水闸稳定计算知识分享

合集下载

闸室的稳定计算

闸室的稳定计算

摩擦公式: 抗剪断公式:
KC
f G H
KC tg0
G C0 A H
若KC<[K],要提高表层抗滑稳定性则需结合工程的 具体情况,采取下列一种或几种抗滑措施:
(1)将闸门位置移向低水位一侧,或将水闸底板向 高水位一侧加长;
(2)适当增大闸室结构尺寸; (3)增加闸室底板的齿墙深度,以提高抗滑力。 (4)增加铺盖长度或在不影响防渗安全的条件下将
第六节
闸室的稳定计算、沉降校核及地 基处理
一、荷载计算及荷载组合 二、稳定分析 三、闸基的沉降 四、地基处理
一、荷载计算及荷载组合
1、荷载
作用在水闸结构 上的主要荷载有 自重、水重、静 水压力、扬压力、 浪压力、泥沙压 力、土压力及地 震荷载等
2、荷载组合
荷载 计算情况
荷载
组合
重 静水 扬压 浪压 泥沙 地震
一荷载计算及荷载组合二稳定分析三闸基的沉降四地基处理作用在水闸结构上的主要荷载有自重水重静水压力扬压力浪压力泥沙压力土压力及地震荷载等荷载组合计算情况正常挡水情况基本情况设计洪水情况按检修期低水位条件或其他可能时期计算各种荷载校核洪水位情况按校核洪水位进行计算特殊情况地震情况按正常挡水位组合计算静水压力扬压力浪压力等地震烈度大于6度时考虑地震组合影响一般分为施工完建运用检修等情况进行计算土基上的闸室稳定计算应满足
Pmax
Pm in
3、沿闸室基础底面的抗滑稳定安全系数, 应大于允许值,即
KC KC
4、验算闸基的整体稳定 (1)在竖向荷载作用下的地基承载力 (2)在竖向荷载和水平荷载共同作用下,
地基承载力核算。
2、计算方法
(1)验算闸室基底压力 当结构布置及受力情况对称时

