析:证明见解析.【分析】先根据矩形的性质可得,90AB CD A B ADC =∠=∠=∠=︒,再根据旋转的性质可得,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,从而可得,90CD EF EDC F =∠=∠=︒,然后根据直角三角形的性质、角的和差可得DCE FEH ∠=∠,最后根据三角形全等的判定定理即可得证.【详解】四边形ABCD 是矩形,,90AB CD A B ADC ∴=∠=∠=∠=︒,由旋转的性质得:,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,,90CD EF EDC F ∴=∠=∠=︒,又90,90EDC CEF ∠=︒∠=︒,90CED DCE CED FEH ∴∠+∠=∠+∠=︒,DCE FEH ∴∠=∠,在EDC △和HFE 中,EDC F CD EF DCE FEH ∠=∠⎧⎪=⎨⎪∠=∠⎩,()HFE E AS DC A ∴≅.【点睛】本题考查了矩形的性质、旋转的性质、三角形全等的判定定理等知识点,熟练掌握矩形和旋转的性质是解题关键.25.在ABC ∆中,AB AC =,BAC α∠=.(1)直接写出ABC ∠的大小为______.(用含α的式子表示)(2)当060α︒<<︒时,将线段BC 绕点B 逆时针旋转60︒得到线段BD ,连接AD 、CD .①求证:ABD ACD ∆≅∆;②当40α=︒,求ACD ∠的度数.解析:(1)90°-12α;(2)①见解析;②∠ACD=10°. 【分析】(1)由等腰三角形的性质与三角形内角和定理可得∠ABC 的大小;(2)①由旋转的性质可得BC=BD ,∠DBC=60°,所以△BCD 为等边三角形,于是BD=CD ,再根据SSS 可得△ABD ≌△ACD ;②先由(1)求得∠ABC=70°,再由△BCD 为等边三角形可得∠BDC=60°,于是可得∠ABD 的度数.【详解】解:(1)90°-12α ∵ AB=AC ,∴∠ABC=12(180°-∠BAC ) =12(180°-α) =90°-12α(2)①线段BC 绕点B 逆时针旋转60°得到线段BD 则BC=BD , ∠DBC =60°∴△BCD 为等边三角形∴ BD=CD在△ABD 和△ACD 中,∵AB =ACBD= CD ,AD=AD∴△ABD ≌△ ACD (SSS )②当α=40°时,∵ AB=AC ,∠ACB =∠ABC =90°-12α=70° ∵△BCD 为等边三角形∴∠BCD =60°∴∠ACD = ∠ACB -∠BCD = 10°【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质以及旋转的性质,综合性较强,熟练掌握定理及性质是解题的关键.26.在平面直角坐标系中,矩形OABC 如图所示放置,点A 在x 轴上,点B 的坐标为(2,1).将此矩形绕点O 逆时针旋转90°,得到矩形OA B C '''.(1)求过点A 、A '、C '的抛物线的解析式;(2)将矩形OABC 沿x 轴正方向平移,使点C 落在抛物线上,求平移的距离. 解析:(1)A (2,0)、A '(0,2)、C '(-1,0); 22y x x =-++;(2)152 【分析】(1)先根据图象和题意求得点A 、A '、C '的坐标,再利用待定系数法代入抛物线一般式()20y ax bx c a =++≠求得解析式;(2)设线段BC 与抛物线的交点为P (m ,1),将点P (m ,1)代入抛物线解析式可得关于m 的一元二次方程,解方程即可求解.【详解】解:(1)∵四边形OABC 和四边形OA B C '''都是矩形,∴OA =OB ,A B OC '''=,∵B (2,1)∴A (2,0)∵矩形OA B C '''是矩形OABC 旋转90°得到的∴矩形OA B C '''≌矩形OABC∴1A B OC AB '=''==,=2OA OA '=故()1,0C '-,()0,2A '设抛物线解析式为()20y ax bx c a =++≠,将点A 、A '、C '的坐标代入得:04220a b c ca b c =++⎧⎪=⎨⎪=-+⎩解得:121a c b =-⎧⎪=⎨⎪=⎩故抛物线解析式为:22y x x =-++(2)设线段BC 与抛物线的交点为P (m ,1)将点P (m ,1)代入抛物线解析式可得:212m m =-++即210m m --=解得12m +=(负数舍去) 故矩形OABC 沿x轴正方向平移12+个单位使点C 落在抛物线上. 【点睛】本题主要考查图形的旋转、二次函数图象及其性质、二次函数解析式、矩形的性质,解题的关键是熟练掌握所学知识.27.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (1,1)、B (5,1)、C (4,4).(1)按下列要求作图:①将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;②将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,并写出点B 2的坐标;(2)△A 1B 1C 1与△A 2B 2C 2重合部分的面积为 (直接写出答案).解析:(1)①点A1(﹣4,1);②B2(﹣1,5);(2)9 4【分析】(1)①直接利用平移的性质得出对应点位置进而得出答案;②直接利用旋转的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出重合部分边长关系进而得出答案.【详解】解:(1)①如图所示:△A1B1C1,即为所求,点A1(﹣4,1);②如图所示:△A2B2C2,点B2(﹣1,5);(2)∵A2C2⊥A1C1且交点到A1,C1的距离相等,∴设△A1B1C1与△A2B2C2重合部分的边长为x,则x2+x2=9,解得:x=322,故△A1B1C1与△A2B2C2重合部分的面积为:12×322×322=94.故答案为:94.【点睛】本题考查了旋转变换以及勾股定理,正确得出对应点位置是解题的关键.28.如图,等边△ABC中,P是BC边上任意一点,将△ABP绕点A逆时针旋转60°.(1)请用圆规和无刻度的直尺作出旋转后的三角形(保留作图痕迹,不写作法和证明);(2)记点P的对应点为Pʹ,试说明△APPʹ的形状,并说明理由解析:(1)见解析;(2)△APPʹ是等边三角形,理由见解析.【分析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)根据“含有60°角的等腰三角形是等边三角形”进行判断△APPʹ的形状.【详解】解:(1)如图所示,(2)△APPʹ是等边三角形,如图,连接PPʹ,根据作图得∠PAPʹ=60°,AP=APʹ,∴△APPʹ是等边三角形.【点睛】本题考查的是作图-旋转变换和等边三角形的判断,熟知图形旋转的性质及等边三角形的判定定理是解答此题的关键.。
九年级数学上册第二十三章旋转知识点汇总(带答案)

九年级数学上册第二十三章旋转知识点汇总单选题1、下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.答案:B分析:根据中心对称图形和轴对称图形的定义判断即可.解:∵A中的图形旋转180°后不能与原图形重合,∴A中的图象不是中心对称图形,∴选项A不正确;∵B中的图形旋转180°后能与原图形重合,∴B中的图形是中心对称图形,但不是轴对称图形,∴选项B正确;∵C中的图形旋转180°后能与原图形重合,∴C中的图形是中心对称图形,也是轴对称图形,∴选项C不正确;∵D中的图形旋转180°后不能与原图形重合,∴D中的图形不是中心对称图形,∴选项D不正确;故选:B.小提示:本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键.2、有一个正n边形旋转90∘后与自身重合,则n为()A.6B.9C.12D.15答案:C分析:根据选项求出每个选项对应的正多边形的中心角度数,与90∘一致或有倍数关系的则符合题意.如图所示,计算出每个正多边形的中心角,90∘是30∘的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.小提示:本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.3、如图,在边长为6的正方形ABCD中,点E是边CD的中点,F在BC边上,且∠EAF=45°,连接EF,则BF 的长为()A.2B.3√2C.3D.2√22答案:A分析:把△ABF绕点A逆时针旋转90°至△ADG,可使AB与AD重合,首先证明△AFE≌△AGE,进而得到EF=FG,问题即可解决.解:∵四边形ABCD是正方形,∴AB=AD,∴把△ABF绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图:∴∠BAF=∠DAG,AB=AG∵∠BAD=90°,∠EAF=45°,∴∠BAF+∠DAE=∠DAG+∠DAE=45°,∴∠EAF=∠EAG,∵∠ADG=∠ADC=∠B=90°,∴∠EDG=180°,点E、D、G共线,在△A FE和△AGE中,AG=AF,∠FAE=∠EAG,AE=AE,∴△AFE≌△AGE(SAS),∴EF=EG,即:EF=EG=ED+DG,∵E为CD的中点,边长为6的正方形ABCD,∴CD=BC=6,DE=CE=3,∠C=90°,∴设BF=x,则CF=6−x,EF=3+x,在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,∴(3+x)2=32+(6−x)2,解得:x=2,即BF=2,故选:A.小提示:本题考查了正方形的性质、全等三角形的判定及其性质的应用,解题的关键是作辅助线,构造全等三角形.4、如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C= 90°,则∠BAC′为()A.90°B.60°C.45°D.30°答案:B分析:根据直角三角形两锐角互余,求出∠BAC的度数,由旋转可知∠BAC=∠B′AC′,在根据平角的定义求出∠BAC′的度数即可.∵∠B=30°,∠C=90°,∴∠BAC=90°−∠B=90°−30°=60°,∵由旋转可知∠BAC=∠B′AC′=60°,∴∠BAC′=180°−∠BAC−∠B′AC′=180°−60°−60°=60°,故答案选:B.小提示:本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键.5、将△AOB绕点O旋转180∘得到△DOE,则下列作图正确的是()A.B.C.D.答案:D分析:把一个图形绕某一点O转动一个角度的图形变换叫做旋转.解:观察选项中的图形,只有D选项为△ABO绕O点旋转了180°.小提示:本题考察了旋转的定义.6、如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.答案:B分析:根据绕点B按顺时针方向旋转90°逐项分析即可.A、Rt△A′O′B是由Rt△AOB关于过B点与OB垂直的直线对称得到,故A选项不符合题意;B、Rt△A′O′B是由Rt△AOB绕点B按顺时针方向旋转90°后得到,故B选项符合题意;C、Rt△A′O′B与Rt△AOB对应点发生了变化,故C选项不符合题意;D、Rt△AOB是由Rt△AOB绕点B按逆时针方向旋转90°后得到,故D选项不符合题意.故选:B.小提示:本题考查旋转变换.解题的关键是弄清旋转的方向和旋转的度数.7、如图,先将该图沿着它自己的右边缘翻折,再绕着右下角的一个端点按顺时针方向旋转180°,之后所得到的图形是()A.B.C.D.答案:A分析:将图沿着它自己的右边缘翻折,则圆在正方形图形的右上角,然后绕着右下角的一个端点按顺时针方向旋转180°,则圆在正方形的左下角,利用此特征可对四个选项进行判断.先将图沿着它自己的右边缘翻折,得到,再绕着右下角的一个端点按顺时针方向旋转180°,之后所得到的图形为.故选:A小提示:本题考查了利用旋转设计图案:由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换一些复合图案.8、在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,−450°)C.Q(3,600°)D.(3,−120°)答案:B分析:根据中心对称的性质解答即可.解:∵P(3,60°)或P(3,-300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,-120°),(3,600°),故选:B.小提示:本题考查了中心对称的问题,关键是根据中心对称的性质解答.9、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠1=25°,则∠BAA'的度数是()A.70°B.65°C.60°D.55°答案:B分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的内角和定理可得结果.∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°-70°-45°=65°,故选:B.小提示:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.10、如图,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,若点D恰好在BC的延长线上,则∠BDE的度数为()A.100°B.80°C.70°D.60°答案:B分析:由旋转的性质可知∠B=∠ADE,AB=AD,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BDA=∠ADE=40°,从而可求得∠BDE=80°.