(完整)人教版九年级上册数学旋转变化中的压轴题

合集下载

2022-2023学年人教版九年级上册数学期末动点问题压轴题

2022-2023学年人教版九年级上册数学期末动点问题压轴题

人教版九年级上册数学期末动点问题压轴题1.如图所示,在Rt ABC ∆中,90,6cm,8cm,B AB BC ∠=︒==点P 由点A 出发,沿AB 方向向点B 匀速运动,速度为1cm/s ,点Q 由点B 出发,沿BC 方向向点C 匀速运动,速度为2cm/s .如果动点P ,Q 同时从A ,B 两点出发,(1)几秒后,PBQ 的面积为28cm ?(2)是否存在这样的时刻,使PBQ 的面积等于210cm ,如果存在请求出来,如果不存在请说明理由.(3)经过几秒,PBQ 的面积最大?并求出最大值.2.在等边ABC 中,D 是边AC 上一动点,连接BD ,将BD 绕点D 顺时针旋转120︒,得到DE ,连接CE .(1)如图1,连接AE ,当B 、A 、E 三点共线时,若4AB =,求AE 的长;(2)如图2,取CE 的中点F ,连接DF ,猜想AD 与DF 的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接BE AF 、交于G 点,若GF DF =,请直接写出CD BE的值.3.已知如图,在Rt ABC △中,AC =BC ,∠C =90°,点D 为直线AC 上一点,连接BD ,将BD 绕点B 逆时针旋转90°至BE ,连接AE 交直线BC 于点F .(1)如图1,若BD 平分∠ABC ,AC =3,求AD 的长;(2)如图2,求证:AF =EF ;(3)如图3,当123CD CF AC ===时,M 为直线AB 上一动点,连接FM ,将EFB △沿直线FM 翻折到EFB △同一平面得E FB ''△,当线段CE '最小时,直接写出DB E ''△的面积.4.如图,抛物线212y ax x c =-+的图象与x 轴交点为A 和B ,与y 轴交点为()0,3D ,与直线23y x =--交点为A 和C .(1)求抛物线的解析式;(2)求点C 的坐标,并结合函数图象直接写出当12y y >时x 的取值范围;(3)若点E 是x 轴上一个动点,把点E 向下平移4个单位长度得到点F ,点F 向右平移4个单位长度得到点G ,点G 向上平移4个单位长度得到点H ,若四边形EFGH 与抛物线有公共点,请直接写出点E 的横坐标E x 的取值范围.5.在平面直角坐标系中,二次函数23y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使四边形ABCP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)将二次函数23y ax bx =++的图象先向右平移2个单位长度,再向上平移1个单位长度得到新抛物线,点M 在新抛物线上,点N 在原抛物线的对称轴上,直接写出所有使得以点A 、B 、M 、N 为顶点的四边形是平行四边形的点N 的坐标,并把求其中一个点N 的坐标的过程写出来.6.如图,抛物线2y x bx c =-++经过点()3,0A ,()0,3B ,点P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M .设点P 的横坐标为t .(1)求抛物线的解析式;(2)若点P 在第一象限,连接AM BM ,,当线段PM 最长时,求ABM 的面积;(3)是否存在这样的点P ,使以点P ,M ,B ,O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.7.如图,二次函数2(2)y x m =-+的图象交y 轴于点C ,点B 与点C 关于该二次函数图象的对称轴对称,已知一次函数y kx b =+的图象经过该二次函数图象上的点()1,0A 及点B .(1)求二次函数与一次函数的解析式.(2)点P 是该抛物线上一动点,点P 从A 点沿抛物线向B 点运动(点P 不与A 、B 重合),过点P 作PD y ∥轴,PD 交直线AB 于点D .请求出点P 在运动的过程中,线段PD 的长度的最大值以及此时点P 的坐标;(3)抛物线上是否存在点Q ,使15ABQ S =△,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.8.已知抛物线2y ax bx c =++经过()30A -,、()10B ,、()0,3C -三点,直线l 是抛物线的对称轴.(1)求抛物线的解析式;(2)设点P 是直线l 上的一个动点,当PBC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使以M 、B 、C 为顶点的三角形为直角三形.若存在,求出点M 的坐标;若不存在,请说明理由.9.如图,抛物线223y x x =-++与x 轴交A B 、两点(A 点在B 点左侧),直线l 与抛物线交于B C 、两点,其中C 点的横坐标为2-.(1)求B C 、两点的坐标;(2)求直线BC 的函数表达式;(3)若P 是线段BC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值.10.如图,抛物线²6y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,2OA =,4OB =,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接,,,AD BD BC CD .(1)求抛物线的函数表达式;(2)若点D 在x 轴的下方,当BCD △的面积是92时,求D 点的坐标; (3)在(2)的条件下,点M 是x 轴上一点,点N 抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点,以BD 为边的四边形是平行四边形,若存在,求出点N 的坐标;若不存在,请说明理由.11.如图所示,在ABC 中,AB BC =,90ABC ∠=︒,点D 为直线BC 上的一个动点(不与B 、C 重合),连接AD ,将线段AD 绕点D 按顺时针方向旋转90︒,使点A 旋转到点E ,连接EC .操作感知:如果点D 在线段BC 上运动,过点E 作EF BC ⊥交直线BC 于F ,如图所示,从而求得DCE ∠=___________︒.猜想论证:如果点D 在线段CB 的延长线上运动,如图所示,以上结论是否依然成立,并说明理由. 拓展应用:连接BE ,当点D 在直线BC 上运动时,若2AB =,则BE 的最小值为 ___________.12.抛物线2y ax c =+与x 轴交于()()6,0,2,0A C -两点,与y 轴交于点B ,抛物线的顶点为点D ,对称轴交线段AB 于点E ,交x 轴于点F .(1)求此抛物线的表达式;(2)如图 1,点P 是直线AB 下方抛物线上一动点,连接,PE PB ,求PBE △的最大面积及此时点P 的坐标;(3)如图 2,点M 是直线CD 上一点,点N 是抛物线上一点,试判断是否存在这样的点N ,使得以点B 、E 、M 、N 为顶点的四边形是平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,且()4,2B ,E 为直线AC 上一动点,连OE ,过E 作GF OE ⊥,交直线BC 、直线OA 于点F 、G ,连OF .(1)求直线AC 的解析式.(2)当E 为AC 中点时,①求CF 的长.②在x 轴上是否存在点H ,使BH EH +的值最小,若存在,直接写出这个最小值,若不存在,请说明理由.(3)在点E 的运动过程中,坐标平面内是否存在点P ,使得以P 、O 、G 、F 为顶点的四边形为菱形,若存在,直接写出点P 的横坐标,若不存在,请说明理由.14.如图,在等腰直角ABC 中,90BAC ∠=︒,AB AC =,点D ,E 分别为AB ,AC 的中点,F 为线段DE 上一动点(不与点D ,E 重合),将线段AF 绕点A 逆时针方向旋转90︒得到AG ,连接GC FB FG EG FG ,,,,交AE 于点H .(1)证明:BF CG =;(2)①当点F 运动到什么位置时,四边形AFEG 是正方形?请你说明理由;②当BAF BFD ∠=∠时,求证:点B F G 、、三点共线.15.已知O 的直径AB 为10,D 为O 上一动点(不与A 、B 重合),连接AD BD 、.(1)如图1,若8AD =,求BD 的值;(2)如图2,弦DC 平分ADB ∠,过点A 作AE CD ⊥于点E ,连接BE .①当90DBE ∠=︒时,求BE 的值;②在点D 的运动过程中,BE 的值是否存在最小值?若存在,求BE 的最小值;若不存在,请说明理由.16.如图,A B C D 、、、为矩形的四个顶点,16cm AB =,6cm AD =,动点P Q 、分别从点,A C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2cm/s 的速度向D 移动.(1)P Q 、两点从出发开始到几秒时,四边形PBCQ 的面积为236cm ?(2)P Q 、两点从出发开始到几秒时,点P 和点Q 的距离是?(3)P Q 、两点从出发开始到几秒时,点P Q D 、、组成的三角形是等腰三角形?17.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧).(1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标;(3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.18.如图,在Rt ABC △中,90C ∠=︒,30AC =cm ,21BC =cm ,动点P 从点C 出发,沿CA 方向运动,动点Q 从点B 出发,沿BC 方向运动,如果点P ,Q 的运动速度均为1cm/s .(1)设点Q 、点P 运动时间为ts ,则CP =_______cm ,BQ =_______cm .(2)点P 、点Q 运动几秒时,它们相距15cm ?(3)OCQ △的面积能等于60平方厘米吗?为什么?参考答案:1.(1)2s 或4s(2)不存在不可能,(3)经过3秒,PBQ 的面积最大,最大面积为9cm 22.(1)2AE =; (2)12DF AD =,(3)CD BE =3.(1)6-(3)124.(1)223y x x =--+(2)32x -<<(3)51E x -<<5.(1)2y 23x x =--+(2)存在 P (31524-,)(3)11-(,),131--(,),11--(,)6.(1)223y x x =-++ (2)278ABM S =△(3)存在,点P7.(1)243y x x =-+,1y x =-(2)PD 最大值为94,53,24P ⎛⎫- ⎪⎝⎭(3)()6,15Q 或()1,8-8.(1)223y x x =+-(2)()12--,(3)213,或813,或()12--,或()1,1--9.(1)(3,0)B ,(2,5)C --(2)3y x =- (3)PE 的长度最大值为254 10.(1)33²642y x x =-- (2)153,4D ⎛⎫- ⎪⎝⎭(3)1514⎛⎫ ⎪⎝⎭或1514⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭11.操作感知:135;猜想论证:结论不成立,理由见解析过程;拓展应用:BE12.(1)24y x =-(2)P 的坐标为3,4⎛- ⎝⎭;(3)(4-或(4-或(4,-或(-13.(1)122y x =-+(2)存在,点8(,0)3H(3)存在,4或32-114(2)①F 运动到线段EF 的中点,15.(1)6(2)①16.(1)P Q 、两点从出发开始到4秒时,四边形PBCQ 的面积为236cm(2)P Q 、两点从出发开始到2秒或225秒时,点P 和点Q 的距离是(3)经过2秒时,点P Q D 、、组成的三角形是等腰三角形17.(1)2=23y x x -- (2)94,3(2,3)2(3)存在,点P 的坐标为(0,0)或0⎫⎪⎪⎝⎭或3,02⎛⎫ ⎪⎝⎭或0⎫⎪⎪⎝⎭18.(1)t ;t(2)9秒或12秒(3)不能,。

初三九年级数学上册数学压轴题试题(WORD版含答案)

初三九年级数学上册数学压轴题试题(WORD版含答案)