解:由旋转的性质可知:∠B=∠ADE,AB=AD,∠BAD=100°.∵AB=AD,∠BAD=100°,∴∠B=∠BDA=40°,∴∠ADE=40°,∴∠BDE=∠BDA+∠ADE=40°+40°=80°.故选B.小提示:本题考查旋转的性质,等腰三角形的性质,三角形内角和定理.由旋转的性质得到△ABD为等腰三角形是解题的关键.填空题11、如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是__.答案:38°分析:根据旋转变换的性质得到∠AOD=31°,∠BOC=31°,结合图形,计算即可.解:由旋转的性质可知,∠AOD=31°,∠BOC=31°,∴∠DOB=∠AOC−∠AOD−∠BOC=38°,所以答案是:38°.小提示:本题考查的是旋转变换的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.12、在平面直角坐标系内,点P(−3,2)关于原点的对称点Q的坐标为______.答案:(3,−2)分析:根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),即可直接作答.根据中心对称性质可知:点P (−3,2)关于原点的对称点Q 的坐标为(3,−2),故答案为(3,−2).小提示:本题考查了关于原点对称点的坐标,属于基础问题,熟记知识点是解题关键.13、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是______________答案:2S 1=3S 2分析:过点O 分别作OM ⊥BC ,垂足为M ,作ON ⊥AB ,垂足为N ,根据点O 是平行四边形ABCD 的对称中心以及平行四边形的面积公式可得AB•ON=BC•OM ,再根据S 1=12EF•ON ,S 2=12GH•OM ,EF =12AB ,GH =13BC ,则可得到答案.过点O 分别作OM ⊥BC ,垂足为M ,作ON ⊥AB ,垂足为N ,∵点O 是平行四边形ABCD 的对称中心,∴S 平行四边形ABCD =AB •2ON , S 平行四边形ABCD =BC•2OM ,∴AB•ON=BC•OM ,∵S 1=12EF•ON ,S 2=12GH•OM ,EF =12AB ,GH =13BC ,∴S 1=14AB•ON ,S 2=16BC•OM , ∴2S 1=3S 2,故答案为2S 1=3S 2.小提示:本题考查了平行四边形的面积,中心对称的性质,正确添加辅助线、准确表示出图形面积是解题的关键.14、如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75°,再沿y轴方向向上平移1个单位长度,则点B″的坐标为___________.答案:(−√2,√6+1)##(−√2,1+√6)分析:连接OB,OB′由题意可得∠BOB′=75°,可得出∠COB′=30°,可求出B′的坐标,即可得出点B″的坐标.解:如图:连接OB,OB′,作B′M⊥y轴∵ABCO是正方形,OA=2∴∠COB=45°,OB=2√2∵绕原点O逆时针旋转75°∴∠BOB′=75°∴∠COB′=30°∵OB′=OB=2√2∴MB′=√2,MO=√6∴B′(−√2,√6)∵沿y轴方向向上平移1个单位长度∴B″(−√2,√6+1)所以答案是:(−√2,√6+1)小提示:本题考查了坐标与图形变化﹣旋转,坐标与图形变化﹣平移,熟练掌握网格结构,准确确定出对应点的位置是解题的关键.15、如图,P是正△ABC内的一点,若将△PAB绕点A逆时针旋转到△P1AC,则∠PAP1等于________度.答案:60分析:利用旋转的性质即可得出答案.解:∵△ABC是正三角形,∴∠CAB=60°,由旋转的性质可知,∠PAP1=∠CAB=60°.所以答案是:60.小提示:本题考查正三角形的性质和旋转的性质,由旋转的性质得出∠PAP1=∠CAB是解题的关键.解答题16、如图1,二次函数y=a(x+3)(x﹣4)的图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.(1)求该二次函数的解析式;(2)过点P作PQ⊥x轴,分别交线段AB、抛物线于点Q,C,连接AC.若OP=1,求△ACQ的面积;(3)如图2,连接PB,将线段PB绕点P逆时针旋转90°得到线段PD.当点D在抛物线上时,求点D的坐标.答案:(1)y=16x2−16x−2;(2)SΔACQ=34;(3)D(3,−1)或D(−8,10)分析:(1)将B(0,−2)代入y=a(x+3)(x−4),即可求解;(2)先求直线AB的解析式为y=12x−2,则Q(1,−32),C(1,−2),可求SΔACQ=SΔACP−SΔAPQ=34;(3)设P(t,0),过点D作x轴垂线交于点N,可证明ΔPND≅ΔBOP(AAS),则D(t+2,−t),将D点代入抛物线解析式得−t=16(t+2+3)(t+2−4),求得D(3,−1)或D(−8,10).解:(1)将B(0,−2)代入y=a(x+3)(x−4),∴a=16,∴y=16(x+3)(x−4)=16x2−16x−2;(2)令y=0,则16(x+3)(x−4)=0,∴x=−3或x=4,∴A(4,0),设直线AB的解析式为y=kx+b,∴{b=−24k+b=0,∴{k=1 2b=−2,∴y=12x−2,∵OP=1,∴P(1,0),∵PQ⊥x轴,∴Q(1,−32),C(1,−2),∴AP=3,∴SΔACQ=SΔACP−SΔAPQ=12×3×2−12×3×32=34;(3)设P(t,0),如图2,过点D作x轴垂线交于点N,∵∠BPD=90°,∴∠OPB+∠NPD=90°,∠OPB+∠OBP=90°,∴∠NPD=∠OBP,∵BP=PD,∴ΔPND≅ΔBOP(AAS),∴OP=ND,BO=PN,∴D(t+2,−t),∴−t=16(t+2+3)(t+2−4),解得t=1或t=−10,∴D(3,−1)或D(−8,10).小提示:本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求抛物线解析式,三角形面积,全等三角形判定和性质,旋转的性质等,解题的关键是熟练掌握二次函数的图象及性质,分类讨论,数形结合.17、如图1,正方形ABCD的边长为4,点P在边AD上(P不与A,D重合),连接PB,PC.将线段PB绕点P顺时针旋转90°得到PE,将线段PC绕点P逆时针旋转90°得到PF.连接EF,EA,FD.(1)求证:PD2;①ΔPDF的面积S=12②EA=FD;(2)如图2,EA.FD的延长线交于点M,取EF的中点N,连接MN,求MN的取值范围.答案:(1)①见详解;②见详解;(2)4≤MN<2√5分析:(1)①过点F作FG⊥AD交AD的延长线于点G,证明△PFG≌△CPD,即可得到结论;②过点E作EH⊥DA交DA的延长线于点H,证明△PEH≌△BPA,结合△PFG≌△CPD,可得GD=EH,同理:FG=AH,从而得△AHE≌△FGD,进而即可得到结论;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,可得∠AMD=90°,EF,HG= 2AD=8,EH+FG=AD=4,然后求出当点P与点D重合时,EF最大值=4√5,当点P与AD的中点重合MN=12时,EF最小值= HG=8,进而即可得到答案.(1)①证明:过点F作FG⊥AD交AD的延长线于点G,∵∠FPG+∠PFG=90°,∠FPG+∠CPD=90°,∴∠FPG=∠CPD,又∵∠PGF=∠CDP=90°,PC=PF,∴△PFG≌△CPD(AAS),∴FG=PD,∴ΔPDF的面积S=12PD⋅FG=12PD2;②过点E作EH⊥DA交DA的延长线于点H,∵∠EPH+∠PEH=90°,∠EPH +∠BPA=90°,∴∠PEH =∠BPA,又∵∠PHE=∠BAP=90°,PB=PE,∴△PEH≌△BPA(AAS),∴EH=PA,由①得:FG=PD,∴EH+FG=PA+PD=AD=CD,由①得:△PFG≌△CPD,∴PG=CD,∴PD+GD= CD= EH+FG,∴FG+GD= EH+FG,∴GD=EH,同理:FG=AH,又∵∠AHE=∠FGD,∴△AHE≌△FGD,∴EA=FD;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,由(1)得:△AHE≌△FGD,∴∠HAE=∠GFD,∵∠GFD+∠GDF=90°,∴∠HAE+∠GDF=90°,∵∠HAE=∠MAD,∠GDF=∠MDA,∴∠MAD+∠MDA=90°,∴∠AMD=90°,∵点N是EF的中点,∴MN=1EF,2∵EH=DG=AP,AH=FG=PD,∴HG=AH+DG+AD=PD+AP+AD=2AD=8,EH+FG=AP+PD=AD=4,当点P与点D重合时,FG=0,EH=4,HG=8,此时EF最大值=√42+82=4√5,当点P与AD的中点重合时,FG=2,EH=2,HG=8,此时EF最小值= HG=8,∴MN的取值范围是:4≤MN<2√5.小提示:本题主要考查全等三角形的判定和性质,正方形的性质,勾股定理,旋转的性质,添加辅助线,构造直角全等的直角三角形,是解题的关键.18、如图,△AOB中,OA=OB=6,将△AOB绕点O逆时针旋转得到△COD.OC与AB交于点G,CD分别交OB、AB 于点E、F.(1)∠A与∠D的数量关系是:∠A______∠D;(2)求证:△AOG≌△DOE;(3)当A,O,D三点共线时,恰好OB⊥CD,求此时CD的长.答案:(1)=(2)证明见解析(3)6√3,详见解析分析:(1)根据旋转性质及等腰三角形性质即可得答案;(2)由旋转性质知∠AOB=∠DOC,可证得∠AOG=∠DOE,结合OA=OB及(1)中结论,得证;(3)分两种情况讨论,设∠A=x°,先利用三角形内角和求出x的值,再借助勾股定理求出CD的长度即可.(1)解:由旋转知,∠A=∠C,∠B=∠D,∵OA=OB,∴OC=OD,∠A=∠B=∠C=∠D∴∠A=∠D,所以答案是:=.(2)证明:由旋转知,OA=OC,OB=OD,∠AOB=∠COD,∴∠AOB-∠BOC=∠COD-∠BOC,即∠AOG=∠DOE,∵OA=OB,∴OA=OB=OC=OD,又∵∠A=∠D,∴△AOG≌△DOE.(3)解:分两种情况讨论,①如图所示,设∠A=∠B=∠C=∠D=x°,则∠DOB=2x°,∵OB⊥CD,∴∠OED=90°,∴x+2x=90°,解得:x=30,即∠D=30°,在Rt△ODE中,OE=3,由勾股定理得:DE=√62−32=3√3,∵OC=OD,OE⊥CD,∴CD=2DE=6√3.②当D与A重合时,如图所示,同理,得:CD=6√3.综上所述,当A,O,D三点共线时,OB⊥CD,此时CD的长为6√3.小提示:本题考查了旋转的性质、等腰三角形性质、全等三角形的判定、勾股定理等知识点,解题关键是利用旋转性质得到边、角的关系.。
2024九年级数学上册“第二十三章 旋转”必背知识点

2024九年级数学上册“第二十三章旋转”必背知识点一、旋转的基本概念定义:将一个图形绕着某点O转动一个角度的变换叫做旋转。
其中,O叫做旋转中心,转动的角度叫做旋转角。
旋转三要素:旋转中心、旋转角度、旋转方向。
二、旋转的性质旋转后的图形与原图形的关系:旋转后的图形与原图形全等。
对应点与旋转中心的距离:对应点到旋转中心的距离相等。
对应点与旋转中心所连线段的夹角:对应点与旋转中心所连线段的夹角等于旋转角。
图形变化:图形的大小和形状都没有发生改变,只改变了图形的位置。
三、中心对称定义:若一个图形绕着某个点O旋转180°,能够与另一个图形完全重合,则这两个图形关于这个点对称或中心对称。
这个点叫做对称中心。
中心对称图形:若一个图形绕着某个点O旋转180°,能够与原来的图形完全重合,则这个图形叫做中心对称图形。
这个点叫做该图形的对称中心。
性质:1. 关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分。
2. 关于中心对称的两个图形能够互相重合,是全等形。
3. 关于中心对称的两个图形,对应线段平行(或共线)且相等。
四、关于原点对称的点的坐标在平面直角坐标系中,如果两个点关于原点对称,它们的坐标符号相反。
即点P(x,y)关于原点对称的点的坐标为P'(-x,-y)。
五、作图与应用利用旋转性质作图:关键是连接图形中的每一个关键点与旋转中心,并按要求绕旋转中心转过一定角度,然后在新的位置上截取与原来等长的线段,连接各点得到新的图形。
旋转的应用:旋转在几何图形的变换、证明以及解决实际问题中都有广泛的应用,如通过旋转构造全等图形、证明角相等或线段相等。
六、例题与练习为了加深对旋转知识点的理解和记忆,可以通过做一些相关的例题和练习题来巩固所学内容。
这些题目通常会涉及到旋转的基本概念、性质以及应用等方面的知识点。
综上所述,九年级数学上册 “第二十三章 旋转”的必背知识点主要包括旋转的基本概念、性质、中心对称及其性质、关于原点对称的点的坐标以及作图与应用等方面。
(必考题)初中九年级数学上册第二十三章《旋转》知识点总结(答案解析)