初三九年级数学上册数学压轴题试题(WORD版含答案)一、压轴题1.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.2.如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.3.如图,⊙O的直径AB=26,P是AB上(不与点A,B重合)的任一点,点C,D为⊙O 上的两点.若∠APD=∠BPC,则称∠DPC为直径AB的“回旋角”.(1)若∠BPC =∠DPC =60°,则∠DPC 是直径AB 的“回旋角”吗?并说明理由;(2)猜想回旋角”∠DPC 的度数与弧CD 的度数的关系,给出证明(提示:延长CP 交⊙O 于点E );(3)若直径AB 的“回旋角”为120°,且△PCD 的周长为24+133,直接写出AP 的长.4.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ;②如图3,弦AB 与弦CD 不相交:③如图4,点B 与点C 重合.5.如图,在平面直角坐标系中,直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,以AB 为斜边作等腰直角△ABC ,使点C 落在第一象限,过点C 作CD ⊥AB 于点D ,作CE ⊥x 轴于点E ,连接ED 并延长交y 轴于点F .(1)如图(1),点P 为线段EF 上一点,点Q 为x 轴上一点,求AP +PQ 的最小值. (2)将直线l 进行平移,记平移后的直线为l 1,若直线l 1与直线AC 相交于点M ,与y 轴相交于点N ,是否存在这样的点M 、点N ,使得△CMN 为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.6.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示).(2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.7.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC . (1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.8.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GD GO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.9.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 10.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).11.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m a m b--的值为 ;当点M 不在y 轴上时,求证:m a m b--为一个定值,并求出这个值.12.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ;(2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4【解析】【分析】(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得∠BCF=12∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解.【详解】(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F∴BE EF =,80BEF ∠=∴180502BEF EBF BFE -∠∠=∠== ,即50BFD ∠= ∵AB=AC=4,D 是BC 的中点∴BD DC =,AD BC ⊥ ∴BF CF =,ABD ACD △≌△∴FBD FCD △≌△,1005022BAC BAD CAD ∠∠=∠=== ∴50BFD CFD ∠=∠=∴50CFD BAD ∠=∠=∴//CF AB(2)如图,连接BE 、EC 、BF 、EF由(1)可知:EB=EF=EC∴B ,F ,C 三点共圆,点E 为圆心∴∠BCF=12∠BEF=40° ∵50BAD ∠=,AD BC ⊥∴9040ABC BAD ∠=-∠=∴ABC BCF ∠=∠∴//CF AB ,(1)中的结论仍然成立(3)由(1)和(2)知,//CF AB∴点F 的运动路径在CF 上如图,作AM ⊥CF 于点M∵8090BEF ∠=<∴点E 在线段AD 上运动时,点B 旋转不到点M 的位置∴故当点E 与点A 重合时,AF 最小此时AF 1=AB=AC=4,即AF 的最小值为4.【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解.2.(1)点B (3,4),点C (﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【解析】【分析】(1)由中心对称的性质可得OB =OC =5,点C (﹣a ,﹣a ﹣1),由两点距离公式可求a 的值,即可求解;(2)由两点距离公式可求AB ,AC ,BC 的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO =BO =CO ,可得△BCD 是直角三角形,以BC 为直径,作⊙O ,连接OH ,DE 与⊙O 交于点H ,由圆周角定理和角平分线的性质可得∠HBC =∠CDE =45°=∠BDE =∠BCH ,可证CH =BH ,∠BHC =90°,由两点距离公式可求解.【详解】解:(1)∵A (﹣5,0),OA =OC ,∴OA =OC =5,∵点B 、C 关于原点对称,点B (a ,a +1)(a >0),∴OB =OC =5,点C (﹣a ,﹣a ﹣1),∴5=()()220+10a a -+-,∴a =3,∴点B (3,4),∴点C (﹣3,﹣4);(2)∵点B (3,4),点C (﹣3,﹣4),点A (﹣5,0),∴BC =10,AB =45 ,AC =25,∵BC 2=100,AB 2+AC 2=80+20=100,∴BC 2=AB 2+AC 2,∴∠BAC =90°,∴AB ⊥AC ;(3)过定点,理由如下:∵将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,∴CO =DO ,又∵CO =BO ,∴DO =BO =CO ,∴△BCD 是直角三角形,∴∠BDC =90°,如图②,以BC 为直径,作⊙O ,连接OH ,DE 与⊙O 交于点H ,∵DE 平分∠BDC ,∴∠BDE =∠CDE =45°,∴∠HBC=∠CDE=45°=∠BDE=∠BCH,∴CH=BH,∠BHC=90°,∵BC=10,∴BH=CH=,OH=OB=OC=5,设点H(x,y),∵点H在第四象限,∴x<0,y>0,∴x2+y2=25,(x﹣3)2+(y﹣4)2=50,∴x=4,y=3,∴点H(4,﹣3),∴∠BDC的角平分线DE过定点H(4,3).【点睛】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.3.(1)∠DPC是直径AB的回旋角,理由见解析;(2)“回旋角”∠CPD的度数=CD的度数,证明见解析;(3)3或23.【解析】【分析】(1)由∠BPC=∠DPC=60°结合平角=180°,即可求出∠APD=60°=∠BPC,进而可说明∠DPC是直径AB的回旋角;(2)延长CP交圆O于点E,连接OD,OC,OE,由“回旋角”的定义结合对顶角相等,可得出∠APE=∠APD,由圆的对称性可得出∠E=∠D,由等腰三角形的性质可得出∠E=∠C,进而可得出∠D=∠C,利用三角形内角和定理可得出∠COD=∠CPD,即“回旋角”∠CPD的度数=CD的度数;(3)①当点P在半径OA上时,在图3中,过点F作CF⊥AB,交圆O于点F,连接PF,则PF=PC,利用(2)的方法可得出点P,D,F在同一条直线上,由直径AB的“回旋角”为120°,可得出∠APD=∠BPC=30°,进而可得出∠CPF=60°,即△PFC是等边三角形,根据等边三角形的性质可得出∠CFD=60°.连接OC,OD,过点O作OG⊥CD于点G,则∠COD=120°,根据等腰三角形的性质可得出CD=2DG,∠DOG=12∠COD=60°,结合圆的直径为26可得出CD=PCD的周长为DF=24,过点O作OH⊥DF于点H,在Rt△OHD和在Rt△OHD中,通过解直角三角形可得出OH,OP的值,再根据AP=OA﹣OP可求出AP的值;②当点P在半径OB上时,用①的方法,可得:BP=3,再根据AP=AB﹣BP可求出AP的值.综上即可得出结论.【详解】(1)∵∠BPC=∠DPC=60°,∴∠APD=180°﹣∠BPC﹣∠DPC=180°﹣60°﹣60°=60°,∴∠APD=∠BPC,∴∠DPC是直径AB的回旋角.(2)“回旋角”∠CPD的度数=CD的度数,理由如下:如图2,延长CP交圆O于点E,连接OD,OC,OE.∵∠CPB=∠APE,∠APD=∠CPB,∴∠APE=∠APD.∵圆是轴对称图形,∴∠E=∠D.∵OE=OC,∴∠E=∠C,∴∠D=∠C.由三角形内角和定理,可知:∠COD=∠CPD,∴“回旋角”∠CPD的度数=CD的度数.(3)①当点P在半径OA上时,在图3中,过点F作CF⊥AB,交圆O于点F,连接PF,则PF=PC.同(2)的方法可得:点P,D,F在同一条直线上.∵直径AB的“回旋角”为120°,∴∠APD=∠BPC=30°,∴∠CPF=60°,∴△PFC是等边三角形,∴∠CFD=60°.连接OC,OD,过点O作OG⊥CD于点G,则∠COD=120°,∴CD=2DG,∠DOG=12∠COD=60°,∵AB=26,∴OC=13,∴32 CG∴CD=2×1332=133∵△PCD的周长为24+133,∴PD+PC+CD=24+133,∴PD +PC =DF =24.过点O 作OH ⊥DF 于点H ,则DH =FH =12DF =12. 在Rt △OHD 中,OH =222213125OD DH -=-=, 在Rt △OHP 中,∠OPH =30°, ∴OP =2OH =10,∴AP =OA ﹣OP =13﹣10=3; ②当点P 在半径OB 上时, 同①的方法,可得:BP =3, ∴AP =AB ﹣BP =26﹣3=23. 综上所述,AP 的长为:3或23.【点睛】此题是圆的综合题,考查圆的对称性质,直角三角形、等腰三角形与圆的结合,(3)是此题的难点,线段AP 的长度由点P 所在的位置决定,因此必须分情况讨论.4.(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解. 【解析】 【分析】(1)根据AD BD ⊥得到AB 是直径,连接OC 、OD ,发现等边三角形,再根据圆周角定理求得30EBD ∠=︒,再进一步求得E ∠的度数;(2)分别画出三种图形,图2中,根据圆周角定理和圆内接四边形的性质可以求得;图3中,根据三角形的外角的性质和圆周角定理可以求得;图4中,根据切线的性质发现直角三角形,根据直角三角形的两个锐角互余求得. 【详解】解:(1)连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒ ∴60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:连接OD 、OC 、AC ,如图:∵1OD OC CD === ∴OCD 为等边三角形 ∴60COD ∠=︒ ∴30DAC ∠=︒ ∴30EBD ∠=︒ ∵90ADB ∠=︒ ∴903060E ∠=︒-︒=︒②结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒∴903060BED ∠=︒-︒=︒③结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:如图:∵当点B 与点C 重合时,则直线BE 与O 只有一个公共点∴EB 恰为O 的切线∴90ABE ∠=︒∵90ADB ∠=︒,1CD =,2AD = ∴30A ∠=︒ ∴60E ∠=︒.故答案是:(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解. 【点睛】本题考查了圆周角定理、等边三角形的判定、圆内接四边形的性质.此题主要是能够根据圆周角定理的推论发现AB 是直径,进一步发现等边COD △,从而根据圆周角定理以及圆内接四边形的性质求解.5.(1)AP +PQ 的最小值为4;(2)存在,M 点坐标为(﹣12,﹣4)或(12,8). 【解析】 【分析】(1)由直线解析式易求AB 两点坐标,利用等腰直角△ABC 构造K 字形全等易得OE =CE =4,C 点坐标为(4,4)DB =∠CEB =90︒,可知B 、C 、D 、E 四点共圆,由等腰直角△ABC 可知∠CBD =45︒,同弧所对圆周角相等可知∠CED =45︒,所以∠OEF =45︒,CE 、OE 是关于EF 对称,作PH ⊥CE 于H ,作PG ⊥OE 于Q ,AK ⊥EC 于K .把AP +PQ 的最小值问题转化为垂线段最短解决问题.(2)由直线l 与直线AC 成45︒可知∠AMN =45︒,由直线AC 解析式可设M 点坐标为(x ,122x +),N 在y 轴上,可设N (0,y )构造K 字形全等即可求出M 点坐标.【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC , ∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒, ∴∠ACK =∠CBE 在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, △AKC ≌△CEB (AAS ) ∴AK =CE ,CK =BE , ∵四边形AOEK 是矩形, ∴AO =EK =BE , 由直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,可知A 点坐标为(0,2),B (6,0)∴E 点坐标为(4,0),C 点坐标为(4,4), ∵∠CDB =∠CEB =90︒, ∴B 、C 、D 、E 四点共圆, ∵CD CD =,∠CBA =45︒, ∴∠CED =45︒, ∴FE 平分∠CEO ,过P 点作PH ⊥CE 于H ,作PG ⊥OE 于G ,过A 点作AK ⊥EC 于K . ∴PH =PQ ,∵PA +PQ =PA +PH ≥AK =OE , ∴OE =4, ∴AP +PQ ≥4, ∴AP +PQ 的最小值为4.(2)∵A 点坐标为(0,2),C 点坐标为(4,4), 设直线AC 解析式为:y =kx+b 把(0,2),(4,4)代入得244bk b =⎧⎨=+⎩解得122k b ⎧=⎪⎨⎪=⎩∴直线AC解析式为:y=122x+,设M点坐标为(x,122x+),N坐标为(0,y).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K字形全等三角形求点坐标解决问题,属于中考压轴题.6.(1)45°+ ;(2)证明见解析;(3)2BF+CF.【解析】【分析】(1)过点A作AG⊥DF于G,由轴对称性质和正方形的性质可得AE=AD,∠BAP=∠EAF,根据等腰三角形“三线合一”的性质可得∠EAG=∠DAG,即可得∠FAG=12∠BAD=45°,∠DAG+∠BAP=45°,根据直角三角形两锐角互余的性质即可得答案;(2)由(1)可得∠FAG=12∠BAD=45°,由AG⊥PD可得∠APG=45°,根据轴对称的性质可得∠BPA=∠APG=45°,可得∠BFD=90°,即可证明BF⊥DF;(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,由∠BFD=∠BCD=90°可得B、F、C、D四点共圆,根据圆周角定理可得∠FBC=∠FDC,∠DFC=∠DBC=45°,根据平行线的性质可得∠FDC=∠DCH,根据角的和差关系可得∠ABF=∠BCH,由轴对称性质可得BF=EF,可得△BEF是等腰直角三角形,即可得∠BEF=45°,2BF,即可证明∠BEF=∠DFC,可得BH//FC,即可证明四边形EFCH是平行四边形,可得EH=FC,EF=CH,利用等量代换可得CH=BF,利用SAS可证明△ABF≌△BCH,可得AF=BH,即可得AF、BF、CF的数量关系.【详解】(1)过点A作AG⊥DF于G,∵点B关于直线AF的对称点为E,四边形ABCD是正方形,∴AE=AB,AB=AD=DC=BC,∠BAF=∠EAF,∴AE=AD,∵AG⊥FD,∴∠EAG=∠DAG,∴∠BAF+∠DAG=∠EAF+∠EAG,∵∠BAF+∠DAG+∠EAF+∠EAG=∠BAD=90°,∴∠BAF+∠DAG=∠GAF=45°,∴∠DAG=45°-α,∴∠ADF=90°-∠DAG=45°+α.