一、选择题1.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有()A.B.C.D.A解析:A【分析】根据轴对称图形和中心对称图形的两个概念对各选项分析判断即可得解.【详解】解:A、既是轴对称又是中心对称图形,故此项正确;B、是轴对称,不是中心对称图形,故此项错误;C、不是轴对称,是中心对称图形,故此项错误;D、是轴对称,不是中心对称图形,故此项错误.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.如图,将△ABC绕点A旋转,得到△AEF,下列结论正确的个数是()①△ABC ≌△AEF;②AC=AE;③∠FAB=∠EAB;④∠EAB=∠FAC.A.1 B.2 C.3 D.4B解析:B【分析】由旋转的性质得到△ABC≌△AEF,再由全等三角形的性质逐项判断即可.【详解】∵△ABC绕点A旋转得到△AEF,∴△ABC≌△AEF,∴AC=AF ,不能确定AC=AE,故①正确,②错误;∵∠EAF=∠BAC,∴∠EAF-∠BAF=∠BAC-∠BAF,∴即∠EAB=∠FAC,但不能确定∠EAB 等于∠FAB ,故③错误,④正确;综上所述,结论正确的是①④,共2个.故选:B.【点睛】此题考查了旋转的性质.掌握旋转前后的图形全等是解答此题的关键.3.如图,在ABC 中,,90AB AC BAC =∠=︒,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当EPF ∠在ABC 内绕点P 旋转时,下列结论错误的是( )A .AE CF =B .EPF 为等腰直角三角形C .EP AP =D .2ABC AEPF S S =四边形C解析:C【分析】 利用旋转的思想观察全等三角形,寻找条件证明三角形全等.根据全等三角形的性质对题中的结论逐一判断.【详解】∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,AP ⊥BC ,∠C=∠B=∠BAP=∠CAP=45°,∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP CP EAP FCP ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△APE ≌△CPF (ASA ),∴AE=CF ,EP=PF ,S △AEP =S △CPF ,∴△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,即2S 四边形AEPF =S △ABC , A 、B 、D 均正确, ∵旋转过程中,EP 的长度的变化的,故EP≠AP ,C 错误;故选:C .【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定及性质的运用,解答时证明三角形全等是关键.4.下列图形中,是中心对称但不是轴对称的图形是( )A .平行四边形B .矩形C .菱形D .等边三角形A解析:A【分析】根据轴对称及中心对称的概念,结合选项进行判断.【详解】A 、平行四边形是中心对称图形,不是轴对称图形,故本选项正确;B 、矩形是中心对称图形,也是轴对称图形,故本选项错误;C 、菱形是中心对称图形,也是轴对称图形,故本选项错误;D 、等边三角形不是中心对称图形,但是轴对称图形,故本选项错误;故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.直线26y x =-+与x 轴交于A 点,与y 轴交于B 点,将AOB 绕点A 顺时针旋转90°得到AO B ''△,则点B '的坐标是( )A .()9,9B .()3,9-C .()9,3D .()3,9C解析:C【分析】 由题意可求点A (3,0),点B (0,6),根据旋转的性质可得OA=O'A=3,BO=B'O'=6,B'O'∥OA ,即可求点B'坐标.【详解】解:如图:∵直线y=-2x+6与x 轴交于A 点,与y 轴交于B 点,∴当x=0时,y=6;当y=0时,x=3.∴点A (3,0),点B (0,6)∴OA=3,OB=6∵将△AOB 绕点A 顺时针旋转90°得到△AO′B′,∴OA=O'A=3,BO=B'O'=6,∠OAO'=∠B'O'A=90°∴B'O'∥OA∴点B'(9,3)故选:C .【点睛】本题考查了一次函数图象上点的坐标特征,旋转的性质,熟练运用旋转的性质是本题的关键.6.下列四个图案中,是中心对称图形的是( )A .B .C .D .B解析:B【分析】根据中心对称图形的概念和各图特点即可解答.【详解】解:根据中心对称图形的概念,可知B 中的图形是中心对称图形,而A 、C 和D 中的图形不是中心对称图形.故选:B .【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP',则PP'的长为()A.2B.3C.3 D.32解析:A【分析】由△ABP绕点B顺时针旋转90°得到△CBP',根据旋转的性质得BP=BP′,∠PBP′=90,则△BPP′为等腰直角三角形,由此得到2BP,即可得到答案..【详解】解:解:∵△ABP绕点B顺时针旋转90°得到△CBP',而四边形ABCD为正方形,BA=BC,∴BP=BP′,∠PBP′=90,∴△BPP′为等腰直角三角形,而BP=2,∴22.故选:A.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形和等腰直角三角形的性质.8.若点P(-m,m-3)关于原点对称的点是第二象限内的点,则m满足( )A.m>3 B.0<m≤3C.m<0 D.m<0或m>3C 解析:C【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(-m,m-3)关于原点O的对称点是P′(m,3-m),再由第二象限内的点横坐标为负数,纵坐标为正数,可得m的取值范围.【详解】解:点P(-m,m-3)关于原点O的对称点是P′(m,3-m),∵P′(m,3-m),在第二象限,∴30 mm<⎧⎨->⎩,∴m<0.故选:C.【点睛】本题考查了关于原点对称的点的坐标,注意掌握:两个点关于原点对称时,它们的坐标符号相反.9.如图,将△ABC 绕顶点C 旋转得到△A B C '', 且点B 刚好落在A B ''上,若∠A =35°,∠BCA '=40°,则∠A BA '等于( )A .45°B .40°C .35°D .30°D解析:D【分析】 由旋转的性质可得出35A A '∠=∠=︒,CB CB '=,B ABC '∠=∠,由已知条件结合三角形外角的性质求出B BC '∠的度数,即可得出ABC ∠的度数,即可得出A BA '∠的度数.【详解】由旋转的性质可得:35A A '∠=∠=︒,CB CB '=,B ABC '∠=∠,∴B BC B ''∠=∠,40BCA '∠=︒,∴75B A C BCA B '''∠=∠+∠=︒,∴75B '∠=︒,∴75ABC B '∠=∠=︒,∴180757530A BA '∠=︒-︒-︒=︒.故选:D .【点睛】本题主要考查三角形外角的性质以及旋转的性质,根据三角形外角的性质以及旋转的性质求出对应角的度数是解题关键.10.如图,将△ABC 绕点C (0,-1)旋转180°得到△A′B′C ,设点A 的坐标为(-3,-4)则点A′的坐标为A .(3,2)B .(3,3)C .(3,4)D .(3,1)A解析:A试题分析:根据A 与A′关于C 点对称,设A′的坐标为(a ,b ),可知302a -+=,412b -+=-,解得a=3,b=2,因此可知A′点的坐标为(3,2). 故选A考点:中心对称二、填空题11.如图,四边形ABCD 是菱形,点O 是两条对角线的交点,过点O 的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线长分别为12和16时,则阴影部分面积为_________.48【分析】根据菱形的面积等于对角线乘积的一半求出菱形的面积再根据菱形是中心对称图形判断出阴影的面积是菱形面积的一半即可解答【详解】如图所示:∵菱形的两条对角线的长分别为12和16菱形的面积∵是菱形解析:48【分析】根据菱形的面积等于对角线乘积的一半求出菱形的面积,再根据菱形是中心对称图形判断出阴影的面积是菱形面积的一半即可解答.【详解】如图所示:∵菱形ABCD 的两条对角线的长分别为12和16,菱形ABCD 的面积11216962=⨯⨯=, ∵O 是菱形两条对角线的交点,菱形ABCD 是中心对称图形,∴OEG OFH ∆≅∆,四边形OMAH ≅四边形ONCG ,四边形OEDM ≅四边形OFBN ,∴阴影部分的面积11964822ABCD S ==⨯=菱形, 故答案为:48.本题考查了菱形的性质、中心对称图形的性质、菱形的面积公式,熟知菱形的面积公式,利用菱形的性质判断出阴影的面积是菱形面积的一半是解答的关键.12.如图,正方形AEFG与正方形ABCD的边长都为2,正方形AEFG绕正方形ABCD的顶点A旋转一周,在此旋转过程中,线段DF的长可取的整数值可以为______________.1或2或3或4【分析】如图连接AF由题意可知AF-AD≤DF≤AD+AF即2-2≤DF≤2+2由此即可解决问题【详解】解:如图连接AF易知AF=2∵AF-AD≤DF≤AD+AF∴2-2≤DF≤2+2解析:1或2或3或4【分析】如图连接AF,由题意可知AF-AD≤DF≤AD+AF,即22-2≤DF≤2+22,由此即可解决问题.【详解】解:如图连接AF.易知2∵AF-AD≤DF≤AD+AF,∴22,∵DF是整数,∴DF=1或2或3或4.故答案为:1或2或3或4【点睛】本题考查了旋转变换、正方形的性质、三角形的三边关系等知识,解题的关键是学会用转化的思想思考问题,把最短问题转化为三边关系解决.13.如图,点O是等边△ABC内一点,∠AOB=112°.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.当α为______________度时,△AOD是等腰三角形?112°或124°或136°【分析】由题意可得△COD 是等边三角形进而可得∠CDO =∠COD =60°然后分三种情况根据等腰三角形的性质和三角形的内角和定理建立方程求解即可【详解】解:∵将△BOC 绕点 解析:112°或124°或136°【分析】由题意可得△COD 是等边三角形,进而可得∠CDO =∠COD =60°,然后分三种情况,根据等腰三角形的性质和三角形的内角和定理建立方程求解即可.【详解】解:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴CO =CD ,∠OCD =60°,∠ADC =α,∴△COD 是等边三角形.∴∠CDO =∠COD =60°,①若AO =AD ,则∠AOD =∠ADO ,∵∠AOD =360°﹣112°﹣60°﹣α=188°﹣α,∠ADO =α﹣60°,∴188°﹣α=α﹣60°,解得:α=124°;②若OA =OD ,则∠OAD =∠ADO .∵∠OAD =180°﹣(∠AOD +∠ADO )=180°﹣(188°﹣α+α﹣60°)=52°,∴α﹣60°=52°,∴α=112°;③若OD =AD ,则∠OAD =∠AOD .∵∠AOD =188°﹣α,∠OAD =()180602α︒--︒=120°﹣2α, ∴188°﹣α=120°﹣2α,解得:α=136°. 综上所述:当α为112°或124°或136°时,△AOD 是等腰三角形.故答案为:112°或124°或136°.【点睛】本题考查了等边三角形的判定和性质、旋转的性质、等腰三角形的性质以及三角形的内角和定理等知识,全面分类、熟练掌握上述知识是解题的关键.14.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转得到△A′OB′,若∠A′=40°,则∠B′= °,∠AOB= .30°110°【分析】根据旋转的性质得到利用∠AOB=∠A′OB′以及三角形内角和定理计算即可【详解】∵△AOB 中∠B=30°将△AOB 绕点O 顺时针旋转得到△A′OB′∠A′=40°∴∠B=∠B′=解析:30°, 110°【分析】根据旋转的性质得到,利用∠AOB=∠A′OB′以及三角形内角和定理计算即可.【详解】∵△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转得到△A′OB′,∠A′=40°, ∴∠B=∠B′=30°,∠A′=∠A=40°,则∠B′=30°,∠AOB=180°-∠A-∠B=110°.故答案为30,110.考点:旋转的变换15.如图,在△ABC 中,∠C =90°,AC =2cm ,AB =3cm ,将△ABC 绕点B 顺时针旋转60°得到△FBE ,则点E 与点C 之间的距离是_________cm .【解析】试题 解析:5【解析】试题连接EC ,即线段EC 的长是点E 与点C 之间的距离,在Rt △ACB 中,由勾股定理得:2222325AB AC -=-=cm ), ∵将△ABC 绕点B 顺时针旋转60°得到△FBE ,∴BC=BE ,∠CBE=60°,∴△BEC 是等边三角形,∴5 16.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,如果点A 的坐标为(1,0),那么点2019B 的坐标为________.【分析】根据图形可知:点B 在以O 为圆心以OB 为半径的圆上运动由旋转可知:将正方形OABC 绕点O 逆时针旋转45∘后得到正方形OA1B1C1相当于将线段OB 绕点O 逆时针旋转45∘可得对应点B 的坐标根据规 解析:(2,0)【分析】根据图形可知:点B 在以O 为圆心,以OB 为半径的圆上运动,由旋转可知:将正方形OABC 绕点O 逆时针旋转45∘后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45∘,可得对应点B 的坐标,根据规律发现是8次一循环,可得结论.【详解】∵四边形OABC 是正方形,且OA=1,∴B(1,1),连接OB , 由勾股定理得:2,由旋转得:OB=OB 1=OB 2=OB 32,∵将正方形OABC 绕点O 逆时针旋转45∘后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45∘,依次得到∠AOB=∠BOB 1=∠B 1OB 2=…=45∘, ∴B 12),B 2(−1,1),B 32,…,发现是8次一循环,所以2019÷8=252…3,∴点B 2019的坐标为2【点睛】本题考查了旋转的性质,对应点到旋转中心的距离相等;对应点与旋转中心所连接线段的夹角等于旋转角,也考查了坐标与图形的变化、规律型、点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法.17.矩形是中心对称图形,对矩形ABCD 而言,点A 的对称点是点____.C 【分析】根据把一个图形绕某一点旋转180°如果旋转后的图形能够与原来的图形重合那么这个图形就叫做中心对称图形这个点叫做对称中心可得答案【详解】解:矩形是中心对称图形对称中心是对角线的交点点A的对称解析:C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】解:矩形是中心对称图形,对称中心是对角线的交点,点A的对称点是点C,故答案为C.【点睛】本题考查了中心对称图形,关键是掌握中心对称图形的性质.18.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是_______.(12)【分析】根据旋转的概率即可得出每旋转4次一个循环进而得到第2020次旋转得到△OA2020B2020则顶点A的对应点A2020的坐标与点A4的坐标相同【详解】解:将△OAB绕点O顺时针旋转9解析:(1,2)【分析】根据旋转的概率,即可得出每旋转4次一个循环,进而得到第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同.【详解】解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,-1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(-1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(-2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,…依此类推,第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).【点睛】本题考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.19.如图,△ABC 中,∠A =60°,∠ABC =80°,将△ABC 绕点B 逆时针旋转,得到△DBE ,若DE ∥BC ,则旋转的最小度数为_____.40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论【详解】∵在△ABC 中∠A =60°∠ABC =80°∴∠C =180°﹣60°﹣80°=40°∵将△ABC 绕点B 逆时针旋转得到△DB解析:40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC 中,∠A =60°,∠ABC =80°,∴∠C =180°﹣60°﹣80°=40°,∵将△ABC 绕点B 逆时针旋转,得到△DBE ,∴∠E =∠C =40°,∵DE ∥BC ,∴∠CBE =∠E =40°,∴旋转的最小度数为40°,故答案为:40°.【点睛】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.20.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.-12【分析】两个点关于原点对称时它们的横坐标互为相反数纵坐标也互为相反数直接利用关于原点对称点的性质得出mn 的值进而得出答案【详解】∵点B (5)与点A (4)关于原点成中心对称∴∴∴故答案为:【点睛解析:-12【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m ,n 的值,进而得出答案.【详解】∵点B (3n +,5)与点A (4,m )关于原点成中心对称,∴34n +=-,5m =-,∴5m =-,7n =-,∴()5712m n +=-+-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称点的坐标性质,正确记忆关于原点对称点的坐标性质是解题关键.三、解答题21.(1)问题发现:如图1,ACB △和DCE 均为等边三角形,当DCE 旋转至点A ,D ,E 在同一直线上,连接BE .①填空:AEB ∠的度数为______.②线段AD 、BE 之间的数量关系是_______.(2)拓展研究:如图2,ACB △和DCE 均为等腰三角形,且90ACB DCE ∠∠==,点A 、D 、E 在同一直线上,若15AE =,7DE =,求AB 的长度.(3)探究发现:图1中的ACB △和DCE ,在DCE 旋转过程中当点A ,D ,E 不在同一直线上时,设直线AD 与BE 相交于点O ,试在备用图中探索AOE ∠的度数,直接写出结果,并说明理由.解析:(1)①60°;②AD BE =;(2)AB 的长度为17;(3)60°或120°,证明见解析.【分析】(1)由条件易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.(2)仿照(1)中的解法可求出∠AEB 的度数,证出AD=BE ;由△DCE 为等腰直角三角形及CM 为△DCE 中DE 边上的高可得CM=DM=ME ,从而证到AE=2CH+BE .(3)由(1)知△ACD ≌△BCE ,得∠CAD=∠CBE ,由∠CAB=∠ABC=60°,可知∠EAB+∠ABE=120°,根据三角形的内角和定理可知∠AOE=60°.【详解】(1)①如图1,∵ACB △和DCE 均为等边三角形,∴CA CB =,CD CE =,60ACB BCE ∠=∠=,∴ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴()?ACD BCE SAS ≌, ∴ADC BEC ∠∠=, ∵DCE 为等边三角形,∴60CDE CED ∠=∠=,∵点A ,D ,E 在同一直线上,∴120ADC ∠=,∴120BEC ∠=,∴60AEB BEC CED ∠=∠-∠=.故答案为:60°.②∵≌ACD BCE ,∴AD BE =,故答案为:AD BE =.(2)∵ACB △和DCE 均为等腰直角三角形, ∴CA CB =,CD CE =,90ACB DCE ∠∠==,∴ACD BCE ∠=∠,在ACD △和BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴()ACD BCE SAS △≌△,∴8AD BE AE DE ==-=,ADC BEC ∠∠=,∵DCE 为等腰直角三角形,∴45CDE CED ∠=∠=,∵点A ,D ,E 在同一直线上,∴135ADC ∠=,∴135BEC ∠=,∴90AEB BEC CED ∠=∠-∠=, ∴2217AB AE BE =+=.(3)如图3,由(1)知≌ACD BCE ,∴CAD CBE ∠=∠,∵60CAB CBA ∠=∠=,∴120OAB OBA ∠+∠=,∴18012060AOE ∠=-=,如图4,同理求得60AOB ∠=,∴120AOE ∠=,∵AOE ∠的度数是60°或120°.【点睛】此题是几何变换综合题,主要考查了等边三角形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形全等的判定与性质等知识,得出△ACD ≌△BCE (SAS )是解本题的关键.22.如图,在10×10的正方形方格之中,ABC 的顶点都在格点上(1)在图1中画出ABC 关于格点O 成中心对称的A B C '''.(2)在图2中画出格点ABEF ,使得ABE A C F B S S =.解析:(1)画图见解析;(2)画图见解析.【分析】(1)先结合网格特点,根据中心对称的定义画出点,,A B C ''',再顺次连接即可得; (2)先找出AC 的中点E ,连接BE ,再结合网格特点,根据点B 到点A 的平移方式与点E 到点F 的平移方式相同找出点F ,然后连接AF 、EF 即可得.【详解】(1)先结合网格特点,根据中心对称的定义画出点,,A B C ''',再顺次连接即可得到A B C ''',如图所示:(2)先找出AC 的中点E ,连接BE ,再结合网格特点,根据点B 到点A 的平移方式与点E 到点F 的平移方式相同找出点F ,然后连接AF 、EF 即可得到ABEF ,且ABE A C F B S S =,如图所示:【点睛】本题考查了画中心对称图形、画平行四边形等知识点,熟练掌握中心对称的定义是解题关键.23.如图,△ABC 在平面直角坐标系中,每个小正方形网格的边长都是1个单位长度. (1)画出ABC 关于x 轴的对称图形111A B C △,并写出点1A 的坐标;(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的222A B C △,并写出A 2的坐标. (3)直接写出12B B 的长度.解析:(1)图见详解,A 1(-3,-5);(2)图见详解;A 2(5,3);(3)B 1B 22.【分析】(1)找到A、B、C关于x轴的对称点A1、B1、C1连接各点即可得到结果,同时得到点A1的坐标;(2)找到A、B、C绕着O点旋转90°后的对应点A2、B2、C2连接各点即可得到结果,同时得到点A2的坐标;(3)利用勾股定理求出B1B2的长.【详解】解:(1)如图所示,△A1B1C1即为所求,A1(-3,-5);(2)如图所示,△A2B2C2即为所求,A2(5,3);(3)B1B2222.33【点睛】本题考查利用轴对称变换和旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(1,1)、B(5,1)、C(4,4).(1)按下列要求作图:①将△ABC向左平移5个单位得到△A1B1C1,并写出点A1的坐标;②将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,并写出点B2的坐标;(2)△A1B1C1与△A2B2C2重合部分的面积为(直接写出答案).解析:(1)①点A1(﹣4,1);②B2(﹣1,5);(2)9 4【分析】(1)①直接利用平移的性质得出对应点位置进而得出答案;②直接利用旋转的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出重合部分边长关系进而得出答案.【详解】解:(1)①如图所示:△A1B1C1,即为所求,点A1(﹣4,1);②如图所示:△A2B2C2,点B2(﹣1,5);(2)∵A2C2⊥A1C1且交点到A1,C1的距离相等,∴设△A1B1C1与△A2B2C2重合部分的边长为x,则x2+x2=9,解得:x=322,故△A1B1C1与△A2B2C2重合部分的面积为:12×322×322=94.故答案为:94.【点睛】本题考查了旋转变换以及勾股定理,正确得出对应点位置是解题的关键.25.阅读理解并解决问题:一般地,如果把一个图形绕着一个定点旋转一定角度α(α小于360°)后,能够与原来的图形重合,那么这个图形叫做旋转对称图形,这个定点叫做旋转对称中心,α叫做这个旋转对称图形的一个旋转角.请依据上述定义解答下列问题:(1)请写出一个旋转对称图形,这个图形有一个旋转角是90°,这个图形可以是______;(2)为了美化环境,某中学需要在一块正六边形空地上分别种植六种不同的花草,现将这块空地按下列要求分成六块:①分割后的整个图形必须既是轴对称图形又是旋转对称图形;②六块图形的面积相同;请你按上述两个要求,分别在图中的两个正六边形中画出两种不同的分割方法(只要求画图正确,不写作法).解析:(1)正方形(答案不唯一,例如正八边形、圆等);(2)见解析【分析】(1)根据旋转对称图形的定义解答即可;(2)先作出正六边形的旋转中心,再根据图形既是轴对称图形又是旋转对称图形进行作图即可.【详解】解:(1) 正方形(答案不唯一,例如正八边形、圆等);故答案为:正方形(答案不唯一,例如正八边形、圆等);(2)如图所示:【点睛】本题考查了轴对称图形和旋转对称图形的定义及作图,正确理解题意、熟练掌握基本知识是解题的关键.26.已知在平面直角坐标系中,A(﹣2,0)、B(3,﹣1)、C(2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC;(2)将△ABC平移,使得平移后点C的对应点为原点,A、B的对应点分别为A1,B1,请作出平移后的△A1B1O,并直接写出平移的距离为;(3)将△ABC绕点A逆时针旋转90°,得到△AB2C2,B、C的对应点分别为B2、C2,请作出△AB2C2,并求出B2、C2点的坐标.解析:(1)作图见解析;(2)22;(3)作图见解析;B2(﹣4,4),C2(﹣1,5)【分析】(1)根据点的坐标作出三角形即可;(2)分别作出A,B的对应点A1,B1即可;(3)分别作出B,C的对应点B2、C2即可.