(2)由(1)得∠GAF=45°,∵AG⊥FD,∴∠AFG=45°,∵点E、B关于直线AF对称,∴∠AFB=∠AFE=45°,∴∠BFG=90°,∴BF⊥DF.(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,∵∠BFD=∠BCD=90°,∴B、F、C、D四点共圆,∴∠FDC=∠FBC,∠DFC=∠DBC=45°,∵CH//FD,∴∠DCH=∠FDC,∴∠FBC=∠DCH,∵∠ABC=∠BCD=90°,∴∠ABC+∠FBC=∠BCD+∠DCH,即∠ABF=∠BCH,∵点E、B关于直线AF对称,∴BF=EF,∵∠BFE=90°,∴△BEF是等腰直角三角形,∴∠BEF=45°,2BF,∴∠BEF=∠DFC,∴FC//BH,∴四边形EFCH是平行四边形,∴EH=FC,CH=BF,在△ABF和△BCH中,AB BCABF BCHBF CH=⎧⎪∠=∠⎨⎪=⎩,∴2BF+CF.【点睛】本题考查正方形的性质、等腰三角形的性质、轴对称的性质、圆周角定理、四点共圆的判定及全等三角形的判定与性质,正确得出B 、F 、C 、D 四点共圆并熟练掌握圆周角定理及轴对称的性质是解题关键. 7.(1)2114y x =-;(2)点P 37(,)216-;(3)(222,222M --+ 【解析】 【分析】(1)根据题意得到AB=4,根据函数对称轴x=0,得到OA=OB=2,得到A 、B 坐标,代入函数解析式即可求解;(2)首先求得直线OD 解析式,然后设P (21,14t t -),得到PQ 关于t 的解析式,然后求出顶点式即可求解; (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,然后求得直线CM 的解析式,得到EM 的表达式,然后根据CMNCNEMNESSS=+即可求解.【详解】(1)∵AB =4OC ,且C (0,-1) ∴AB=4∴OA=OB=2,即A 点坐标()2,0-,B 点坐标()2,0 代入A 点坐标得2021a =- 解得14a =∴G 的解析式为2114y x =- 故答案为2114y x =-(2)当1x =-时,34y =-,即:点D 为(31,4--)∴直线OD 为:34y x = 设P (21,14t t -),则Q 为(22141,1334t t --),则: 22214141325()()33333212PQ t t t t t =--=-++=--+∴当32t =时,PQ 取得最大值2512,此时点P 位37(,)216- (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,则N ()214,414m m ⎛⎫++- ⎪⎝⎭∵C 点坐标为(0,1)-∴可设直线CM 为1y kx =-,带入M 点坐标得:14k m = ∴直线CM 为114y mx =- 过点N 作NE y ∥轴交CM 于点E ,则E 点为()14,414m m m ⎛⎫++- ⎪⎝⎭∴4EN m =-- ∵()()12CMNCNE MNEC N N M S SSx x x x EN ⎡⎤=+=-+-•⎣⎦ ∴()()104=22m m ---∴2440m m +-=解得:1222m =--,2222m =-+(舍去) ∴M ()222,222--+ 【点睛】本题考查了待定系数法求函数解析式,二次函数综合应用,是二次函数部分的压轴题,题目较难,应画出示意图,然后进行讨论分析. 8.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 9922m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G 在线段BC 上,只要证明是等腰直角三角形,即可得到直线GO 与抛物线的交点即为所求的点P .利用方程组即可解决问题. (3)如图2中,将绕点O 顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y 得到,由,推出,,M 、N 关于直线对称,所以,设,则,利用勾股定理求出a 以及MN 的长,再根据根与系数关系,列出方程即可解决问题.【详解】 (1),,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD 、BD,对称轴交x 轴于K.由题意,,,,,,,将绕点O逆时针旋转90°得到,则点G在线段BC上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,, ,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或, 点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则,设平移后的抛物线的解析式为,由消去y得到,,,∴M、N关于直线对称,,设,则,,(负根已经舍弃),,,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大.69.(1)y=−x2+3;(2)①2或563⩽t【解析】【分析】(1)根据已知条件求出AB和CD的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D(3,3),则平移后坐标为D´(3,3),F(t,-t2+3);则有DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2,再根据DF=7FB,即可求得t;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键【详解】(1)由题意得AB的中点坐标为(−3,0),CD的中点坐标为(0,3),分别代入y=ax2+b得:3a b0b3+=⎧⎨=⎩,解得a1b3=-⎧⎨=⎩,∴y=−x2+3.(2)①D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2DF=7FB,则(−3+t-t)2+(-t2+3-3)2=7(-t2+3)2解得:t2=2或5,则t=2或t=5;②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE且MN⩾C′N.∵F(t,3−t2),∴EF=3−(3−t2)=t2,∴EE′=2EF=2t2,由EE′⩽BE,得2t2⩽3,解得t6∵3∴C′点的横坐标为3∴3)2,又C′N=BE′=BE−EE′=3−2t2由MN⩾C′N,得32⩾3−2t2,解得t63或t⩽63舍去).∴t63t⩽6 2【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键..10.(1)211242y x x =--;(2)①P (2,−2)或(-6,10),②1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++【解析】 【分析】(1)利用一次函数与坐标轴交点的特征可求出点B ,C 的坐标,根据点B ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑: (i )当∠MPC=90°时,PC //x 轴,利用二次函数可求出点P 的坐标;(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,易证△BOC ∽△COD ,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式,通过解方程组可求出点P 的坐标;②在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线,分开求解三条中位线方程即可求解. 【详解】解:(1)因为直线交抛物线于B 、C 两点, ∴当x =0时,y =12x −2=−2, ∴点C 的坐标为(0,−2); 当y =0时,12x −2=0, 解得:x =4,∴点B 的坐标为(4,0).将B 、C 的坐标分别代入抛物线,得:2144022a c c ⎧⨯-⨯+=⎪⎨⎪=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =--. (2)①∵PM ⊥x 轴,M 在直线BC 上, ∴∠PMC 为固定角且不等于90, ∴可分两种情况考虑,如图1所示:(i )当∠MPC=90时,PC //x 轴, ∴点P 的纵坐标为﹣2, 将y p =-2,代入抛物线方程可得:2112242x x --=-解得: x 1=2,x 2=0(为C 点坐标,故舍去), ∴点P 的坐标为(2,−2);(ii )当∠PCM=90°时,设PC 与x 轴交于点D , ∵∠OBC+∠OCB=90°,∠OCB+∠OCD=90°, ∴∠OBC=∠OCD , 又∵∠BOC=∠COD=90°, ∴BOC ∽COD (AAA ),∴OD OC OC OB =,即OD=2OC OB, 由(1)知,OC=2,OB=4, ∴OD=1,又∵D 点在X 的负半轴 ∴点D 的坐标为(-1,0),设直线PC 的解析式为:y =kx +b (k ≠0,k 、b 是常数), 将C(0,−2),D(-1,0)代入直线PC 的解析式,得:20b k b =-⎧⎨-+=⎩,解得:22k b =-⎧⎨=-⎩, ∴直线PC 的解析式为y =-2x −2, 联立直线PC 和抛物线方程,得: 22122142x x x -=---, 解得:x 1=0,y 1=−2,x 2=-6,y 2=10, 点P 的坐标为(-6,10),综上所述:当PCM 是直角三角形时,点P 的坐标为(2,−2)或(-6,10);②如图2所示,在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线;(a )当以CM 为底时,过A 点做CM 的平行线AN ,直线AN 平行于CM 且过点A ,则斜率为12,AN 的方程为:1(+2)2y x =,则中位线方程式为:1122y x =-; (b )当以AM 为底时,因为M 为P 点做x 轴垂线与CB 的交点,则M 的横坐标为t ,且在直线BC 上,则M 的坐标为:1,22M t t -(),其中4t >,则AM 的方程为:44+242t t y x t t --=++,过C 点做AM 的平行线CQ ,则CQ 的方程为:4224t y x t -=-+ ,则中位线方程式为:4412424t t y x t t --=+-++; (c )当以AC 为底时,AC 的方程式为:2y x =--,由b 可知M 的坐标为:1,22M t t -(),过M 做AC 的平行线MR ,则MR 的方程为:322y x t =-+-,则中位线方程式为:324y x t =-+-; 综上所述:当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,直线解析式为:1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++. 【点睛】本题考查了一次函数坐标轴的交点坐标、待定系数法求二次函数解析式、相似三角形的判定与性质以及平行线的性质等,解题的关键是掌握三角形的顶点到中位线的距离相等. 11.(1)214y x x =-;(2)①122y x =-+,②1,见解析,定值为1 【解析】 【分析】(1)利用待定系数法把点(4,0)、(2,3)-代入解析式,再结合抛物线对称轴方程得到三元一次方程组,解方程组即可.(2)①先求出平移后的抛物线解析式,设出直线MA 的解析式1y kx =-,再联立抛物线解析式2114y kx y x =-⎧⎪⎨=⎪⎩,得到21104x kx -+=,令210k ∆=-=,求出k 的值,得出APM∆为等腰直角三角形,运用APM ∆与BQO ∆相似得出90BQO APM ∠=∠=,故AB :y mx n =+,则2144m n m n +=⎧⎨-+=⎩即可求出AB 函数关系式.②当M 在y 轴上时,m=0,再根据图像对称性可得A 、B 两点关于y 轴对称,得出a ,b 的关系,即可求出答案;当M 不在与轴上时,设MA :111y k x k m =--,联立抛物线解析式112114y k x k m y x =--⎧⎪⎨=⎪⎩,得出2114440x k x k m -++=,令212=16(1)0k k m ∆--=,同理设出MB ,令22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,得出12k k m +=,即可求出答案. 【详解】解:(1)设2y=ax +bx+c a (≠0),把点(4,0)、(2,3)-代入 ∵对称轴为x=2∴164042322a b c a b c b a ⎧⎪++=⎪-+=⎨⎪⎪-=⎩ 解得1410a b c ⎧=⎪⎪=-⎨⎪=⎪⎩∴抛物线解析式214y x x =-. (2)①(0,1)M -,平移后抛物线214y x = 设MA :1y kx =-则联立2114y kx y x =-⎧⎪⎨=⎪⎩,21104x kx -+= 210k ∆=-=1k ∴=±又由图,A 在y 轴右侧 故1k =,(2,1)A2AP PM ∴==,APM ∆为等腰直角三角形又APM ∆与BQO ∆相似∴△BQO 为等腰直角三角形,设B (﹣x ,x ),带入抛物线解析式得:214x x = 解得x=4或x=0(舍去) ∴B (﹣4,4)设AB :y mx n =+,把(2,1)A ,B (﹣4,4)带入得:则2144m n m n +=⎧⎨-+=⎩,122m n ⎧=-⎪⎨⎪=⎩∴AB 解析式为:122y x =-+. ②(i )∵214y x =关于y 轴对称,M 在y 轴上,且MA ,MB 与抛物线只有一个交点 ∴A 、B 两点关于y 轴对称, ∴a=﹣b∴m a m b --=0+b0b-=1, 故答案是:1;(ii )设MA :111y k x k m =--,则联立112114y k x k m y x =--⎧⎪⎨=⎪⎩, 2114440x k x k m -++=,此方程仅一个根, 故11422k a k ==, 且212=16(1)0k k m ∆--=,同理设MB :221y k x k m =--, 亦有22b k =,22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,12k k m +=,()111122122m k m k m am b m m k k m ---∴===----, 即m am b--为一定值1,∴当点M不在y轴上时,m am b--为一个定值1.【点睛】本题考查的是二次函数综合题型,二次函数待定系数法求函数解析式,二次函数与一元二次方程的综合应用,二次函数与相似三角形的综合应用,解题关键在于理解题意,正确分析题目,运用数形结合思想进行解题.12.(1)4﹣23;(2)32;(3)4﹣5≤S≤4+5【解析】【分析】(1)在Rt△DCG中,利用勾股定理求出DG即可解决问题;(2)首先证明AH=CH,设AH=CH=m,则DH=AD﹣HD=4﹣m,在Rt△DHC中,根据CH2=CD2+DH2,构建方程求出m即可解决问题;(3)如图,当点G在对角线AC上时,△OGE的面积最小,当点G在AC的延长线上时,△OE′G′的面积最大,分别求出面积的最小值,最大值即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴BC=AD=CG=4,∠D=90°,∵AB=CD=2,∴DG=22CDCG-=2242-=23,∴AG=AB﹣BG=4﹣23,故答案为:4﹣23.(2)如图2中,由四边形CGEF是矩形,得到∠CGE=90°,∵点G在线段AE上,∴∠AGC=90°,∵CA=CA,CB=CG,∴Rt△ACG≌Rt△ACB(HL).∴∠ACB=∠ACG,∵AB∥CD∴∠ACG=∠DAC,∴∠ACH=∠HAC,∴AH=CH,设AH=CH=m,则DH=AD﹣AH=5﹣m,在Rt△DHC中,∵CH2=DC2+DH2,∴m2=22+(4﹣m)2,∴m=52,∴AH=52,GH=22AH AG-=22522⎛⎫-⎪⎝⎭=32.(3)在Rt△ABC中,2225AC AB BC=+=,152OC AC,由题可知,G点在以C点为圆心,BC为半径的圆上运动,且GE与该圆相切,因为GE=AB 不变,所以O到直线GE的距离即为△OGE的高,当点G在对角线AC上时,OG最短,即△OGE的面积最小,最小值=12×OG×EG=12×2×(4﹣5)=4﹣5.当点G在AC的延长线上时,OG最长,即△OE′G′的面积最大.最大值=12×E′G′×OG′=12×2×(4+5)=4+5.综上所述,455【点睛】本题考查求一点到圆上点距离的最值、矩形的性质、全等三角形的判定和性质、旋转变换、勾股定理.(1)比较简单,掌握勾股定理和旋转的性质是解决此问的关键;(2)能表示Rt△DHC三边,借助方程思想是解决此问的关键;(2)理解线段GE的运动轨迹,得出面积最小(大)时G点的位置是解决此问的关键.。