【详解】解:(1)如图,△ABC即为所求;(2)如图△A1B1O即为所求,平移的距离为22;故答案为22.(3)如图△A B2C2即为所求B2、C2点的坐标分别为(﹣4,4),(﹣1,5)【点睛】本题考查了作图-旋转变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.27.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,平行四边形ABCD的顶点在格点上.仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)将线段AD绕点A逆时针旋转90°,画出对应线段AE;(2)过点E画一条直线把平行四边形ABCD分成面积相等的两部分;(3)过点D画格点线段DP,使得DP⊥BC于点M,垂足为M;(4)过点M画线段MN,使得MN//AB,MN=AB.解析:(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据旋转的性质直接作图即可;(2)连接AC、BD,交于一点O,然后连接EO即可得出图形;(3)把线段AD绕点D顺时针旋转90°,即可得到线段DP⊥BC,与BC交于一点M,即可得出答案;(4)根据平行四边形是中心对称图形,点O是对称中心,设EO与D点所在网格线交于点Q,连接MQ并延长交于AD于点N,MN即为所求.【详解】解:(1)(2)(3)如图所示:(4)根据平行四边形是中心对称图形,点O是对称中心,设EO与D点所在网格线交于点Q,连接MQ并延长交于AD于点N,MN即为所求,如图所示:【点睛】本题主要考查旋转的性质、平行四边形的性质及中心对称图形,熟练掌握旋转的性质、平行四边形的性质及中心对称图形是解题的关键.28.如图,在7×7的正方形网格中,选取14个格点,以其中3个格点为顶点画出△ABC.(1)请你以选取的格点为顶点再画出一个三角形,要求所画的三角形与△ABC组成的图形是中心对称图形;(2)若网格中每个小正方形的边长为1,请猜想新得到的中心对称图形是什么特殊图形(不用证明),并求出它的面积.解析:(1)如图所示见解析;(2)是平行四边形,面积是6.【分析】(1)确定出对称中心,然后根据中心对称图形的性质作出即可;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,再根据格点的特点,利用三角形的面积公式即可得平行四边形的面积.【详解】(1)如图所示:所画的三角形与△ABC组成的图形是中心对称图形;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,面积是:123262⨯⨯⨯=.【点睛】本题考查了利用中心对称的性质作图,平行四边形的判定,熟练掌握中心对称的性质是作图的关键,要注意对称中心的确定.。
九年级数学上册第二十三章旋转笔记重点大全(带答案)

九年级数学上册第二十三章旋转笔记重点大全单选题1、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.2、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.3、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.4、以图(1)(以O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换,不能得到图(2)的是()A.绕着OB的中点旋转180°即可B.先绕着点O旋转180°,再向右平移1个单位C.先以直线AB为对称轴进行翻折,再向右平移1个单位D.只要向右平移1个单位答案:D分析:根据旋转、平移和轴对称的定义进行分析即可.由旋转、平移和轴对称的性质可知:经过A、B、C的变化,图(1)均可得到图(2),经过D的变化不能得到图(2);故选:D小提示:本题主要考查了旋转、平移和轴对称的性质,熟练地掌握各个性质是解题的关键.5、如图,在平面直角坐标系中,OA1=OB1,∠A1OB1=120°,将ΔA1OB1绕点O顺时针旋转并且按一定规律放大,每次变化后得到的图形仍是顶角为120°的等腰三角形.第一次变化后得到等腰三角形A2OB2,点A1(1,0)的对应点为A2(−1,−√3);第二次变化后得到等腰三角形A3OB3,点A2的对应点为A3(−32,3√32);第三次变化后得到等腰三角形A4OB4,点A3的对应点为A4(4,0)⋯⋯依此规律,则第2022个等腰三角形中,点B2022的坐标是()A.(2022,0)B.(−2022,−2022√3)C.(−1011,1011√3)D.(−1011,−1011√3)答案:D分析:利用循环的规律,找到第2022个等腰三角形与第一个循环的图形的第几个位置相同,再根据第一个循环中的点坐标进行求值即可.解:由题意可知,旋转规律为4次一个循环,即第2022次为:505个循环余2,∴点B2022位置与B3相同,在第三象限,∵B3坐标为(−32,−3√32),∴点B2022坐标为(−20222,−2022√32),即为(−1011,−1011√3).故选:D.小提示:本题主要考查的是坐标系与几何图形的规律问题,准确找到循环规律是解题的关键.6、如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC答案:C分析:根据旋转的性质,对每个选项逐一判断即可.解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.小提示:本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.7、在平面直角坐标系中,抛物线y=x2−4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为()A.y=−x2−4x+5B.y=x2+4x+5C.y=−x2+4x−5D.y=−x2−4x−5答案:A分析:先求出C点坐标,再设新抛物线上的点的坐标为(x,y),求出它关于点C对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.解:当x=0时,y=5,∴C(0,5);设新抛物线上的点的坐标为(x,y),∵原抛物线与新抛物线关于点C成中心对称,由2×0−x=−x,2×5−y=10−y;∴对应的原抛物线上点的坐标为(−x,10−y);代入原抛物线解析式可得:10−y=(−x)2−4⋅(−x)+5,∴新抛物线的解析式为:y=−x2−4x+5;故选:A.小提示:本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.8、将△OBA按如图方式放在平面直角坐标系中,其中∠OBA=90°,∠A=30°,顶点A的坐标为(1,√3),将△OBA绕原点逆时针旋转,每次旋转60°,则第2023次旋转结束时,点A对应点的坐标为()A.(−1,√3)B.(−√3,1)C.(−√33,1)D.(−1,√33)答案:A分析:根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋转对应的A点坐标,之后第2次旋转,根据图形位置以及OA长,即可求出,第3、4、5次分别利用关于原点中心对称,即可求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最后即可得出答案.解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:过点A′作x轴的垂线,垂足为C,如下图所示:由A的坐标为(1,√3)可知:OB=1,AB=√3,在RtΔAOB中,∠AOB=90°−∠A=60°,OA=2由旋转性质可知:ΔAOB≌ΔA′OB′,∴∠A′OB′=∠AOB=60°,OA′=OA,∴∠A′OC=180°−∠A′OB′−∠AOB=60°,在ΔA′OC与ΔAOB中:{∠A′OC′=∠AOB=60°∠A′CO=∠ABO=90°OA′=OA∴ΔA′OC′≌ΔAOC(AAS),∴OC =OB =1,A ′C =AB =√3,∴此时点A 对应坐标为(−1,√3),当第二次旋转时,如下图所示:此时A 点对应点的坐标为(−2,0).当第3次旋转时,第3次的点A 对应点与A 点中心对称,故坐标为(−1,−√3).当第4次旋转时,第4次的点A 对应点与第1次旋转的A 点对应点中心对称,故坐标为(1,−√3). 当第5次旋转时,第5次的点A 对应点与第2次旋转的A 点对应点中心对称,故坐标为(2,0). 第6次旋转时,与A 点重合.故前6次旋转,点A 对应点的坐标分别为:(−1,√3)、(−2,0)、(−1,−√3)、(1,−√3)、(2,0)、(1,√3).由于2023÷6=337⋅⋅⋅⋅⋅⋅1,故第2023次旋转时,A 点的对应点为(−1,√3).故选:A .小提示:本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,;通过旋转和中心对称求解对应点坐标,是求解该题的关键.9、如图,点O 是等边三角形ABC 内一点,OA =2,OB =1,OC =√3,则ΔAOB 与ΔBOC 的面积之和为( )A .√34B .√32C .3√34D .√3答案:C分析:将ΔAOB绕点B顺时针旋转60°得ΔBCD,连接OD,得到△BOD是等边三角形,再利用勾股定理的逆定理可得∠COD=90°,从而求解.解:将ΔAOB绕点B顺时针旋转60°得ΔBCD,连接OD,∴OB=OD,∠BOD=60°,CD=OA=2,∴ΔBOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+(√3)2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,∴ΔAOB与ΔBOC的面积之和为S△BOC+S△BCD=S△BOD+S△COD=√34×12+12×1×√3=3√34.故选:C.小提示:本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将ΔAOB与ΔBOC的面积之和转化为S△BOC+S△BCD,是解题的关键.10、已知点P(m−3,m−1)关于原点的对称点P′在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.答案:D分析:先确定点P 所在的象限,然后根据点所在象限的坐标特点列不等式组求解即可.解:∵点P(m −3,m −1)关于原点的对称点P′在第四象限,∴点P 在第二象限,∴ {m −3<0m −1>0, 解得:1<m <3,故选:D .小提示:本题主要考查了点的坐标特征,掌握第二象限的点的横坐标小于零、纵坐标大于零是解答本题的关键.填空题11、△ABC 中,AB =8,AC =6,AD 是BC 边上的中线,则AD 长度的范围是__________.答案:1<AD <7分析:延长AD 至E ,使DE =AD ,连接CE .根据SAS 证明△ABD ≌△ECD ,得CE =AB ,再根据三角形的三边关系即可求解.解:延长AD 至E ,使DE =AD ,连接CE .在△ABD 和△ECD 中,{DE =AD∠ADB =∠CDE DB =DC,∴△ABD ≌△ECD (SAS ),∴CE =AB .在△ACE 中,CE -AC <AE <CE +AC ,即2<2AD <14,故1<AD<7.故答数为:1<AD<7.小提示:本题主要考查了全等三角形的判定和性质、三角形的三边关系.注意:倍长中线是常见的辅助线之一.12、如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是 ___.答案:√6+√2分析:连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,由正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,所以∠OC'E=45°,OA=OC'=AB=2,∠A=90°,根据勾股定理得到BE的长,从而得到BC'.解:如图,连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,∵将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,点A′恰好落在线段BC′上,∴∠OC'E=45°,OA=OC'=AB=2,∠A=90°,∴OB=2√2,OE=EC'=√2,在Rt△OBE中,由勾股定理得:BE=√OB2−OE2=√(2√2)2−(√2)2=√6,∴BC'=BE+EC'=√6+√2.所以答案是:√6+√2小提示:本题考查了旋转的性质、正方形的性质以及勾股定理,解题的关键是作辅助线构造特殊三角形.13、已知坐标系中点A(−2,a)和点B(b,3)关于原点中心对称,则a+b=__________.答案:-1分析:直接利用关于原点对称点的性质,得出a,b的值,即可得出答案.解:∵坐标系中点A(-2,a)和点B(b,3)关于原点中心对称,∴b=2,a=-3,则a+b=2-3=-1.所以答案是:-1.小提示:此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.14、如图,在直角坐标系中,△ABC的顶点坐标分别为A(1,2),B(-2,2),C(-1,0).将△ABC绕某点顺时针旋转90°得到△DEF,则旋转中心的坐标是_____________.答案:(1,-1)分析:由旋转的性质可得A的对应点为D,B的对应点为E,C的对应点为F,同时旋转中心在AD和BE的垂直平分线上,进而求出旋转中心坐标.