【人教通用版】2019年 九年级数学中考二轮 旋转 压轴题 专题复习 20题(含

【人教通用版】2019年 九年级数学中考二轮 旋转 压轴题 专题复习 20题(含

2019年九年级数学中考旋转压轴题专题复习一、选择题1.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变.其中正确的个数为()A.4B.3C.2D.12.如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360°,在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现( )A.3次B.4次C.5次D.6次3.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B. +1C.D.﹣14.如图,在△ABC中,∠ACB=90°,BC=AC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,点D在运动过程中ME的最小值为()A.2B.2C.4D.45.如图,在直角坐标系中放置一个矩形OABC,其中AB=2,AO=1,若将矩形OABC 沿x 轴的负方向无滑动地在x 轴上翻滚,则当点O 离开原点后第一次落在x 轴上时,点O 运动的路径与x 轴围成的面积为( )A. B. C. D.二、填空题6.如图,P 是等腰直角△ABC 外一点,把BP 绕直角顶点BB 顺时针旋转900到BP /,已知∠AP /B=1350,P /A:P /C=1:3,则PB:P /A 的值为 .7.如图,O 是等边△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;&②点O 与O ′的距离为4;③∠AOB=150°;④四边形AOBO ′的面积为6+3;⑤S △AOC +S △AOB =6+43.其中正确的结论是_ _.8.已知,正六边形ABCDEF 在直角坐标系内的位置如图所示,A(-2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B 的坐标是9.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(1.5,0),B(0,2),则点B2016的坐标为.10.如图,边长为4的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是.11.如图,四边形ABCD中,AB=3,BC=2,若AC=AD且∠ACD=60°,则对角线BD的长最大值为.12.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=13.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.14.如图在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边中点.将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为.三、解答题15.在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.16.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2 CM+BN.17.在△ABC中,AB=AC,∠BAC=ɑ(0°<ɑ<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求ɑ的值.18.探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得EF=BE+DF,请写出推理过程;②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE长.19.如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN的周长的最大值.20.在△ABC中,AB=AC=5,cos∠ABC=0.6,将△ABC绕点C顺时针旋转,得到△A1B1C.(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.参考答案1.B2.B3.解:AC的中点O,连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC, =,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选:D.4.解:连接EB,过点M作MG⊥EB于点G,过点A作AK⊥AB交BD的延长线于点K,则△AKB是等腰直角三角形.在△ADK与△ABE中,∴△ADK≌△ABE,∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵BC=4,∴AB=4,BM=2,∴MG=2,∠G=90°∴BM≥MG,∴当ME=MG时,ME的值最小,∴ME=BE=2故选:A5.解:点O运动的路径如图所示,见图:则点O运动的路径与x轴围成的面积=++++=+×1×2+×1×2+=π+1+π+1+=π+2.故选A.6.答案为:1:27.答案为:①②③⑤.8.答案为:(4031,)_9.答案为:(6048,2).10.解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时∵∠CAD=×60°=30°,AG=AC=×42,∴EG=AG=×2=1,∴DF=1.故答案为:1.11.解:如图,在AB的右侧作等边三角形△ABK,连接DK.∵AD=AC,AK=AB,∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB,∴DK=BC=2,∵DK+KB≥BD,DK=2,KB=AB=3,∴当D、K、B共线时,BD的值最大,最大值为DK+KB=5.12.解:连接BE,如右图所示,∵△DCB绕点C顺时针旋转60°得到△ACE,AB=3,BC=4,∠ABC=30°,∴∠BCE=60°,CB=CE,AE=BD,∴△BCE是等边三角形,∴∠CBE=60°,BE=BC=4,∴∠ABE=∠ABC+∠CBE=30°+60°=90°,∴AE=,又∵AE=BD,∴BD=5,故答案为:5.13.答案为:2.4.14.解:∵△BCP恰为轴对称图形,∴△BCP是等腰三角形,如图1,连接AP,∵O为斜边中点,OP=OA,∴BO=OP=OA,∴∠APB=90°,当BC=BP时,∴∠BCP=∠BPC,∴∠BCP+∠ACP=∠BPC+∠APC=90°,∴∠ACP=∠APC,∴AC=AP,∴AB垂直平分PC,∴∠ABP=∠ABC=25°,∴θ=2×25°=50°,当BC=PC时,如图2,连接CO并延长交PB于H,∵BC=CP,BO=PO,∴CH垂直平分PB,∴∠CHB=90°,∵OB=OC,∴∠BCH=∠ABC=25°,∴∠CBH=65°,∴∠OBH=40°,∴θ=2×40°=80°,当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,∵∠ACB=90°,O为斜边中点,∴OB=OC,∴PG垂直平分BC,∴∠BGO=90°,∵∠ABC=25°,∴θ=∠BOG=65°,综上所述:当△BCP恰为轴对称图形时,θ的值为50°或65°或80°,故答案为:50°或65°或80°.15.证明:(1)∵点D关于直线AE的对称点为F,∴∠EAF=∠DAE,AD=AF,又∵∠BAC=2∠DAE,∴∠BAC=∠DAF,∵AB=AC,∴=,∴△ADF∽△ABC;(2)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∵α=45°,∴∠BAD=90°﹣∠CAD,∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,∴∠BAD=∠CAF,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,所以,DE2=BD2+CE2;(3)DE2=BD2+CE2还能成立.理由如下:作点D关于AE的对称点F,连接EF、CF,由轴对称的性质得,EF=DE,AF=AD,∵α=45°,∴∠BAD=90°﹣∠CAD,∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,∴∠BAD=∠CAF,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,所以,DE2=BD2+CE2.16.(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=BN+2CM.17. (1)30°-0.5α.(2)△ABE为等边三角形.证明:连接AD、CD、ED.∵线段BC绕点B逆时针旋转60°得到线段BD,∴BC=BD,∠DBC=60°. ∵∠ABE=60°,∴∠ABD=60°-∠DBE=∠EBC=30°-0.5α.又∵BD=CD,∠DBC=60°,∴△BCD为等边三角形,∴BD=CD.又∵AB=AC,AD=AD,∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD=0.5∠BAC=0.5α.∵∠BCE=150°,∴∠BEC=180°-(30°-0.5α)-150°=0.5α.∴∠BAD=∠BEC.在△ABD与△EBC中,△ABD≌△EBC(AAS).∴AB=BE.又∵∠ABE=60°,∴△ABE为等边三角形.(3)∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°-60°=90°.∵∠DEC=45°,∴△DCE为等腰直角三角形.∴CD=CE=BC.∵∠BCE=150°,∴∠EBC=15°.又∵∠EBC=30°-0.5α=15°,∴α=30°18.解:19.解:(1)①证明:∵AB=AC ,B 1C=BC ,∴∠1=∠B ,∠B=∠ACB ,∵∠2=∠ACB(旋转角相等),∴∠1=∠2,∴BB 1∥CA 1;②过A 作AF ⊥BC 于F ,过C 作CE ⊥AB 于E ,如图①:∵AB=AC ,AF ⊥BC ,∴BF=CF ,∵cos ∠ABC=35,AB=5,∴BF=3,∴BC=6,∴B 1C=BC=6, ∵CE ⊥AB ,∴BE=B 1E=35×6=185,∴BB 1=365,CE=45×6=245,∴AB 1=365-5=115, ∴△AB 1C 的面积为:12×115×245=13225(2)如图②,过C 作CF ⊥AB 于F ,以C 为圆心CF 为半径画圆交BC 于F 1,EF 1有最小值,此时在Rt △BFC 中,CF =245,∴CF 1=245,∴EF 1的最小值为245-3=95;如图,以C 为圆心BC 为半径画圆交BC 的延长线于F 1,EF 19 5=365有最大值;此时EF1=EC+CF1=3+6=9,∴线段EF1的最大值与最小值的差为9-。

九年级数学上册旋转几何综合综合测试卷(word含答案)

九年级数学上册旋转几何综合综合测试卷(word含答案)

九年级数学上册旋转几何综合综合测试卷(word含答案)一、初三数学旋转易错题压轴题(难)1.(1)观察猜想如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;(2)拓展探究将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.2.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.3.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.4.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32. 【详解】(1)结论:AD=BE ,AD ⊥BE . 理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD , ∠ACB=∠ACD=90°, 在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠EBC=∠CAD 延长BE 交AD 于点F , ∵BC ⊥AD , ∴∠EBC+∠CEB=90°, ∵∠CEB=AEF , ∴∠EAD+∠AEF=90°, ∴∠AFE=90°,即AD ⊥BE . ∴AD=BE ,AD ⊥BE . 故答案为AD=BE ,AD ⊥BE . (2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°, ∴ACD=∠BCE , 在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===, ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH , ∴∠BOH+∠OBH=90°, ∴∠OHB=90°, ∴AD ⊥BE , ∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP , ∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值2, 图3-2中,当P 、E 、B 共线时,BE 最大,最大值2, ∴22, 即22【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.5.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由.()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】 【分析】()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论. 【详解】()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中, ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AAS BC DE a ∴==,BCD 1S BC DE 2=⋅,2BCD 1S a 2∴=;()2BCD 的面积为21a 2,理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==,线段AB 绕点B 顺时针旋转90得到线段BE ,AB BD ∴=,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中, ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AAS ,BC DE a ∴==,BCD1S BC DE2=⋅,2BCD1S a2∴=;()3如图3,过点A作AF BC⊥与F,过点D作DE BC⊥的延长线于点E,AFB E90∠∠∴==,11BF BC a22==,FAB ABF90∠∠∴+=,ABD90∠=,ABF DBE90∠∠∴+=,FAB EBD∠∠∴=,线段BD是由线段AB旋转得到的,AB BD∴=,在AFB和BED中,AFB EFAB EBDAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB∴≌()BED AAS,1BF DE a2∴==,2BCD1111S BC DE a a a2224=⋅=⋅⋅=,BCD∴的面积为21a4.【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.6.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:(1)求证:EP2+GQ2=PQ2;(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【解析】【分析】(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】(1)过点E作EH∥FG,连接AH、FH,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.7.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=42,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【答案】(1)2142y x=-+;(2)2<m<223)m=6或m17﹣3.【解析】【分析】(1)由题意抛物线的顶点C(0,4),A(20),设抛物线的解析式为24y ax=+,把A(220)代入可得a=12-,由此即可解决问题;(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为()21242y x m=--,由()221421242y xy x m⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y得到222280x mx m-+-=,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有()222(2)428020280m mmm⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (22,0),设抛物线的解析式为24y ax =+,把A (22,0)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m <22,∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m =17﹣3或﹣17﹣3(舍弃),∴m =17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m =17﹣3时,四边形PMP ′N 是正方形.8.两块等腰直角三角板△ABC 和△DEC 如图摆放,其中∠ACB=∠DCE=90°,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点.(1)如图1,若点D 、E 分别在AC 、BC 的延长线上,通过观察和测量,猜想FH 和FG 的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC 绕着点C 顺时针旋转至ACE 在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由; (3)如图3,将图1中的△DEC 绕点C 顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG ,FH ⊥FG . 【解析】试题分析:(1)证AD=BE ,根据三角形的中位线推出FH=12AD ,FH∥AD,FG=12BE ,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE ,根据三角形的中位线定理即可推出答案; (3)连接BE 、AD ,根据全等推出AD=BE ,根据三角形的中位线定理即可推出答案. 试题解析:(1)解:∵CE=CD ,AC=BC ,∠ECA=∠DCB=90°, ∴BE=AD ,∵F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∴FH=FG , ∵AD ⊥BE , ∴FH ⊥FG ,故答案为相等,垂直. (2)答:成立,证明:∵CE=CD ,∠ECD=∠ACD=90°,AC=BC , ∴△ACD ≌△BCE ∴AD=BE ,由(1)知:FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∴FH=FG ,FH ⊥FG ,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证 ∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE , 在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== ,∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.9.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______; ()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,①求证:ACD ≌CAE ; ②直接写出线段DH 的长度为______.()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】(1)23;(2)①见解析;34②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】 【分析】()1如图①中,在RtADE 中,利用勾股定理即可解决问题;()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题; ()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE ==PBE1SPE BM 22=⋅⋅=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题; 【详解】()1四边形ABCD 是矩形,AB CD 2∴==,BC AD 1==,D 90∠=,矩形AEFG 是由矩形ABCD 旋转得到,AE AB 2∴==,在Rt ADE 中,DE ==CE 2∴=,故答案为2.()2①当点E 落在线段CF 上,AEC ADC 90∠∠∴==,在Rt ADC 和Rt AEC 中,{AC CACD AE ==,Rt ACD ∴≌()Rt CAE HL ;ACD ②≌CAE ,ACD CAE ∠∠∴=,AH HC ∴=,设AH HC m ==,在Rt ADH 中,222AD DH AH +=,2221(2m)m ∴+-=,5m 4∴=, 53DH 244∴=-=, 故答案为34; ()3存在.理由如下:如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M ,由题意:PF PC1==,AG EF1==,G F90∠∠==,PA PE2∴==PBE 12S PE BM BM22∴=⋅⋅=,∴当BM的值最大时,PBE的面积最大,BM PB≤,PB AB PA≤+,PB22∴≤,BM22∴≤BM∴的最大值为22+PBE∴21.【点睛】本题是四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.10.(问题提出)如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∵AB=AC,BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF,∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC=180°-60°-60°=60°∴∠DBE=∠EAF;∵ED=EC ,∴∠ECD=∠EDC ,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC , 又∵∠EDC=∠EBC+∠BED ,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC , ∵∠AEF=∠CEF+∠BEC=60°+∠BEC ,∴∠BDE=∠AEF ,在△EDB 和△FEA 中,DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△EDB ≌△FEA (AAS ),∴BD=AE ,EB=AF ,∵BE=AB+AE ,∴AF=AB+BD ,即AB ,DB ,AF 之间的数量关系是: AF=AB+BD .考点:旋转变化,等边三角形,三角形全等,。

最新九年级数学中考复习:旋转综合压轴题(角度问题)含答案

最新九年级数学中考复习:旋转综合压轴题(角度问题)含答案

2023年九年级数学中考复习:旋转综合压轴题(角度问题)1.如图① ,在①ABC 中,AB =AC =4,①BAC =90°,AD ①BC ,垂足为D .(1)S △ABD = .(直接写出结果)(2)如图①,将①ABD 绕点D 按顺时针方向旋转得到①A′B′D ,设旋转角为α (α<90°),在旋转过程中: 探究一:四边形APDQ 的面积是否随旋转而变化?说明理由; 探究二:当α=________时,四边形APDQ 是正方形.2.如图,在等腰Rt ABC 和等腰Rt CDE 中,90ACB DCE ∠=∠=︒.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的关系是_________;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由; (3)拓展延伸:把CDE △绕点C 在平面内转动一周,若10AC BC ==,5CE CD ==,AE 、BD 交于点P 时,连接CP ,直接写出BCP 最大面积_________.3.如图1,在Rt △ABC 中,①A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,请判断线段PM 与PN 的数量关系和位置关系,并说明理由;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =3,AB =7,请直接写出△PMN 面积的最大值.4.如图1,①ABC 为等腰直角三角形,①BAC =90°,AB =AC ,点D 在AB 边上,点E 在AC 边上,AD =AE ,连接DE ,取BC 边的中点O ,连接DO 并延长到点F ,使OF =OD ,连接CF . (1)请判断①CEF 的形状,并说明理由;(2)将(1)中①ADE 绕点A 旋转,连接CE ,(1)中的结论是否仍然成立,若成立,请仅就图2所示情况给出证明,若不成立,请说明理由;(3)若AB =6,AD =4,将①ADE 由图1位置绕点A 旋转,当点B ,E ,D 三点共线时,请直接写出①CEF 的面积.5.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是AB 外一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE ,BC 与DE 交于点F ,且AB BD ⊥.(1)如图1,若CB =6CE =,求DE 的长;(2)如图2,若点H 、G 分别为线段CF 、AE 的中点,连接HG ,求证:12HG BF =;(3)如图3,在(2)的条件下,若CE =4CF =,将BDF 绕点F 顺时针旋转角3(060)αα︒<≤︒,得到B D F '',连接B G ',取B G '中点Q ,连接BQ ,当线段BQ 最小时,请直接写出BQB '的面积.6.如图1,矩形ABCD 中,15,20AB BC ==,将矩形ABCD 绕着点A 顺时针旋转,得到矩形BEFG .(1)当点E 落在BD 上时,则线段DE 的长度等于________; (2)如图2,当点E 落在AC 上时,求BCE 的面积;(3)如图3,连接AE CE AG CG 、、、,判断线段AE 与CG 的位置关系且说明理由,并求22CE AG +的值;(4)在旋转过程中,请直接写出BCE ABG S S +△△的最大值.7.在平面直角坐标系中,O 为原点,点(4,0)A -,点(0,3),B ABO 绕点B 顺时针旋转,得A BO ''△,点A O 、旋转后的对应点为A O ''、,记旋转角为α.(1)如图①,90α=︒,边OA 上的一点M 旋转后的对应点为N ,当1OM =时,点N 的坐标为_____; (2)90α=︒,边OA 上的一点M 旋转后的对应点为N ,当O M BN '+取得最小值时,在图①中画出点M 的位置,并求出点N 的坐标.(3)如图①,P 为AB 上一点,且:2:1PA PB =,连接PO PA ''、,在ABO 绕点B 顺时针旋转一周的过程中,PO A ''的面积是否存在最大值和最小值,若存在,请求出;若不存在,请说明理由.8.如图1,①ABC 和①DEC 均为等腰三角形,且①ACB =①DCE =90°,连接BE ,AD ,两条线段所在的直线交于点P .(1)线段BE 与AD 有何数量关系和位置关系,请说明理由. (2)若已知BC =12,DC =5,①DEC 绕点C 顺时针旋转, ①如图2,当点D 恰好落在BC 的延长线上时,求AP 的长;①在旋转一周的过程中,设①P AB 的面积为S ,求S 的最值.9.如图,在菱形ABCD 中,2AB =,60BAD ∠=,过点D 作DE AB ⊥于点E ,DF BC ⊥于点F .()1如图1,连接AC 分别交DE 、DF 于点M 、N ,求证:13MN AC =; ()2如图2,将EDF 以点D 为旋转中心旋转,其两边'DE 、'DF 分别与直线AB 、BC 相交于点G 、P ,连接GP ,当DGP 的面积等于10.如图1,一副直角三角板满足AB=BC ,AC=DE ,①ABC=①DEF=90°,①EDF=30°操作:将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q . 探究一:在旋转过程中, (1)如图2,当1CEEA=时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当CEm EA=时,EP 与EQ 满足的数量关系式为 ,其中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若2CEEA=且AC=30cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化,求出相应S 的值或取值范围.11.如图1,在①ABC中,①BAC=90°,AB=AC,点D在边AC上,CD①DE,且CD=DE,连接BE,取BE的中点F,连接DF.(1)请直接写出①ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中①ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;①如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.12.已知点E是正方形ABCD的边AB上一点,AB=BE=2.以BE为边向右侧作正方形BEFG,将正方形BEFG绕点B顺时针旋转α度(0≤α≤90°),连结AE,CG(如图).(1)求证:①ABE①①CBG.(2)当点E在BD上时,求CG的长.(3)当90∠时,正方形BEFG停止旋转,求在旋转过程中线段AE扫过的面积.(参考数据:AEB=︒sin28︒≈,sin62︒≈tan28︒≈tan62︒≈)13.如图,矩形ABCD 中,5,6,==AB BC BCG 为等边三角形.点E ,F 分别为,AD BC 边上的动点,且EF AB ∥,P 为EF 上一动点,连接BP ,将线段BP 绕点B 顺时针旋转60︒至BM ,连接,,,PA PC PM GM .(1)求证:=GM PC ;(2)当,,PB PC PE 三条线段的和最小时,求PF 的长;(3)若点E 以每秒2个单位的速度由A 点向D 点运动,点P 以每秒1个单位的速度由E 点向F 点运动.E ,P 两点同时出发,点E 到达点D 时停止,点P 到达点F 时停止,设点P 的运动时间为t 秒. ①求t 为何值时,AEP △与CFP 相似; ①求BMP 的面积S 的最小值.14.如图1,在Rt ABC 中,90,5∠=︒==C AC BC ,点D 是边BC 上的一点,且BD =,过点D 做BC 边的垂线,交AB 边于点E ,将BDE 绕点B 顺时针方向旋转,记旋转角为()0360αα︒≤<︒.(1)【问题发现】当0α=︒时,AECD的值为________,直线,AE CD 相交形成的较小角的度数为________; (2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明; (3)【问题解决】当BDE 旋转至A ,D ,E 三点在同一条直线上时,请直接写出ACD △的面积.15.在中Rt ABC △中.90ABC ∠=︒,AB BC =,点E 在射线CB 上运动.连接AE ,将线段AE 绕点E 顺时针旋转90°得到EF ,连接CF .(1)如图1,点E在点B的左侧运动;①当2BE=,BC=EAB∠=_________°;①猜想线段CA,CF与CE之间的数量关系为_________.(2)如图2,点E在线段CB上运动时,第(1)间中线段CA,CF与CE之间的数量关系是否仍然成立如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.=,以A,E,C,F为顶点的四边形面积为y,请直接写出(3)点E在射线CB上运动,BC=,设BE xy与x之间的函数关系式(不用写出x的取值范围).16.如图,在①ABC中,AB=,①A=45°,AC=C作直线平行AB,将①ABC绕点A顺时针旋转得到①AB C''(点B,C的对应点分别为B',C'),射线AB',AC'分别交直线l于点P、Q.(1)如图1,求BC的长;(2)如图2,当点C为PQ中点时,求tan①APQ;(3)如图3,当点P,Q分别在线段AB',AC'上时,试探究四边形PQC B''的面积是否存在最大值.若存在,求出其最大值;若不存在,请说明理由.17.已知Rt△ABC中,AC=BC,①C=90°,D为AB边的中点,①EDF=90°,①EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)如图1,当①EDF 绕D 点旋转到DE ①AC 于E 时,易证S △DEF +S △CEF 与S △ABC 的数量关系为__________;(2)如图2,当①EDF 绕D 点旋转到DE 和AC 不垂直时,上述结论是否成立?若成立,请给予证明; (3)如图3,这种情况下,请猜想S △DEF 、S △CEF 、S △ABC 的数量关系,不需证明.18.面直角坐标系中,O 为原点,点(12,0)A ,点(0,5)B ,线段AB 的中点为点C .将ABO 绕着点B 逆时针旋转,点O 对应点为1O ,点A 的对应点为1A .(1)如图①,当点1O 恰好落在AB 上时, ①此时1CO 的长为__________;①点P 是线段OA 上的动点,旋转后的对应点为1P ,连接11,BP PO ,试求11BP PO +最小时点P 的坐标; (2)如图①,连接11,CA CO ,则在旋转过程中,11CAO △的面积是否存在最大值?若存在,直接写出最大值,若不存在,说明理由.19.如图,在Rt ABC 中,90C ∠=︒,5AB =,3sin 5A =.点P 从点A 出发,以每秒4个单位长度的速度向终点B 匀速运动,过点P 作PD AB ⊥交折线AC ,CB 于点D ,连结BD ,将DBP 绕点D 逆时针旋转90︒得到DEF .设点P 的运动时间为t (秒).(1)用含t 的代数式表示线段PD 的长. (2)当点E 落在AB 边上时,求AD 的长. (3)当点F 在ABC 内部时,求t 的取值范围.(4)当线段DP 将ABC 的面积分成1:2 的两部分时,直接写出t 的值.20.如图1,在Rt ABC △中,90B ∠=︒,AB BC =,AO 是BC 边上的中线,点D 是AO 上一点,DE EO ⊥,E 是垂足,DEO 可绕着点O 旋转,点F 是点E 关于点O 的对称点,连接AD 和CF .(1)问题发现:如图2,当1ADDO=时,则下列结论正确的是_______.(填序号)①BE CF =;①点F 是OC 的中点:①AO 是BAC ∠的角平分线;①AD .(2)数学思考:将图2中DEO 绕点O 旋转,如图3,则AD 和CF 具有怎样的数量关系?请给出证明过程;(3)拓展应用:在图1中,若ADx DO=,将DEO 绕着点O 旋转. ①则AD =_______CF ;①若4AB =,1x =,在DEO 旋转过程中,如图4,当点D 落在AB 上时,连结BE ,EC ,求四边形ABEC 的面积.答案21.(1)4(2)四边形APDQ 的面积不会随旋转而变化,理由见详解;当45α=︒时,四边形APDQ 是正方形.22.(1)AE BD =,AE BD ⊥; (2)结论仍成立23.(1)PM =PN ,PM ①PN . (2)△PMN 是等腰直角三角形. (3)S △PMN 最大=25224.(1) ①CEF 是等腰直角三角形;(2)成立,(3)18-18+25.(1)(3)8 26.(1)10;(2)42;(3) AE ①CG 221250CE AG =+;(4)30027.(1)(-3,4);(2)N (-3,92);(3)最大值为283,最小值为8328.(1)BE =AD ,BE 与AD 互相垂直,(2)①AP =8413;①最小47,最大72 29.(2)顺时针或逆时针旋转60.30.探究一:(1)EP=EQ ;证明见解析;(2)1:2,(3)EP :EQ=1:m ,①0<(1)当50cm 2;当75cm 2.(2)50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.31.(1)①ADF =45°,AD (2)①成立,;①1≤S △ADF ≤4.32.(3)3145S π=33.(3)①73;①34.,45︒;(2)无变化(3)121235.(1)①30;①AC +CF CE ;(2)CA -CF;(3)当点E 在点B 左侧运动时,y =21322x +;当点E 在点B 右侧运动时,y 32+.36.(3)存在;21-37.(1)S △DEF +S △CEF =12S △ABC(2)上述结论S △DEF +S △CEF =12S △ABC 成立(3)S △DEF -S △CEF =12S △ABC38.(1)①1.5 ①20,07⎛⎫ ⎪⎝⎭ (2)存在最大值,最大值为6939.(1)3t (2)258 (3)355374t ≤≤40.(1)①①①(2)AD =,①465。