解:由旋转的性质,得A的对应点为D,B的对应点为E,C的对应点为F作BE和AD的垂直平分线,交点为P∴点P的坐标为(1,-1)所以答案是:(1,-1)小提示:本题考查坐标与图形变化—旋转,图形的旋转需结合旋转角求旋转后的坐标,常见的旋转角有30°,45°,60°,90°,180°.15、若点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,则a+b=___.答案:2分析:根据关于原点对称的性质得到a-1+5=0,5+1-b=0,求出a、b,问题得解.解:∵点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,∴a-1+5=0,5+1-b=0,∴a=-4,b=6,∴a+b=2.所以答案是:2小提示:本题考查了关于原点对称的点的坐标特点,熟知“两个点关于原点对称,则这两个点的横纵坐标都互为相反数”是解题关键.解答题16、如图,已知等边△ABC中,点D、E、F分别为边AB、AC、BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你连结EN,并判断EN与MF有怎样的数量关系?点F是否在直线NE 上?请写出结论,并说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)如图3,若点M在点C右侧时,请你判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论:若不成立,请说明理由.答案:(1)相等,在,理由见解析;(2)成立,证明见解析;(3)成立.分析:(1)连接DE、DF、EF,NF,根据等边三角形的性质和三角形中位线的性质,先证得△DBF是等边三角形,可得△DMB≌△DNF,可得∠DBM=∠DFN,从而得到∠NFD+∠DFE=180°,再由△DMN是等边三角形,从而证得△DMF≌△DNE,得到EN=MF,即可求证;(2)连接DF,NF,EF,等边三角形的性质,可证得△DMB≌△DNF,得到BM=FN,∠DFN=∠FDB=60°,从而NF∥BD,再由EF是△ABC的中位线,可得EF∥BD,从而F在直线NE上,即可求证;(3)连接DF、DE,EF,根据等边三角形的性质和三角形中位线的性质,可得△DBF是等边三角形,从而证得△DNE≌△DMF,即可求证.解:(1)EN=MF,点F在直线NE上,理由如下:如图1,连接DE、DF、EF,NF,∴AB=AC=BC,∠ABC=60°,又∵点D、E、F分别为边AB、AC、BC的中点,∴DE、DF、EF为等边△ABC的中位线,DE=12BC,EF=12AB,DF=12AC,∴DE=DF=EF,∴∠FDE=∠DFE=60°∵D、F分别是AB、BC的中点,∴BD=BF,∴△DBF是等边三角形,∴∠BDF=60°,∵△DMN是等边三角形,∴∠MDN=60°,DM=DN,∴∠MDN=∠BDF=60°,DB=DF,∴∠MDN-∠BDN=∠BDF-∠BDN,即∠MDB=∠NDF,在△DMB和△DNF中,∵DM=DN,∠MDB=∠NDF,DB=DF,∴△DMB≌△DNF,∴∠DBM=∠DFN,∵∠ABC=60°,∴∠DBM=120°,∴∠NFD=120°,∴∠NFD+∠DFE=120°+60°=180°,∴N、F、E三点共线,∴F在直线NE上;∴∠MDN=60°,DM=DN,∴∠FDE+∠NDF=∠MDN+∠NDF,∴∠MDF=∠NDE,在△DMF和△DNE中,∵DF=DE,∠MDF=∠NDE,DM=DN,∴△DMF≌△DNE,∴MF=NE,(2)成立,理由如下:如图2,连接DF,NF,EF,∵△ABC是等边三角形且D、F分别是AB、BC的中点,∴∠ABC=60°,BD=BF,∴△DBF是等边三角形,∴∠BDF=∠DBF=60°,∵△DMN是等边三角形,∴∠MDN=60°,DM=DN,∴∠MDN=∠BDF=60°,DB=DF,∴∠MDN-∠FDM=∠BDF-∠FDM,即∠MDB=∠NDF,在△DMB和△DNF中,∵DM=DN,∠MDB=∠NDF,DB=DF,∴△DMB≌△DNF,∴∠DBM=∠DFN=60°,BM=FN,∴∠DFN=∠FDB=60°,∴NF∥BD,∵E,F分别为边AC,BC的中点,∴EF是△ABC的中位线,BF=12BC=12AB,∴EF∥BD,EF=12AB,∴F在直线NE上,BF=EF,∴MF=EN;(3)MF与EN相等的结论仍然成立,理由如下:如图3,连接DF、DE,EF,∵△ABC是等边三角形,∴AB=AC=BC,又∵点D、E、F分别为边AB、AC、BC的中点,∴DE、DF、EF为等边△ABC的中位线,DE=12BC,EF=12AB,DF=12AC,∴DE=DF=EF,∴△DEF是等边三角形,∴∠FDE=60°,∵△DMN是等边三角形,∴∠MDN=∠FDE=60°,DM=DN,∴∠EDM+∠NDE=∠EDM+∠FDM,∴∠NDE=∠FDM,在△DNE和△DMF中,∵DE=DF,∠NDE=∠FDM,DN=DM,△DNE≌△DMF,∴MF=NE.小提示:本题主要考查了等边三角形的性质和判定,全等三角形的性质和判定,熟练掌握等边三角形的性质和判定,全等三角形的性质和判定是解题的关键.17、已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点Р(端点除外),连接PD.将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点Р在线段AC上的位置发生变化时,∠DPQ的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.答案:(1)见解析(2)∠DPQ大小不变,理由见解析(3)CP=AQ,证明见解析分析:(1)连接BD,由等边三角形的性质可得AC垂直平分BD,继而得出AB=BC=CD=AD,便可证明;(2)连接PB,过点P作PE∥CB交AB于点E,PF⊥AB于点F,可证明△APE是等边三角形,由等腰三角形三线合一证明∠APF=∠EPF,∠QPF=∠BPF,即可求解;(3)由等腰三角形三线合一的性质可得AF = FE,QF = BF,即可证明.(1)连接BD,∵△ABC是等边三角形,∴AB=BC=AC,∵点B,D关于直线AC对称,∴AC垂直平分BD,∴DC=BC,AD=AB,∴AB=BC=CD=AD,∴四边形ABCD是菱形;(2)当点Р在线段AC上的位置发生变化时,∠DPQ的大小不发生变化,始终等于60°,理由如下:∵将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处,∴PQ=PD,∵△ABC是等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°,连接PB,过点P作PE∥CB交AB于点E,PF⊥AB于点F,则∠APE=∠ACB=60°,∠AEP=∠ABC=60°,∴∠APE=∠BAC=60°=∠AEP,∴△APE是等边三角形,∴AP=EP=AE,∵PF⊥AB,∴∠APF=∠EPF,∵点B,D关于直线AC对称,点P在线段AC上,∴PB = PD,∠DPA =∠BPA,∴PQ = PD,∵PF⊥AB,∴∠QPF=∠BPF,∴∠QPF -∠APF=∠BPF -∠EPF,即∠QPA = ∠BPE,∴∠DPQ =∠DPA - ∠QPA=∠BPA-∠BPE = ∠APE= 60°;(3)AQ= CP,证明如下:∵AC = AB,AP= AE,∴AC - AP = AB–AE,即CP= BE,∵AP = EP,PF⊥AB,∴AF = FE,∵PQ= PD,PF⊥AB,∴QF = BF,∴QF - AF = BF–EF,即AQ= BE,∴AQ= CP.小提示:本题考查了图形的旋转,等边三角形的判定和性质,等腰三角形的性质,菱形的判定等,熟练掌握知识点是解题的关键.18、如图所示的两个图形成中心对称,请找出它的对称中点.答案:见解析.分析:根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.小提示:本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.。
九年级数学上册第二十三章旋转知识汇总笔记(带答案)

九年级数学上册第二十三章旋转知识汇总笔记单选题1、如图,菱形ABCD的对角线AC、BD交于点O,将△BOC绕着点C旋转180°得到△B′O′C,若AC=2,AB′=5,则菱形ABCD的边长是()A.3B.4C.√15D.√17答案:D分析:连接AB′,根据菱形的性质、旋转的性质,得到OA=OC=O′C=1,OB△OC,O′B′△O′C、BC=B′C,根据AB′=5,利用勾股定理计算O′B′,再次利用勾股定理计算B′C即可.解:连接AB′,如图:∵四边形ABCD是菱形,且△BOC绕着点C旋转180°得到△B′O′C,且AC=2,∴OA=OC=O′C=1,OB△OC,BC=B′C∴O′B′△O′C,O′A=AC+O′C=2+1=3,∵AB′=5,∴O′B′=√AB′2-O′A2=√5-32=4,∴B′C=√O′B′2+O′C2=√42+12=√17,∴BC=B′C=√17,即菱形ABCD的边长是√17,故选:D.小提示:本题考查了菱形的性质、旋转的性质以及勾股定理等知识,熟练掌握菱形的基本形式并灵活运用勾股定理是解决本题的关键.2、如图,将一个正方形纸片沿图中虚线剪开,能拼成下列四个图形,其中是中心对称图形的是()A.B.C.D.答案:B分析:根据拼成的四个图形是否存在中心对称点,即可判断图形是否为中心对称图形.解:依照中心对称图形的特征:若图形存在中心对称点,沿中心对称点旋转180°后可与原图形重合.选项A图形无中心对称点,故不是中心对称图形,不符合题意;选项B图形有中心对称点,故是中心对称图形,符合题意;选项C图形无中心对称点,故不是中心对称图形,不符合题意;选项D图形无中心对称点,故不是中心对称图形,不符合题意;故选:B.小提示:本题考查中心对称图形的性质特征,熟练掌握相关知识是解题的关键.3、下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.答案:C分析:根据轴对称图形和中心对称图形的概念逐项判断即可.A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.小提示:本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.4、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°答案:C分析:根据图形的对称性,用360°除以3计算即可得解.解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.小提示:本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.5、连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.△CEH是等边三角形答案:D分析:根据正八边形和圆的性质进行解答即可.解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH与四边形EFGH 全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=360°=45°8∵OE=OH∴∠OEH =∠OHE =12∠DOE =22.5° ∴∠CHE =2∠OHE =45°∴∠HCE =∠HEC =12(180°-∠CHE )=67.5° ∴△CEH 不是等边三角形,故选项错误,符合题意.故选:D .小提示:本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.6、如图,射线OM,ON 互相垂直,OA =8,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,AB =5.将线段AB 绕点O 按逆时针方向旋转得到对应线段A ′B ′,若点B ′恰好落在射线ON 上,则点A ′到射线ON 的距离是( )A .245B .133C .4D .√17 答案:A分析:添加辅助线,连接OA ′,OB ,过A ′点作A ′P ⊥ON 交ON 与点P .根据旋转的性质,得到△A ′B ′O ≌△ABO ,在Rt △A ′PO 和中,∠B ′OA =∠BOA ,根据三角函数和已知线段的长度求出点A ′到射线ON 的距离d =A ′P .解:如图所示,连接OA ′,OB ,过A ′点作A ′P ⊥ON 交ON 与点P .∵线段AB绕点O按逆时针方向旋转得到对应线段A′B′,∴OA′=OA=8,∠B′OB=∠A′OA,∴∠B′OB−∠BOA′=∠A′OA−∠BOA′,即∠B′OA′=∠BOA,∵点B在线段OA的垂直平分线l上,∴OC=12OA=12×8=4,OB=AB=5,BC=√OB2−OC2=√52−42=3,∵∠B′OA′=∠BOA,∴sin∠B′OA′=A′PA′O =sin∠BOA=BCOB,∴A′P8=35,∴d=A′P=245,故选:A小提示:本题主要考查旋转的性质和三角函数.对应点到旋转中心的距离相等,对应点与旋转中心所连的线段的夹角等于旋转角,旋转前、后的图形全等.7、如图,在矩形ABCD中,AB=4,BC=6,O是矩形的对称中心,点E、F分别在边AD、BC上,连接OE、OF,若AE=BF=2,则OE+OF的值为()A.2√2B.5√2C.