2023年九年级数学中考复习:旋转综合压轴题(角度问题)附答案

2023年九年级数学中考复习:旋转综合压轴题(角度问题)附答案

2023年九年级数学中考复习:旋转综合压轴题(角度问题)附答案1.在正方形ABCD 中,AB =4,O 为对角线AC 、BD 的交点.(1)如图1,延长OC ,使CE=OC ,作正方形OEFG ,使点G 落在OD 的延长线上,连接DE 、AG .求证:DE=AG ;(2)如图2,将问题(1)中的正方形OEFG 绕点O 逆时针旋转α°(0<α<180),得到正方形OE F G ''',连接AE E G '''、.①当α=30时,求点A 到E G ''的距离;①在旋转过程中,直接写出AE G ∆''面积的最小值为 ,并写出此时的旋转角α= .2.已知在矩形ABCD 中,①ADC 的平分线DE 与BC 交于点E ,点P 是线段DE 上一定点(其中EP <PD )(1)如图1,若点F 在CD 边上(不与C ,D 重合),将①DPF 绕点P 逆时针旋转90°后,角的两边PD ,PF 分别交射线DA 于点H ,G .①直接写出PG 与PF 之间的数量关系;①猜想DF ,DG ,DP 的数量关系,并证明你的结论.(2)如图2,若点F 在CD 的延长线上(不与D 重合),将PF 绕点P 逆时针旋转90°,交射线DA 于点G ,判断(1)①中DF ,DG ,DP 之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请直接写出它们所满足的数量关系式.3.在平面直角坐标系中,直线l 与x 轴、y 轴分别交于A (a ,0)、B (0,b )两点,且a +2b ﹣5)2=0(1)求A 、B 两点坐标;(2)如图1,把线段BA 绕B 点顺时针旋转,点A 的对应点为C 点,使BC ①y 轴,E 为线段AC 上一点,EN ①AB 于N ,EM ①BC 于M ,求EM +EN 的值.(3)如图2,点D 为y 轴上点B 上方一点,DE ①AD 交直线CB 于点E ,①DEC 的平分线EF 与①DAO 的邻补角的平分线AF 交点F ,请问:D 点在运动的过程中①AFE 的大小是否变化,若不变,求出其值;若变化,请说明理由.4.(1)发现:如图1,点B 是线段AD 上的一点,分别以AB BD ,为边向外作等边三角形ABC 和等边三角形BDE ,连接AE ,CD ,相交于点O .①线段AE 与CD 的数量关系为:___________;AOC ∠的度数为__________.②CBD ∆可看作ABE ∆经过怎样的变换得到的?____________________________. (2)应用:如图2,若点A B D ,,不在一条直线上,(1)的结论①还成立吗?请说明理由;(3)拓展:在四边形ABCD 中,=AB AC ,=90BAC ∠︒,=45ADC ∠︒,若8AD =,6CD =,请直接写出B ,D 两点之间的距离.5.【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出①APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将①BPC绕点B逆时针旋转90°,得到①BP′A,连接PP′,求出①APB的度数;思路二:将①APB绕点B顺时针旋转90°,得到①CP′B,连接PP′,求出①APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC11①APB的度数.6.在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究:如图1,在四边形ABCD中,AB=AD,①BAD=60°,①ABC=①ADC =90°,点E、F分别在线段BC、CD上,①EAF=30°,连接EF.(1)如图2,将①ABE绕点A逆时针旋转60°后得到①A′B′E′(A′B′与AD重合),请直接写出①E′AF=度,线段BE、EF、FD之间的数量关系为.(2)如图3,当但点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸:如图4,在等边①ABC中,E、F是边BC上的两点,①EAF=30°,BE =1,将①ABE绕点A逆时针旋转60°得到①A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM①BC于点M,连接MN,求线段MN的长度.7.已知①AOB,将①AOB绕O点旋转到①COD位置,使C点落在OB边上,连接AC、BD.(1)若①AOB=90°(如图1),小亮发现①BAC=①BDC,请你证明这个结论;(2)若①AOB=60°(如图2),小亮发现的结论是否仍然成立?说明理由;(3)若①AOB为任意角α(如图3),小亮发现的结论还成立吗?说明理由;8.把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为;(2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时);(3)如图①,设EF与BC交于点G,当EG=CG时,求点G的坐标;(4)如图①,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.9.把一副三角板如图(1)放置,其中①ACB=①DEC=90°,①A=45°,①D=30°,斜边AB=12cm,DC=14cm,把三角板DCE绕点C逆时针旋转15°得到①(如图2).这时AB与相交于点O,与相交于点F.(1)填空:①= °; (2)请求出①的内切圆半径; (3)把①绕着点C 逆时针再旋转度()得①,若①为等腰三角形,求的度数(精确到0.1°).10.“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用.(1)如图1,正方形ABCD 中,45EAF ∠=︒,且DE BF =,求证:EG AG =; (2)如图2,正方形ABCD 中,45EAF ∠=︒,延长EF 交AB 的延长线于点G ,(1)中的结论还成立吗?请说明理由;(3)如图3在(2)的条件下,作GQ AE ⊥,垂足为点Q ,交AF 于点N ,连结DN ,求证:45NDC ∠=︒.11.在学习利用旋转解决图形问题时,老师提出如下问题:(1)如图1,点P 是正方形ABCD 内一点,1PA =,2PB =,3PC =,你能求出APB ∠的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将PBC 绕点B 逆时针旋转90︒,得到P BA '△,连接PP ',可求出APB ∠的度数;思路二:将PAB △绕点B 顺时针旋转90︒,得到P CB '△,连接PP ',可求出APB ∠的度数;请参照小明的思路,任选一种写出完整的解答过程;(2)如图2,若点P 是等边三角形ABC 内一点,若150APB ∠=︒,则线段PA ,PB ,PC 满足怎样的等量关系?请参考小明上述解决问题的方法进行探究,直接写出线段PA ,PB ,PC 满足的等量关系.12.把两个等腰直角ABC 和ADE 按如图1所示的位置摆放,将ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角为α(0360α︒<<︒).(1)如图1,BD 与EC 的数量关系是___________,BD 与EC 的位置关系是___________;(2)如图2,(1)中BD 和EC 的数量关系和位置关系是否仍然成立,若成立,请证明;若不成立请说明理由.(3)如图3,当点D 在线段BE 上时,BEC ∠=___________.(4)当旋转角α=__________时,ABD △的面积最大.13.如图1,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒,直线MN 经过C 点垂直于AB ,垂足为D .(1)求证:ADC BDC ∽△△; (2)若直线MN 从图1的位置绕M 点逆时针旋转,如图2,设旋转的角度为()0180αα<<,作AP MN ⊥,垂足为P ,BQ MN ⊥,垂足为Q .①当α的度数为______时,点A ,P ,B ,Q 构成的四边形为平行四边形;①当α的度数为______时,点A ,P ,B ,Q 构成的四边形为矩形.14.已知①ABC 和①ADE 都是等腰三角形,AB =AC ,AD =AE ,①DAE =①BAC .【初步感知】(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB EC .(填>、<或=)(2)发现证明:如图①,将图①中①ADE 的绕点A 旋转,当点D 在①ABC 外部,点E 在①ABC 内部时,求证:DB =EC .【深入研究】(3)如图①,①ABC 和①ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则①CDB 的度数为 ;线段CE ,BD 之间的数量关系为 .(4)如图①,①ABC 和①ADE 都是等腰直角三角形,①BAC =①DAE =90°,点C 、D 、E 在同一直线上,AM 为①ADE 中DE 边上的高,则①CDB 的度数为 ;线段AM ,BD ,CD 之间的数量关系为 .15.把两个等腰直角①ABC 和①ADE 按如图1所示的位置摆放,将①ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角α(0°<α<360°).(①)当DE ①AC 时,旋转角α= 度,AD 与BC 的位置关系是 ,AE 与BC 的位置关系是 ;(①)当点D 在线段BE 上时,求①BEC 的度数;(①)当旋转角α= 时,①ABD 的面积最大.16.如图①,在ABC 中,①ACB =90°,①ABC =30°,AC =1,D 为ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:BDA ①BFE ;(2)当CD +DF +FE 取得最小值时,求证:AD ∥BF .(3)如图①,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断①MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.17.已知ABC 是等腰三角形,AB AC =,将ABC 绕点B 逆时针旋转得到''A BC ,(1)感知:如图①,当'BC 落在AB 边上时,'A AB ∠与'C CB ∠之间的数量关系是 _____(不需要证明);(2)探究:如图①,当'BC 不落在AB 边上时,'A ∠AB 与'C CB ∠是否相等?如果相等;如果不相等,请说明理由;(3)应用:如图①,若90BAC ∠=︒,'AA 、'CC 交于点E ,则'A EC ∠=_____度.18.如图,已知正方形ABCD ,点E 为AB 上的一点,EF AB ⊥,交BD 于点F .(1)如图1,直按写出DF AE的值_______; (2)将①EBF 绕点B 顺时针旋转到如图2所示的位置,连接AE 、DF ,猜想DF 与AE 的数量关系,并证明你的结论;(3)如图3,当BE =BA 时,其他条件不变,①EBF 绕点B 顺时针旋转,设旋转角为(0360)αα︒<<︒,当α为何值时EA =ED ?请在图3或备用图中画出图形并求出α的值.19.(1)观察猜想:如图①,在Rt △ABC 和Rt △BDE 中,①ABC =①EBD =90°,AB =BC ,BE =BD ,连接AE ,点F 是AE 的中点,连接CD 、BF ,当点D 、B 、C 三点共线时,线段CD 与线段BF 的数量关系是_____,位置关系是_____(2)探究证明:在(1)的条件下,将Rt △BDE 绕点B 顺时针旋转至图①位置时,(1)中的结论是否仍然成立?如果成立,请你就图①的情形进行证明;如果不成立,请说明理由;(3)拓展延伸:如图①,在Rt△ABC和Rt△BDE中,①ABC=①EBD=90°,BC=2AB=8,BD=2BE=4,连接AE,点F是AE的中点,连结CD、BF,将△BDE绕点B在平面内自由旋转,请直接写出BF的取值范围,20.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图①位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置①CDG=37°,求正方形EFGH从图①位置旋转至图①位置时,旋转角的度数.(2)旋转至如图①位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.参考答案:1.(2)①点A 到E G ''的距离为3①在旋转过程中,直接写出AE G ∆''面积的最小值为1682-α=135°.2.(1)①DG +DF 2;(2)不成立,数量关系式应为:DG -DF 2,3.(1)A (﹣3,0)、B (0,4);(2)4;(3)不变,45° 4.(1)①AE CD =,60︒;(2)依然成立,(3)416.(一)(1)30,BE +DF =EF ;(2)BE ﹣DF =EF ;3 8.(1)E (4,13;(2)60°;(3)13(4,)3G ; (4)点H 不在此抛物线上.9.(1)120°;(2)2;(3)37.7°、50.6°10.(1)见解析;(2)结论依然成立11.(1)135,APB 证明见解析;(2)222PC PA PB =+, 12.(1)BD EC =,BD EC ⊥;(2)成立,(3)90︒;(4)90︒或270︒13.(2)①30°或90°;①90°.14.(1)=;(3)60︒,DB CE =;(4)90︒,2AM BD CD += 15.(①)45;垂直;平行;(①)90BEC ∠=︒;(①)90︒或270︒16. ①MPN 的值为定值,30°.17.(1)相等;(2)相等;(3)135︒.18.2(2)2DF =,(3)α的值为30°或150°,19.(1) CD =2BF BF ①CD(2)CD =2BF , BF ①CD 成立,(3)13BF ≤≤20.(1)16°(2)DL =EN +GM ,。

人教版九年级数学上册 几何模型压轴题专题练习(word版

人教版九年级数学上册 几何模型压轴题专题练习(word版

人教版九年级数学上册 几何模型压轴题专题练习(word 版一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【解析】【分析】 (1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.2.如图1,在正方形ABCD 中,点E 、F 分别在边BC ,CD 上,且BE=DF ,点P 是AF 的中点,点Q 是直线AC 与EF 的交点,连接PQ ,PD .(1)求证:AC 垂直平分EF ;(2)试判断△PDQ 的形状,并加以证明;(3)如图2,若将△CEF 绕着点C 旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.3.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S 30334+【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22AD AC=4,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.30334-S30334+【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.4.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延长BE交AD于点F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中AC BCACD BCECD CE⎧⎪∠∠⎨⎪⎩===,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值2,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.5.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.6.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(261;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC=612.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.7.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.8.(问题提出)如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∵AB=AC,BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF,∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC=180°-60°-60°=60°∴∠DBE=∠EAF;∵ED=EC,∴∠ECD=∠EDC,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC,又∵∠EDC=∠EBC+∠BED,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC,∵∠AEF=∠CEF+∠BEC=60°+∠BEC,∴∠BDE=∠AEF,在△EDB和△FEA中,DBE EAFBDE AEFED EF∠∠⎧⎪∠∠⎨⎪⎩===∴△EDB≌△FEA(AAS),∴BD=AE,EB=AF,∵BE=AB+AE,∴AF=AB+BD,即AB,DB,AF之间的数量关系是:AF=AB+BD.考点:旋转变化,等边三角形,三角形全等,二、初三数学圆易错题压轴题(难)9.如图①,一个Rt△DEF直角边DE落在AB 上,点D 与点B重合,过A点作二射线AC 与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:①当D、M、Q三点在同一直线上时,求运动时间t;②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.【解析】试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.试题解析:(1)四边形EFPQ是菱形.理由:过点Q作QH⊥AB于H,如图①,∵t=5,∴AP=2×5=10.∵点Q是AP的中点,∴AQ=PQ=5.∵∠EDF=90°,DE=4,DF=3,∴EF==5,∴PQ=EF=5.∵AC∥EF,∴四边形EFPQ是平行四边形,且∠A=∠FEB.又∵∠QHA=∠FDE=90°,∴△AHQ∽△EDF,∴.∵AQ=EF=5,∴AH=ED=4.∵AE=12-4=8,∴HE=8-4=4,∴AH=EH,∴AQ=EQ,∴PQ=EQ,∴平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,此时AQ=t,EM=EF=,AD=12-t,DE=4.∵EF∥AC,∴△DEM∽△DAQ,∴,∴,解得t=;②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,过点Q作QH⊥AB于H,如图③,则有∠HQD=∠HDQ=45°,∴QH=DH.∵△AHQ∽△EDF(已证),∴,∴,∴QH=,AH=,∴DH=QH=.∵AB=AH+HD+BD=12,DB=t,∴++t=12,∴t=5;Ⅱ.当点Q在∠FDB的角平分线上时,过点Q作QH⊥AB于H,如图④,同理可得DH=QH=,AH=. ∵AB=AD+DB=AH-DH+DB=12,DB=t , ∴-+t=12,∴t=10.综上所述:当t 为5秒或10秒时,以点Q 为圆心的圆与Rt △DEF 两个直角边所在直线都相切.考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.10.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ; (2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3331331+- 【解析】 【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值. (2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解. 【详解】(1)如图1:连接OB 、OC. ∵BC=AO ∴OB=OC=BC∴△OBC 是等边三角形 ∴∠BOC=60°∵点D是BC的中点∴∠BOD=130 2BOC∠=︒∵OA=OC∴OAC OCA∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O 与圆D 相内切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:OD=3,圆D 的半径为1 ∴AD=31+ 设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+-解得:331x +=∴AE=3312AF 2+=②如图4.圆O 与圆D 相外切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:3D 的半径为1 ∴31 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=- 解得:331x -=∴AE=331 2AF2-=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.11.如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过F作FG⊥EP于G,当P运动到点B时,Q 也停止运动,设DP=m.(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)(2)当线段FG长度达到最大时,求m的值;(3)在点P,Q整个运动过程中,①当m为何值时,⊙O与△ABC的一边相切?②直接写出点F所经过的路径长是.(结果保留根号)【答案】(1)2+m,m﹣2;(2)m=5.5;(3)①当m=1或4或10433与△ABC的边相切.②点F 1136572【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos30FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos302FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553AC BC EP AB ⨯⨯=== 3tan30(2)EP AP m =⋅=+ 533(2)m =+ ∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin60OB ON ==4310AO ∴=- 4312AP ∴=-432123m ∴+=-, 4310m ∴=-, 综上所述,当m =1或4或4310-时,O 与△ABC 的边相切。