√5D.2√5答案:D分析:连接AC,BD,过点O作OM⊥AD于点M,交BC于点N,利用勾股定理求得OE的长即可解题.解:如图,连接AC,BD,过点O作OM⊥AD于点M,交BC于点N,∵四边形ABCD是矩形,∴OA=OD=OB∵OM⊥AD∴AM=DM=3∴OM=12AB=2∵AE=2∴EM=AM−AE=1∴OE=√EM2+OM2=√12+22=√5同理可得OF=√5∴OE+OF=2√5故选:D.小提示:本题考查中心对称、矩形的性质、勾股定理等知识,学会添加辅助线,构造直角三角形是解题关键.8、如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α答案:C分析:根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°−α,故选C.小提示:本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.9、如图,△ABC是等边三角形,D为BC边上的点,△ABD经旋转后到达△ACE的位置,那么旋转角为()A.75°B.60°C.45°D.15°答案:B分析:根据题意可知旋转角为∠BAC,根据等边三角形的性质即可求解.解:∵△ABD经旋转后到达△ACE的位置,△ABC是等边三角形,∴旋转角为∠BAC=60°,故选B小提示:本题考查了等边三角形的性质,找旋转角,找到旋转前后对应的线段所产生的夹角即为旋转是解题的关键.10、将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.当GC=GB时,下列针对α值的说法正确的是()A.60°或300°B.60°或330°C.30°D.60°答案:A分析:当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=1AD,2∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°-60°=300°,故选:A.小提示:本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.填空题11、如图,在△ABC中,∠ACB=90°,AC=√2,BC=2√2,将△ABC绕点C按逆时针方向旋转得到△DEC,连接AD,BE,直线AD,BE相交于点F,连接CF,在旋转过程中,线段CF的最大值为__________.答案:√10分析:取AB的中点H,连接CH、FH,设EC,DF交于点G,在△ABC中,由勾股定理得到AB=√10,由旋转可知:△DCE≌△ACB,从而∠DCA=∠BCE,∠ADC=∠BEC,由∠DGC=∠EGF,可得∠AFB=90º,由直角三角形斜边上的中线等于斜边的一半,可得FH =CH =12AB =√102,在△FCH 中,当F 、C 、H 在一条直线上时,CF 有最大值为√10.解:取AB 的中点H ,连接CH 、FH ,设EC ,DF 交于点G ,在△ABC 中,∠ACB =90º,∵AC =√2,BC =2√2,∴AB =√AC 2+BC 2=√10,由旋转可知:△DCE ≌△ACB ,∴∠DCE =∠ACB ,DC =AC ,CE =CB ,∴∠DCA =∠BCE ,∵∠ADC =12(180º-∠ACD ) ,∠BEC =12 (180º-∠BCE ), ∴∠ADC =∠BEC ,∵∠DGC =∠EGF ,∴∠DCG =∠EFG =90º,∴∠AFB =90º,∵H 是AB 的中点,∴FH =12AB , ∵∠ACB =90º,∴CH =12AB ,∴FH =CH =12AB =√102,在△FCH中,FH+CH>CF,当F、C、H在一条直线上时,CF有最大值√102+√102=√10,∴线段CF的最大值为√10.所以答案是:√10小提示:本题考查了旋转的性质、勾股定理,解决本题的关键是掌握全等的性质.12、如图,在平面直角坐标系中,已知A(−2,1),B(−1,4),C(−1,1),将△ABC先向右平移3个单位长度得到△A1B1C1,再绕C1顺时针方向旋转90°得到△A2B2C1,则A2的坐标是____________.答案:(2,2).分析:直接利用平移的性质和旋转的性质得出对应点位置,然后作图,进而得出答案.解:如图示:△A1B1C1,△A2B2C1为所求,根据图像可知,A2的坐标是(2,2),故答案是:(2,2).小提示:本题主要考查了平移作图和旋转作图,熟悉相关性质是解题关键.13、在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.答案:12分析:直接利用关于原点对称点的性质得出a,b的值,进而得出答案.∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,所以答案是:12.小提示:本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.14、以水平数轴的原点O为圆心过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、⋯、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为_______.答案:(3,240°)分析:根据同心圆的个数以及每条射线所形成的角度,以及A,B点坐标特征找到规律,即可求得C点坐标.解:图中为5个同心圆,且每条射线与x轴所形成的角度已知,A、B的坐标分别表示为(5,0°)、(4,300°),根据点的特征,所以点C的坐标表示为(3,240°);所以答案是:(3,240°).小提示:本题考查坐标与旋转的规律性问题,熟练掌握旋转性质,并找到规律是解题的关键.15、如图,在△ABC中,AB=3,AC=2,∠BAC=60°,P为△ABC内一点,则PA+PB+PC的最小值为__________.答案:√19分析:将△APB绕点A顺时针旋转60°,得到△AP′B′,连接PP′、CB′,作CN⊥B′A交B′A的延长线于点N,则△AP′B′≌△APB,由题意可证△P′AP是等边三角形,所以PA+PB+PC=PC+PP′+P′B′,所以当B′、P′、P、C共线时,PA+PB+PC=B′C最小,求出B′C=√B′N2+CN2=√19即可;将△APB绕点A顺时针旋转60°,得到△AP′B′,连接PP′、CB′,作CN⊥B′A交B′A的延长线于点N,则△AP′B′≌△APB,∴∠BAP=∠B′AP′,∴AB′=AB=3,AP′=AP,∠B′AB=∠P′AP=60°,∴△P′AP是等边三角形,∴AP′=AP=PP′,∴PA+PB+PC=PC+PP′+P′B′,∴当B′、P′、P、C共线时,PA+PB+PC=B′C最小,∴∠CAN=180°-∠BAB′−∠BAC=60°,CN⊥AN,∴∠ACN=30°,∴AN=1AC=1,CN=√3AN=√3,2∴B′N=AB′+AN=3+1=4,∴B′C=√B′N2+CN2=√19,∴PA+PB+PC=B′C=√19;所以答案是:√19.小提示:本题考查了全等三角形判定与性质,旋转的性质,以及等边三角形的性质和求线段最值的问题,掌握做辅助线是解题的关键.解答题16、如图是在北京举办的世界数学家大会的会标“弦图”.请将“弦图”中的四个直角三角形通过你所学过的图形变换,在以下方格纸中设计另外两个不同的图案.画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.答案:解:如下图所示,答案不唯一.易错:容易把三角形画成重叠的.错因:没有看清题目要求.满分备考:由“基本图形”经过旋转、轴对称、平移等可以得到美丽而丰富的图案,而图案涉及的关键是确定基本图形,制定图形变换的具体操作程序.注意应用几种常见的图形变换.解析:运用基本图,按照轴对称和中心对称的特点以及画图规律直接绘制图形即可.17、[问题提出](1)如图①,△ABC、△ADE均为等边三角形,点D、E分别在边AB、AC上.将△ADE绕点A沿顺时针方向旋转,连结BD、CE.在图②中证明△ADB≌△AEC.[学以致用](2)在(1)的条件下,当点D、E、C在同一条直线上时,∠EDB的大小为度.[拓展延伸](3)在(1)的条件下,连结CD.若BC=6,AD=4,直接写出△DBC的面积S的取值范围.答案:(1)见解析;(2)60或120;(3)9√3−12≤S≤9√3+12分析:(1)运用SAS证明△ADB≌△AEC即可;(2)分“当点E在线段CD上”和“当点E在线段CD的延长线上”两种情况求出∠EDB的大小即可;(3)分别求出△DBC的面积最大值和最小值即可得到结论(1)∵△ABC,△ADE均为等边三角形,∴AD=AE,AB=AC,∴∠DAE−∠BAE=∠BAC−∠BAE,即∠BAD=∠CAE在△ADB和△AEC中{AD=AE∠BAD=∠CAE AB=AC∴△ABD≅△ACE(SAS);(2)当D,E,C在同一条直线上时,分两种情况:①当点E在线段CD上时,如图,∵△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠AEC=180°−∠AED=120°,由(1)可知,△ADB≅△AEC,∴∠ADB=∠AEC=120°,∴∠EDB=∠ADB−∠ADE=120°−60°=60°②当点E在线段CD的延长线上时,如图,∵△ADE是等边三角形,∴∠ADE=∠AED=60°∴∠ADC=180°−∠ADE=120°,由(1)可知,△ADB≅△AEC∴∠ADB=∠AEC=60°,∴∠EDB=∠ADB+∠ADE=60°+60°=120°综上所述,∠EDB的大小为60°或120°(3)过点A作AF⊥BC于点F,当点D在线段AF上时,点D到BC的距离最短,此时,点D到BC的距离为线段DF的长,如图:∵△ABC是等边三角形,AF⊥BC,BC=6∴AB=BC=6,BF=12BC=3∴AF=√AB2−BF2=√62−32=3√3∴DF=3√3−4此时S△DBC=12BC⋅DF=12×6×(3√3−4)=9√3−12;当D在线段FA的延长线上时,点D到BC的距离最大,此时点D到BC的距离为线段DF的长,如图,∵△ABC是等边三角形,AF⊥BC,BC=6∴AB=BC=6,BF=12BC=3,∴AF=√AB2−BF2=√62−32=3√3∵AD=4∴DF=AF+AD=3√3+4此时,S△DBC=12BC⋅DF=12×6×(3√3+4)=9√3+12;综上所述,△DBC的面积S 取值是9√3−12≤S≤9√3+12小提示:此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.18、如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°,把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.答案:(1)证明见解析;(2)正方形ABCD的边长为6.分析:(1)先根据旋转的性质可得AE=AN,∠BAE=∠DAN,再根据正方形的性质、角的和差可得∠MAE= 45°,然后根据三角形全等的判定定理即可得证;(2)设正方形ABCD的边长为x,从而可得CM=x−3,CN=x−2,再根据旋转的性质可得BE=DN=2,从而可得ME=5,然后根据三角形全等的性质可得MN=ME=5,最后在Rt△CMN中,利用勾股定理即可得.(1)由旋转的性质得:AE=AN,∠BAE=∠DAN∵四边形ABCD是正方形∴∠BAD=90°,即∠BAN+∠DAN=90°∴∠BAN+∠BAE=90°,即∠EAN=90°∵∠MAN=45°∴∠MAE=∠EAN−∠MAN=90°−45°=45°在△AEM和△ANM中,{AE=AN∠MAE=∠MAN=45°AM=AM∴△AEM≅△ANM(SAS);(2)设正方形ABCD的边长为x,则BC=CD=x∵BM=3,DN=2∴CM=BC−BM=x−3,CN=CD−DN=x−2由旋转的性质得:BE=DN=2∴ME=BE+BM=2+3=5由(1)已证:△AEM≅△ANM∴MN=ME=5又∵四边形ABCD是正方形∴∠C=90°则在Rt△CMN中,CM2+CN2=MN2,即(x−3)2+(x−2)2=52解得x=6或x=−1(不符题意,舍去)故正方形ABCD的边长为6.小提示:本题考查了正方形的性质、旋转的性质、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2),熟练掌握旋转的性质与正方形的性质是解题关键.。
九年级上册数学第23章《旋转》知识点梳理完整版