人教版九年级数学上册第二十三章 旋转 压轴题专题训练【含答案】

人教版九年级数学上册第二十三章 旋转 压轴题专题训练【含答案】

人教版九年级数学上册第二十三章旋转压轴题专题训练1.如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN=°.(2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周,在旋转的过程中,当边OC 旋转°时,边CD恰好与边MN平行.(直接写出结果)2.问题:如图①,在等边三角形ABC内有一点P,且P A=2,PB=,PC=1,求∠BPC 的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),可得∠AP′B=°,所以∠BPC=∠AP′B=°,还可证得△ABP 是直角三角形,进而求出等边三角形ABC的边长为,问题得到解决.(1)根据李明同学的思路填空:∠AP′B=°,∠BPC=∠AP′B=°,等边三角形ABC的边长为.(2)探究并解决下列问题:如图③,在正方形ABCD内有一点P,且P A=,PB=,PC=1.求∠BPC的度数和正方形ABCD的边长.3.在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m≥0,四边形ABCD是菱形.(1)如图,当四边形ADCD为正方形时,求m,n的值.(2)探究:当m为何值时,菱形ABCD的对角线AC的长度最短,并求出AC的最小值.4.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.5.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由;(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.6.如图,已知△BAD≌△BCE,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)如图1,当A,B,E三点在同一直线上时,判断AC与CN数量关系为;(2)将图1中△BCE绕点B逆时针旋转到图2位置时,(1)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由;(3)将图1中△BCE绕点B逆时针旋转一周,旋转过程中△CAN能否为等腰直角三角形?若能,直接写出旋转角度;若不能,说明理由.7.将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1=度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.8.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E,(1)当直线MN绕点C旋转到图(1)的位置时,显然有:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.9.如图,在三角形ABC中,AB=AC,点D在△ABC内,且∠ADB=90°.(1)如图1,若∠BAD=30°,AD=3,点E、F分别为AB、BC边的中点,连接EF,求线段EF的长;(2)如图2,若△ABD绕顶点A逆时针旋转一定角度后能与△ACG重合,连接GD并延长交BC于点H,连接AH,求证:∠DAH=∠DBH.10.如图,△ABC中,AB=AC,∠BAC=36°,将△ABC绕点A按逆时针旋转角度α(0°<α<180°)得到△ADE,连接CE,BD,BD与AC交于点F.(1)求证:BD=CE;(2)当α等于多少度时,四边形AFDE是平行四边形?并说明理由.11.如图,在等边△BCD中,DF⊥BC于点F,点A为直线DF上一动点,以B为旋转中心,把BA顺时针方向旋转60°至BE,连接EC.(1)当点A在线段DF的延长线上时,①求证:DA=CE;②判断∠DEC和∠EDC的数量关系,并说明理由;(2)当∠DEC=45°时,连接AC,求∠BAC的度数.12.已知如图,△ADC和△BDE均为等腰三角形,∠CAD=∠DBE,AC=AD,BD=BE,连接CE,点G为CE的中点,过点E作AC的平行线与线段AG延长线交于点F.(1)当A,D,B三点在同一直线上时(如图1),求证:G为AF的中点;(2)将图1中△BDE绕点D旋转到图2位置时,点A,D,G,F在同一直线上,点H 在线段AF的延长线上,且EF=EH,连接AB,BH,试判断△ABH的形状,并说明理由.13.如图,将矩形ABCD绕点A按逆时针方向旋转,得到矩形AEFG,E点正好落在边CD 上,连接BE,BG,且BG交AE于P.(1)求证:∠CBE=∠BAE;(2)求证:BG=2PB;(3)若AB=,BC=3,直接写出BG的长.14.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.15.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为α.在旋转过程中,两个正方形只有点A重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)如图3,如果α=45°,AB=2,AE=4,求点G到BE的距离.16.如图,矩形ABCD中,点E在AD边上,过点E作AB的平行线,交BC于点F,将矩形ABFE绕着点E逆时针旋转,使点F的对应点落在边CD上,点B的对应点N落在边BC上.(1)求证:BF=NF;(2)已知AB=2,AE=1,求EG的长;(3)已知∠MEF=30°,求的值.参考答案1.如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN=105°.(2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周,在旋转的过程中,当边OC 旋转75或255°时,边CD恰好与边MN平行.(直接写出结果)解:(1)∵∠ECN=45°,∠ENC=30°,∴∠CEN=105°.故答案为:105°.(2)∵OD平分∠MON,∴∠DON=∠MPN=×90°=45°,∴∠DON=∠D=45°,∴CD∥AB,∴∠CEN=180°﹣∠MNO=180°﹣30°=150°;.(3)如图1,CD在AB上方时,设OM与CD相交于F,∵CD∥MN,∴∠OFD=∠M=60°,在△ODF中,∠MOD=180°﹣∠D﹣∠OFD,=180°﹣45°﹣60°,=75°,当CD在AB的下方时,设直线OM与CD相交于F,∵CD∥MN,∴∠DFO=∠M=60°,在△DOF中,∠DOF=180°﹣∠D﹣∠DFO=180°﹣45°﹣60°=75°,∴旋转角为75°+180°=255°,综上所述,当边OC旋转75°或255°时,边CD恰好与边MN平行.故答案为:75或255.2.问题:如图①,在等边三角形ABC内有一点P,且P A=2,PB=,PC=1,求∠BPC 的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),可得∠AP′B=150°,所以∠BPC=∠AP′B=150°,还可证得△ABP是直角三角形,进而求出等边三角形ABC的边长为,问题得到解决.(1)根据李明同学的思路填空:∠AP′B=150°,∠BPC=∠AP′B=150°,等边三角形ABC的边长为.(2)探究并解决下列问题:如图③,在正方形ABCD内有一点P,且P A=,PB=,PC=1.求∠BPC的度数和正方形ABCD的边长.解:(1)根据旋转可知:∠AP′B=150°,∠BPC=∠AP′B=150°,等边三角形ABC的边长为.故答案为150°、150°、.(2)解:将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP′=PB=.连接PP′,如图.在Rt△BP′P中,∵PB=BP′=,∠PBP′=90°,∴PP′=2,∠BP′P=45°.在△AP′P中,AP′=1,PP′=2,P A=,∵12+22=()2,即AP′2+PP′2=P A2,∴△AP′P是直角三角形,即∠AP′P=90°.∴∠AP′B=135°,∴∠BPC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E,则△BEP′是等腰直角三角形,∴∠EP′B=45°.又∵BP′=,∴EP′=BE=1,∴AE=2.在Rt△ABE中,∵BE=1,AE=2,∴由勾股定理,得AB=.综上可得,∠BPC=135°,正方形ABCD的边长为.答:∠BPC的度数为135°,正方形ABCD的边长为.3.在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m≥0,四边形ABCD是菱形.(1)如图,当四边形ADCD为正方形时,求m,n的值.(2)探究:当m为何值时,菱形ABCD的对角线AC的长度最短,并求出AC的最小值.解:(1)如图1中,作DF⊥y轴于F.∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠DF A=∠AOB=90°,∴∠DAF+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAF=∠ABO,∴△DF A≌△AOB(AAS),∴DF=AB,AF=OB,∵A(0,3),D(n,4),∴OA=3,OF=4,AF=1,∴DF=3,OB=1,∴m=1,n=3.(2)如图2中,作DF⊥y轴于F,CE⊥x轴于E.∵四边形ABCD是菱形,∴AD=BC,∵AD∥BC,DF∥BE,∴∠ADF=∠CBE,∵∠AFD=∠CEB=90°,∴△DF A≌△BEC(AAS),∴EC=AF=1,∴点C的运动轨迹是直线y=1,由题意m>0,观察图形可知当点B与原点重合时,AC的值最小,此时菱形的边长=3,作CH⊥OA于H.则CH==2,AC===2,∴AC的最小值为2.4.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置∠APB=∠APC=120°.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.解:问题的转化:如图1,由旋转得:∠P AP'=60°,P A=P'A,∴△APP'是等边三角形,∴PP'=P A,∵PC=P'C,∴P A+PB+PC=BP+PP′+P′C′.问题的解决:满足:∠APB=∠APC=120°时,P A+PB+PC的值为最小;理由是:如图2,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,∵∠APB=120°,∠APP'=60°,∴∠APB+∠APP'=180°,∴B、P、P'在同一直线上,由旋转得:∠AP'C'=∠APC=120°,∵∠AP'P=60°,∴∠AP'C'+∠AP'P=180°,∴P、P'、C'在同一直线上,∴B、P、P'、C'在同一直线上,∴此时P A+PB+PC的值为最小,故答案为:∠APB=∠APC=120°;问题的延伸:如图3,Rt△ACB中,∵AB=2,∠ABC=30°,∴AC=1,BC=,把△BPC绕点B逆时针旋转60度得到△BP′C′,连接PP′,当A、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,由旋转得:BP=BP',∠PBP'=60°,PC=P'C',BC=BC',∴△BPP′是等边三角形,∴PP'=PB,∵∠ABC=∠APB+∠CBP=∠APB+∠C'BP'=30°,∴∠ABC'=90°,由勾股定理得:AC'===,∴P A+PB+PC=P A+PP'+P'C'=AC'=,则点P到这个三角形各顶点的距离之和的最小值为.5.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由;(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.解:(1)如图1,延长EB交DG于点H,∵ABCD和AEFG为正方形,∴在Rt△ADG和Rt△ABE中,,∴Rt△ADG≌Rt△ABE,∴∠AGD=∠AEB,∵∠HBG=∠EBA,∴∠HGB+∠HBG=90°,∴DG⊥BE;(2)如图2,过点A作AP⊥BD交BD于点P,∵ABCD和AEFG为正方形,∴在△DAG和△BAE中,,∴△DAG≌△BAE(SAS),∴DG=BE,∵∠APD=90°,∴AP=DP=,∵AG=2,∴PG==,∴DG=DP+PG=+,∵DG=BE,∴BE=+.6.如图,已知△BAD≌△BCE,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)如图1,当A,B,E三点在同一直线上时,判断AC与CN数量关系为AC=CN;(2)将图1中△BCE绕点B逆时针旋转到图2位置时,(1)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由;(3)将图1中△BCE绕点B逆时针旋转一周,旋转过程中△CAN能否为等腰直角三角形?若能,直接写出旋转角度;若不能,说明理由.解:(1)AC与CN数量关系为:AC=CN.理由如下:∵△BAD≌△BCE,∴BC=AD,EC=AB.∵EN∥AD,∴∠MEN=∠MDA.在△MEN与△MDA中,,∴△MEN≌△MDA(ASA),∴EN=AD,∴EN=BC.在△ABC与△CEN中,,∴△ABC≌△CEN(SAS),∴AC=CN.(2)结论仍然成立.理由如下:与(1)同理,可证明△MEN≌△MDA,∴EN=BC.设旋转角为α,则∠ABC=120°+α,∠DBE=360°﹣∠DBA﹣∠ABC﹣∠CBE=360°﹣30°﹣(120°+α)﹣60°=150°﹣α.∵BD=BE,∴∠BED=∠BDE=(180°﹣∠DBE)=15°+α.∵EN∥AD,∴∠MEN=∠MDA=∠ADB+∠BDE=60°+(15°+α)=75°+α.∴∠CEN=∠CEB+∠BED+∠MEN=30°+(15°+α)+(75°+α)=120°+α,∴∠ABC=∠CEN.在△ABC与△CEN中,,∴△ABC≌△CEN(SAS),∴AC=CN.(3)△CAN能成为等腰直角三角形,此时旋转角为60°.如下图所示:此时旋转角为60°或240°,点A、B、C在一条直线上,点N、E、C在一条直线上.7.将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB 与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1=160度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.解:(1)①由旋转的性质得,∠ACA1=20°,∴∠BCD=∠ACB﹣∠ACA1=90°﹣20°=70°,∴∠BCB1=∠BCD+∠A1CB1,=70°+90°,=160°;②∵AB⊥A1B1,∴∠A1DE=90°﹣∠B1A1C=90°﹣30°=60°,∴∠ACA1=∠A1DE﹣∠BAC=60°﹣30°=30°,∴旋转角为30°;(2)∵AB∥CB1,∴∠ADC=180°﹣∠A1CB1=180°﹣90°=90°,∵∠BAC=30°,∴CD=AC,又∵由旋转的性质得,A1C=AC,∴A1D=CD.8.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E,(1)当直线MN绕点C旋转到图(1)的位置时,显然有:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠AC D+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE﹣CD=AD﹣BE;(3)如图3,∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD﹣CE=BE﹣AD;DE、AD、BE之间的关系为DE=BE﹣AD.9.如图,在三角形ABC中,AB=AC,点D在△ABC内,且∠ADB=90°.(1)如图1,若∠BAD=30°,AD=3,点E、F分别为AB、BC边的中点,连接EF,求线段EF的长;(2)如图2,若△ABD绕顶点A逆时针旋转一定角度后能与△ACG重合,连接GD并延长交BC于点H,连接AH,求证:∠DAH=∠DBH.(1)解:如图1,在Rt△ABD中,∠BAD=30°,∴AB=2BD,设BD=x,则AB=2x,由勾股定理得:,x=3或﹣3(舍),∴AB=2x=6,∵AC=AB=6,∵点E、F分别为AB、BC边的中点,∴EF=AC=3;(2)证明:如图2,由旋转得:△ADB≌△AGC,∴AG=AD,∠AGC=∠ADB=90°,CG=BD,∴∠AGD=∠ADG,∵∠ADB=90°,∴∠ADG+∠BDH=90°,∵∠AGD+∠MGC=90°,∴∠MGC=∠BDH,在GH上取一点M,使GM=DH,∴△CGM≌△BDH,∴CM=BH,∠GCM=∠DBH,∵∠CMH=∠MGC+∠MCG,∠CHM=∠BDH+∠DBH,∴∠CMH=∠CHM,∴CM=CH=BH,∵AC=AB,∴AH⊥BC,即∠AHB=90°=∠ADB,∵∠AOD=∠BOH,∴∠DAH=∠DBH.10.如图,△ABC中,AB=AC,∠BAC=36°,将△ABC绕点A按逆时针旋转角度α(0°<α<180°)得到△ADE,连接CE,BD,BD与AC交于点F.(1)求证:BD=CE;(2)当α等于多少度时,四边形AFDE是平行四边形?并说明理由.(1)证明:∵△ADE是由△ABC旋转得到的,∴AB=AD,AC=AE,∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE,∴BD=CE;(2)当∠BAD=108°时,四边形AFDE是平行四边形,理由如下:∵∠BAD=108°,AB=AD,∴,∴∠DAE=∠ADB,∴AE∥FD,又∵∠CAD=∠BAD﹣∠BAC=72°,∴,∴∠CAD=∠ADE,∴AF∥ED,11.如图,在等边△BCD中,DF⊥BC于点F,点A为直线DF上一动点,以B为旋转中心,把BA顺时针方向旋转60°至BE,连接EC.(1)当点A在线段DF的延长线上时,①求证:DA=CE;②判断∠DEC和∠EDC的数量关系,并说明理由;(2)当∠DEC=45°时,连接AC,求∠BAC的度数.(1)①证明:∵把BA顺时针方向旋转60°至BE,∴BA=BE,∠ABE=60°,在等边△BCD中,DB=BC,∠DBC=60°,∴∠DBA=∠DBC+∠FBA=60°+∠FBA,∵∠CBE=60°+∠FBA,∴∠DBA=∠CBE,∴△BAD≌△BEC,∴DA=CE;②∠DEC+∠EDC=90°,∵DB=DC,DA⊥BC,∴,∵△BAD≌△BEC,∴∠BCE=∠BDA=30°,在等边△BCD中,∠BCD=60°,∴∠DCE=∠BCE+∠BCD=90°,∴∠DEC+∠EDC=90°;(2)分三种情况考虑:①当点A在线段DF的延长线上时,由(1)可得,△DCE为直角三角形,∴∠DCE=90°,当∠DEC=45°时,∠EDC=90°﹣∠DEC=45°,∴∠EDC=∠DEC,∴CD=CE,由(1)得DA=CE,∴CD=DA,在等边△DBC中,BD=CD,∴BD=DA=CD,∴∠BDC=60°,∵DA⊥BC,∴,在△BDA中,DB=DA,∴,在△DAC中,DA=DC,∴,∴∠BAC=∠BAD+∠DAC=75°+75°=150°.;②当点A在线段DF上时,∵以B为旋转中心,把BA顺时针方向旋转60°至BE,∴BA=BE,∠ABE=60°,在等边△BDC中,BD=BC,∠DBC=60°,∴∠DBC=∠ABE,∠DBC﹣∠ABC=∠ABE﹣∠ABC,即∠DBA=∠EBC,∴△DBA≌△CBE,∴DA=CE,在Rt△DFC中,∠DFC=90°,∴DF<DC,∵DA<DF,DA=CE,∴CE<DC,由②可知△DCE为直角三角形,∴∠DEC≠45°.③当点A在线段FD的延长线上时,同第②种情况可得△DBA≌△CBE,∴DA=CE,∠ADB=∠ECB,在等边△BDC中,∠BDC=∠BCD=60°,∵DA⊥BC,∴,∴∠ADB=180°﹣∠BDF=150°,∴∠ECB=∠ADB=150°,∴∠DCE=∠ECB﹣∠BCD=90°,当∠DEC=45°时,∠EDC=90°﹣∠DEC=45°,∴∠EDC=∠DEC,∴CD=CE,∴AD=CD=BD,∵∠ADB=∠ADC=150°,∴,,∴∠BAC=∠BAD+∠CAD=30°,综上所述,∠BAC的度数为150°或30°.12.已知如图,△ADC和△BDE均为等腰三角形,∠CAD=∠DBE,AC=AD,BD=BE,连接CE,点G为CE的中点,过点E作AC的平行线与线段AG延长线交于点F.(1)当A,D,B三点在同一直线上时(如图1),求证:G为AF的中点;(2)将图1中△BDE绕点D旋转到图2位置时,点A,D,G,F在同一直线上,点H 在线段AF的延长线上,且EF=EH,连接AB,BH,试判断△ABH的形状,并说明理由.解:(1)∵AC∥EF,∴∠ACG=∠FEG,∵点G为CE的中点,∴CG=EG,又∵∠AGC=∠FGE,∴△ACG≌△FEG,∴AG=FG,∴G为AF的中点;(2)△ABH为等腰三角形.理由:同(1)可证△ACG≌△FEG,∴AC=FE,又∵AC=AD,FE=HE,∴AD=HE,①∵AC∥EF,∴∠GFE=∠CAD=∠DBE,∵EF=EH,∴∠EFH=∠EHF,∵∠EFH+∠GFE=180°,∴∠FHE+∠DBE=180°,∴四边形BDHE中,∠BEH+∠BDF=180°,又∵∠BDA+∠BDF=180°,∴∠BEH=∠BDA,②又∵BD=BE,③∴由①②③,可得△ADB≌△HEB,∴AB=HB,即△ABH是等腰三角形.13.如图,将矩形ABCD绕点A按逆时针方向旋转,得到矩形AEFG,E点正好落在边CD 上,连接BE,BG,且BG交AE于P.(1)求证:∠CBE=∠BAE;(2)求证:BG=2PB;(3)若AB=,BC=3,直接写出BG的长.解:(1)∵矩形ABCD中,∠CBA=90°,∴∠CBE+∠ABE=90°,即2∠CBE+2∠ABE=180°,①由旋转可得,AB=AE,∴∠ABE=∠AEB,∴∠BAE+2∠ABE=180°,②由①②可得,∠BAE=2∠CBE,∴∠CBE=∠BAE;(2)如图,过B作BH⊥AE于H,则∠C=∠BH E=90°,由(1)可得,∠ABE=∠AEB,∵AB∥CE,∴∠ABE=∠CEB,∴∠BEC=∠BEH,即BE平分∠CEH,∴BH=BC,由旋转可得,AG=AD=BC,∠GAP=∠BAD=90°,∴AG=HB,∠GAP=∠BHP,又∵∠APG=∠HPB,∴△APG≌△HPB,∴GP=BP=BG,即BG=2PB;(3)∵AB=,BC=3=BH,∴Rt△ABH中,AH==4,∵△APG≌△HPB,∴PH=AP=AH=2,∴Rt△BHP中,BP==,∴BG=2BP=2.14.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.解:(1)∵AC=BC,∠A=30°,∴∠CBA=∠CAB=30°,∵∠ADC=45°,∴∠BCD=∠ADC﹣∠CBA=15°=∠BC'D';(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,∴∠CC'B=∠C'CB=75°;②证明:∵AC=C'B,∠C'BD'=∠A,∴∠CEB=∠C'CB﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC'D'=∠BCD=∠ACE,在△C'BD'和△CAE中,,∴△C'BD'≌△CAE(ASA).15.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为α.在旋转过程中,两个正方形只有点A重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)如图3,如果α=45°,AB=2,AE=4,求点G到BE的距离.解:(1)由旋转的性质可知:∠BAE=∠DAG,由正方形的性质可知:AB=AD,AE=AG.∵在△ABE和△ADG中,,∴△ABE≌△ADG.∴BE=DG.(2)连接GE、BG,延长AD交GE与H.当α=45°时,则∠BAE=45°.∵∠BAD=∠EAG=90°.∴∠EAH=∠GAH=45°.又∵AE=AG,∴AH⊥GE.又∵AH⊥AB,∠EAH=45°,∴△AHE为等腰直角三角形.∴EH=AH=AE=4.∴EG=2EH=8.∴S△BEG=EG•AH=×8×4=16.设点G到BE的距离为h.BE==2S△BEG=EB•h=16,即×2•h=16,解得h=.∴点G到BE的距离为.16.如图,矩形ABCD中,点E在AD边上,过点E作AB的平行线,交BC于点F,将矩形ABFE绕着点E逆时针旋转,使点F的对应点落在边CD上,点B的对应点N落在边BC上.(1)求证:BF=NF;(2)已知AB=2,AE=1,求EG的长;(3)已知∠MEF=30°,求的值.解:(1)连结BE,EN,如图,∵四边形ABCD是矩形,∴∠BFE=90°,由旋转得BE=EN,∴BF=NF;(2)∵四边形ABCD是矩形,∴BF=AE,EF=AB,由旋转得EH=EA,∵BF=NF,∴EH=NF,∵∠BFE=∠GHE=90°,∠NGF=∠HGE,∴△N GF≌△HGE,∴FG=GH,设EG=x,则GF=GH=2﹣x,由勾股定理得x2﹣(2﹣x)2=1,解得x=,∴EG=;(3)∵EF∥DC,∴∠DME=∠MEF=30°,设DE=x,∵∠D=90°,∴ME=DC=AB=2x,DM=x,∴MC=(2﹣)x,∵∠NME=90°,∠DME=30°,∴∠NMC=60°,∴∠MNC=30°,∴MN=2MC=2(2﹣)x,∴BC=AD=DM+MN=2(2﹣)x+x=(5﹣2)x,∴=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拔高专题:旋转变化中的压轴题一、基本模型构建