【学习目标】九年级数学上册第 23 章《旋转》知识点梳理1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转..点 O 叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点 A 经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A'B'C').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图: 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转类型一、旋转1.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心 O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°. 以上四位同学的回答中,错误的是().A.甲 B. 乙 C. 丙 D. 丁【答案】B.【解析】因为圆被平分为 8 部分,所以旋转45°,90°,135°均能与原图形重合.【总结升华】同一图形的旋转角可以是多个.举一反三:【变式】以图 1 的边缘所在直线为轴将该图案向右翻折180°后,再按顺时针方向旋转180°,所得到图形是().【答案】A.类型二、中心对称2.如图,△A′B′C′是△ABC旋转后得到的图形,请确定旋转中心、旋转角.【答案与解析】∵对应点到旋转中心的距离相等,即OA=OA′∴O点在AA′的垂直平分线上同理 O 点也在BB′的垂直平分线上∴两条垂直平分线的交点 O 就是旋转中心,∠AOA′的度数就是旋转角.【总结升华】中心对称的对应点到对称中心的距离相等,所以对称中心在对应点的垂直平分线上.举一反三:【变式】下列图形中,既是中心对称图形又是轴对称图形的是().A.B.C.D.【答案】A.类型三、平移、轴对称、旋转3.(2015•裕华区模拟)如图,点 O 是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C 按顺时针方向旋转60°得△ADC,连接 OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD 的形状,并说明理由;(3)探究:当 a 为多少度时,△AOD是等腰三角形?【思路点拨】(1)根据旋转的性质可得出 OC=OD,结合题意即可证得结论;(2)结合(1)的结论可作出判断;(3)找到变化中的不变量,然后利用旋转及全等的性质即可做出解答.【答案与解析】(1)证明:∵将△BOC绕点 C 按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点 C 按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD 不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使 OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使 OD=AD,需∠OAD=∠AOD.∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α,∠AOD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.【总结升华】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.举一反三:【变式】已知 D 是等边△ABC外一点,∠BDC=120º.求证:AD=BD+DC.【答案】∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.将△ABD绕点A 逆时针旋转60°,得到△EAC,∴△DAB≌△EAC,即∠ABD=∠ACE,∵四边形 ABCD 中,∠BDC=120º,∠BAC=60°,∴∠DBA+∠DCA=180°,即∠ACE+∠DCA=180°,点 D,C,E 三点共线.∴BD+DC=CE+DC=DE.又∵∠DAE=60°.∴△ADE是等边三角形,即DE=AD.∴BD+DC=AD.4.如图,在四边形 ABCD 中,∠ABC=30°,∠ADC=60°,AD=CD. 求证:BD2=AB2+BC2.【思路点拨】利用 AD=CD 可以将△BCD绕点D 逆时针旋转60°,从而把条件集中到一个三角形中.【答案与解析】证明: ∵AD=CD,∠ADC=60°,∴△BCD 绕点 D 逆时针旋转 60°,得到△EAD, ∴∠BDE=∠CDA=60°,△BCD≌△EAD. ∴BC=AE, BD=DE ,∠DAE=∠DCB, ∴△BDE 为等边三角形. ∴BE=BD.∵在四边形 ABCD 中,∠ABC=30°,∠ADC=60°, ∴∠DCB+∠DAB=270°,即∠DAE+∠DAB=270°. ∴∠BAE=90°. ∵在 Rt△BAE 中, ,∴.【总结升华】由求证可知应该建立一个直角三角形,再由已知知道有 30°,60°的角,有等线段,可以构想通过旋转构建直角三角形.5 、正方形 ABCD 和正方形 AEFG 有一个公共点 A ,点 G 、E 分别在线段 AD 、AB 上(1) 如图连结 DF 、BF ,试问:当正方形 AEFG 绕点 A 旋转时,DF 、BF 的长度是否始终相等?若相等请证明;若不相等请举出反例.(2) 若将正方形 AEFG 绕点 A 顺时针方向旋转,连结 DG ,在旋转过程中,能否找到一条线段的长度与线段 DG的长度相等,并画图加以说明. 【答案与解析】(1) 如图, DF 、BF 的长度不是始终相等,当点 F 旋转到 AB 边上时,DF>AD>BF.(2)线段BE=DG如图: ∵正方形 ABCD 和正方形 AEFG∴AD=AB,AG=AE, ∠1+∠2=∠2+∠3 ∴∠DAG=∠BAE ∴△ADG≌△ABE ∴ DG=BE【总结升华】利用旋转图形的不变性确定全等三角形. 举一反三:【变式】(2015•沈阳)如图,正方形 ABCD 绕点 B 逆时针旋转 30°后得到正方形 BEFG ,EF 与 AD 相交于点 H ,延长DA 交 GF 于点 K .若正方形 ABCD 边长为,求 AK 的长?【答案与解析】 解:连接 BH ,如图所示:∵四边形 ABCD 和四边形 BEFG 是正方形, ∴∠BAH=∠ABC=∠BEH=∠F=90°, 由旋转的性质得:AB=EB ,∠CBE=30°, ∴∠ABE=60°,在 Rt△ABH 和 Rt△EBH 中,,∴Rt△ABH≌△Rt△EBH(HL ), ∴∠ABH=∠EBH=∠ABE=30°,AH=EH , ∴AH= ×=1,∴EH=1, ∴FH=﹣1,在 Rt△FKH 中,∠FKH=30°, ∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2( ﹣1)﹣1=2 ﹣3; 故答案为: 2 3 .6. 如图,已知△ABC 为等腰直角三角形,∠BAC=900,E 、F 是 BC 边上点且∠EAF=45°.求证: .3【思路点拨】通过求证可以猜测要证得直角三角形,所以可以考虑旋转.【答案与解析】∵ △ABC为等腰直角三角形且∠BAC=90°∴ AB=AC,将△CAF 绕点 A 顺时针旋转90°,如图,得到∴∴ ,,,,∴ ,连结,则在,中,∴ ①,又∵ ,∵ .又∵∴ 在与,中,.∴ ②,∴ 由①②得:. 【总结升华】旋转性质:旋转前,后的图形全等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.下列图形一定不是中心对称图形的是( )
A .正六边形
B .线段()213y x x =-+≤≤
C .圆
D .抛物线2y x x =+ 2.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐
标为( )
A .(,)a b --
B .2(),a b --+
C .(),1a b --+
D .(,1)a b --- 3.如图,在等边△ABC 中,AC=8,点O 在AC 上,且AO=3,点P 是边AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( ).
A .4
B .5
C .6
D .8 4.以原点为中心,将点P (3,4)旋转90°,得到的点Q 所在的象限为( ) A .第二象限 B .第三象限 C .第四象限 D .第二或第四象限 5.下列图形中,是中心对称图形的是( )
A .
B .
C .
D . 6.如图,在平面直角坐标系中,点A 的坐标为(3,1)-,将OA 绕原点O 按顺时针方向旋转90︒得到OA ',则点A '的坐标为( )
A .(3,1)
B .(3,1)-
C .(1,3)--
D .(1,3)
7.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )
A .3
B .23
C .4
D .45
8.下列四个图案中,是中心对称图形的是( )
A .
B .
C .
D .
9.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ︒∠=;
④633AOBO S '=+四边形.其中正确的结论有( ).
A .1个
B .2个
C .3个
D .4个
10.如图,等边△OAB 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把△OAB 逆时针转90︒,则旋转后点A 的对应点A '的坐标是( )
A .(-13)
B 3-1)
C .(31-,)
D .(-2,1) 11.已知等边△ABC 的边长为8,点P 是边BC 上的动点,将△ABP 绕A 逆时针转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是 ( )
A .2
B .23
C .4
D .不能确定 12.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D . 13.下列图形中,是轴对称图形,但不是中心对称图形的是( )
A .
B .
C .
D . 14.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )
A .(﹣4,﹣2﹣3)
B .(﹣4,﹣2+3)
C .(﹣2,﹣2+3)
D .(﹣2,﹣2﹣3)
15.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).
A .60 °
B .75°
C .85°
D .90°
二、填空题
16.有两个直角三角板,其中45E ∠=︒,30C ∠=︒,按图①的方式叠放,先将ABC
固定,再将AED 绕顶点A 顺时针旋转,使//BC DE (如图②所示),则旋转角BAD ∠的度数为______.
17.若点M (3,a ﹣2),N (b ,a )关于原点对称,则ab =_____.
18.如图,将边长为6的正方形ABCD 绕点A 逆时针方向旋转30︒后得到正方形A B C D '''',则图中阴影部分面积为____________.
19.在ABC 中,2AB =,3AC =,以CB 为边作一个形状等边三角形BCD △,则DA 的最大值是________.
20.如图,正方形ABCD 的边长为6,点E 在边CD 上.以点A 为中心,把ADE 顺时针旋转90︒至ABF 的位置,若2DE =,则FC =________.
21.如图,在ABC 中,4AB =, 5.8BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转得到ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为________.
22.如图,在平面直角坐标系中,若△ABC≌△DEF关于点H成中心对称,则对称中心H 点的坐标是_________.
23.如图,△ABC中,∠A=60°,∠ABC=80°,将△ABC绕点B逆时针旋转,得到△DBE,若DE∥BC,则旋转的最小度数为_____.
24.如图,△ABC中,∠BAC=20°,△ABC绕点A逆时针旋转至△AED,连接对应点C、D,AE垂直平分CD于点F,则旋转角度是_____°.
25.如图,在Rt ABC中,∠C=90°,AC=6cm,BC=8cm.将Rt ABC绕点A逆时针旋转△,使点C '落在AB边上,连结BB',则BB'的长度为_________.
得到Rt AB C''
26.一副直角三角尺叠放,如图①所示,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两个三角尺有一组边互相平行.例如图②,当∠BAD=15°时,BC∥DE,当90°<∠BAD<180°时,∠BAD的度数为
___.
三、解答题
27.如图,在一个1010⨯的正方形网格中有一个,ABC ABC ∆∆的顶点都在格点上.
(1)在网格中画出ABC ∆向下平移4个单位,再向右平移6个单位得到的111A B C ∆. (2)在网格中画出ABC ∆关于点P 成中心对称得到的222A B C ∆.
(3)若可将111A B C ∆绕点О旋转得到222A B C ∆,请在正方形网格中标出点O ,连接12A A 和12B B ,请直接写出四边形2211A B A B 的面积.
28.已知30AOB ∠=,P 为射线OB 上一点,M 为射线OA 上一动点,连接PM , 满足OMP ∠为钝角,将线段PM 绕点 P 顺时针旋转150,得到线段PN ,连接ON . (1)依题意补全图1;
(2)求证:OMP OPN ∠=∠;
(3)在射线 MA 上取点D ,点M 关于点D 的对称点为E ,连接EP ,当PDO ∠= 时,使得对于任意的点M ,总有ON EP =,并证明
29.如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD △绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.
(1)请求出旋转角的度数;
(2)请判断AE与BD的位置关系,并说明理由.
30.江都大润发超市销售一种利润为每千克10元的水产品,一个月能销售出500千克.经市场分析,销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,若设单价每千克涨价x元,请解答以下问题:
(1)填空:每千克水产品获利元,月销售量减少千克;
(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应涨价为多少元?。