思考上图中,△AE′B旋转到AED的位置,
可得△AE′E为等腰三角形。

如果
四边形ABCD是矩形或正方形,则三角
形AE′E为等腰直角三角形。

上图中,△ABC旋转到△ADE的位置,
可以得到∠EAC=∠DAB ,如果∠
B=60°,所以△ADB为等边三角
形.
二、拔高精讲精练
探究点一:以三角形为基础的图形的旋转变换
例1:
(2015•盘锦中考)如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上.
(1)请直接写出线段BE与线段CD的关系:BE=CD ;
(2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°),
①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;
②当AC=1
2
ED时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、
D四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由.
解:(1)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC,AE=AD,
∴AE-AB=AD-AC,∴BE=CD;
(2)①∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC,AE=AD,
由旋转的性质可得∠BAE=∠CAD,在△BAE与△CAD中,
AB AC
BAE CAD AE AD











∴△BAE≌△CAD(SAS),∴BE=CD;
②∵以A 、B 、C 、D 四点为顶点的四边形是平行四边形,△ABC 和△AED 都是等腰直角三角形,
∴∠ABC=∠ADC=45°,∵AC=
1
2
ED ,∴AC=CD ,∴∠CAD=45°,或360°-90°-45°=225°,
∴角α的度数是45°或225°.
等腰直角三角形的性质,等量代换,旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,综合性较强 【变式训练】1. 如图①,在Rt △ABC 和Rt △EDC 中,∠ACB=∠ECD=90°,AC=EC=BC=DC ,AB 与EC 交于F ,ED 与AB 、BC 分别交于M 、H . (1)求证:CF=CH ; (2)如图②,Rt △ABC 不动,将Rt △EDC 绕点C 旋转到∠BCE=45°时,判断四边形ACDM 的形状,并证明你的结论.
(1)证明:∵∠ACB=∠ECD=90°,AC=BC=CD=CE ,∴∠1=∠2=90°-∠BCE ,∠A=∠B=∠D=∠E=45°,
在△ACF 和△DCH 中,12A D AC CD ∠∠∠⎧⎪∠⎪
⎨⎩
===,∴△ACF ≌△DCH ,∴CF=CH ;
(2)四边形ACDM 是菱形,证明:∵∠ACB=∠ECD=90°,∠BCE=45°,∴∠1=∠2=90°-45°=45°,
∵∠A=∠D=45°,∴∠A+∠ACD=45°+90°+45°=180°,同理∠D+∠ACD=180°,∴AM ∥DC ,AC ∥DM ,
∴四边形ACDM 是平行四边形,∵AC=CD ,∴四边形ACDM 是菱形.
【教师总结】三角形从一个位置旋转到另一个位置,除去对应线段和对应角相等外,里面也存在着相等的角,和全等三角形,在解决问题过程要善于将“基本图形”分离出来分析。

探究点二 以四边形为基础的图形的旋转变换
例2:根据图形回答问题:
(1)线段AB上任取一点C,分别以AC和BC为边作等边三角形,试回答△ACE可看作哪个三角形怎么样旋转得到.(不用说明理由)
(2)线段AB上任取一点C,分别以AC和BC为边作正方形,连接DG,M为DG中点,连接EM并延长交FG于N,连接FM,猜测FM和EM的关系,并说明理由.
(3)在(2)的基础上将正方形CBGF绕C点旋转,其它条件不变,猜测FM和EM的关系,并说明理由.
解:(1)将△ACE以点C为旋转中心,顺时针方向旋转60°后得到△DCB,所以可得△ACE 可以由△DCB以C点为轴逆时针旋转60度得到.
(2)FM⊥ME,FM=ME,连接GN和DE,在△DME和△GMN中,
MDE MHG DME GMN DM MG
∠∠
∠∠
⎧⎪⎨⎪⎩




∴△DME≌△GMN(AAS),∴DM=MN,DE=NG,∴FN=FG-NG=FG-DE=FC-EC=FE,∴△NFE是等腰直角三角形,
∴FM⊥ME,并且FM=ME(等腰三角形中线就是垂线,直角三角形中线等于斜边的一半)(3)延长EM至N点,使EM=MN,连接NG、EF、FN.(EC与DM的交点标为P,FC
与DM 交点标为Q )
在△DME 和△GMN 中,EM MN DME GMN DM MG ⎪
∠⎪⎩
∠⎧⎨===,∴△DME ≌△GMN .∴DE=NG ,∠EDM=
∠NGM ,
∴EC=NG ,∵∠ECF=180°-∠CPQ-∠CQP=180°-∠DPE-∠FQG=180°-(90°-∠MDE )-(90°-∠FGM )=∠EDM+∠FGM ,∵∠NGM+∠FGM=∠NGF ,∴∠ECF=∠NGF ,∵EC=DE=NG ,
在△ECF 和△NGF 中,FC FG ECF NGF EC NG ⎪
∠⎪⎩
∠⎧⎨===,∴△ECF ≌△NGF ,∴EF=NF ,∠EFC=∠NFG ,
∴∠EMN=∠EFC+∠CFN=∠NFG+∠CFN=∠CFG=90°,∴△EFN 是等腰直角三角形,∴FM ⊥EM ,并且FM=EM 。

【变式训练】2. 两个长为2cm ,宽为1cm 的长方形,摆放在直线l 上(如图①),CE=2cm ,将长方形ABCD 绕着点C 顺时针旋转α角,将长方形EFGH 绕着点E 逆时针旋转相同的角度.
(1)当旋转到顶点D 、H 重合时,连接AE 、CG ,求证:△AED ≌△GCD (如图②). (2)当α=45°时(如图③),求证:四边形MHND 为正方形.
证明:(1)如图②,∵由题意知,AD=GD ,ED=CD ,∠ADC=∠GDE=90°,
∴∠ADC+∠CDE=∠GDE+∠CDE ,即∠ADE=∠GDC ,在△AED 与△GCD 中,
AD GD ADE GDC ED CD ⎪
∠⎪⎩
∠⎧⎨===, ∴△AED ≌△GCD (SAS );
(2)如图③,∵α=45°,BC ∥EH ,∴∠NCE=∠NEC=45°,CN=NE ,∴∠CNE=90°, ∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND 是矩形,∵CN=NE ,∴DN=NH ,∴矩形MHND 是正方形.
【教师总结】四边形的旋转,可以构造全等三角形,在根据旋转的性质画出相应的图形,再综合其他知识解决. .。

相关文档
最新文档