水闸闸室稳定计算方法与重力坝

水闸闸室稳定计算方法与重力坝

水闸闸室稳定计算方法与重力坝水闸是一种常见的水利工程设施,主要用于调节水流量,控制水位,保护农田和城市。

而水闸的关键部分就是闸室,它不仅要能够稳定地承受水压力,还要具备一定的防洪能力。

本文将介绍水闸闸室稳定计算方法,并比较其与重力坝的异同。

1.水闸闸室稳定计算方法水闸闸室的稳定性分析是水利工程设计的重要环节之一。

根据力学原理,当水位上升时,水闸闸室所受到的水压力也会增大,如果不加以控制,就会导致闸室的破坏或倒塌。

因此,需要对闸室的稳定性进行计算和分析,以确定其承载能力和防洪能力。

水闸闸室的稳定性分析主要包括以下几个方面:(1)闸室的基础承载力闸室的基础承载力是指闸室基础抵抗地基承载力的能力。

在计算基础承载力时,需要考虑闸室的几何形状、材料强度和地基的承载能力等因素。

可以采用现场勘探和试验、数值模拟等方法进行计算。

(2)闸室的水压力闸室的水压力是指闸室所受到的水力作用力。

可以通过测量水位、流量和闸室尺寸等参数来计算。

水压力的大小与水位高度、流量大小和闸室的几何形状等因素有关。

(3)闸室的自重力闸室的自重力是指闸室本身的重力。

计算闸室的自重力需要考虑闸室的几何形状和材料密度等因素。

(4)其他荷载闸室还可能承受其他荷载,如风荷载、温度荷载等。

这些荷载的大小和作用方式需要根据具体情况进行分析和计算。

通过综合考虑以上因素,可以计算出闸室的稳定系数和安全系数。

当稳定系数小于1或安全系数小于1时,说明闸室的稳定性存在问题,需要进行加固或改进。

2.水闸闸室与重力坝的异同虽然水闸闸室和重力坝都是水利工程中常见的建筑物,但二者在结构形式和稳定性分析上存在着一些异同。

(1)结构形式水闸闸室和重力坝的结构形式存在显著差异。

闸室一般是一个矩形或梯形的建筑物,其上部设有闸门,下部通常为水泄孔或底洞。

而重力坝则是一种大型的混凝土结构,其主要作用是防洪和蓄水。

(2)稳定性分析闸室和重力坝的稳定性分析方法也有所不同。

闸室的稳定性分析需要考虑水压力、自重力、基础承载力和其他荷载等因素,而重力坝的稳定性分析则需要考虑水压力、地震力、温度变化等多种荷载。

水闸过流能力及稳定计算

水闸过流能力及稳定计算

水闸过流能力计算水闸是一种常见的水利工程设施,用于控制和调节河流、水渠等水体的水位和流量。

水闸的过流能力计算是设计和运行水闸的重要环节,它能帮助工程师了解水闸的性能和能否满足流量要求。

本文将介绍水闸过流能力计算的基本原理和方法。

一、水闸过流能力的定义水闸的过流能力是指水闸在特定的流量条件下能够承受的水流量。

水闸的过流能力通常由设计流量来确定,该设计流量是根据该水闸所在水体的流量特征以及相关工程需求来确定的。

二、水闸过流能力计算的基本原理水闸的过流能力计算一般采用流量方程来进行,该方程描述了水流通过水闸的流动情况。

根据连续性方程和水力学基本原理,可以得到如下方程:Q=CHH^b其中,Q表示流量,C表示局部阻力系数,H表示水头,b表示方程中的指数。

该方程根据实际情况和经验关系,可以选择不同的局部阻力系数和方程指数,从而适应不同的水闸类型和工程要求。

三、水闸过流能力计算的方法1.经验公式法经验公式法是一种常用的水闸过流能力计算方法,根据水闸的类型和结构特点,选择相应的经验公式进行计算。

这些经验公式的形式多种多样,如:勒库泽公式、鲁多尔夫公式等。

这些公式一般是基于实际水利工程的试验数据得出的,因此在一些情况下可以提供相对准确的结果。

2.物理模型试验法物理模型试验法是通过建立具有相似关系的模型,对水闸的过流能力进行试验来计算。

该方法需要进行大量的试验和测量工作,因此在实际工程中一般用于对特殊或关键水闸的过流能力进行验证和确认。

3.数值模拟法数值模拟法是通过使用计算机模拟水流在水闸中的运动过程,来计算水闸的过流能力。

该方法基于数学模型和流体力学原理,通过对水流进行网格离散和边界条件设定,采用数值方法求解流动方程,从而得到相应的流量计算结果。

数值模拟法在计算精度和计算效率方面较高,因此在现代水利工程计算中得到了广泛应用。

四、水闸过流能力计算的影响因素水闸的过流能力计算受到多种因素的影响,如:水闸的几何形状、槽型、过水坡降、阻力系数、运行状况等。

水闸稳定计算

水闸稳定计算

四、闸室稳定计算(1)闸室基底应力计算依据“规范”当结构布置及受力情况对称时按第29页(7.3.4-1)计算。

P max=∑G/A+∑M/WP min=∑G/A-∑M/W式中:P max--闸室基底应力的最大值;P min--闸室基底应力的最小值;∑G--作用在闸室上的全部竖向荷载(KN);∑M--作用在闸室上的全部竖向和水平向荷载对于基础底面垂直水流方向的形心轴的力矩(KN·m);A--闸室基底面的面积(m2);W--闸室基底面对于该底面垂直水流方向的形心轴的截面矩(m3)。

在各种情况下,平均基底应力不大于地基允许承载力,最大基底应力不大于地基允许承载力的1.2倍。

(2)沿基底面的抗滑稳定计算依据“规范”抗滑稳定安全系数计算按第30页(7.3.6-1)计算。

K c=(f∑G)/∑H式中:K c--沿闸室基底面的抗滑稳定安全系数;f--闸室基底面与地基之间的摩擦系数,可按第32页表7.3.10规定采用;∑G--作用在闸室上的全部竖向荷载(KN);∑H--作用在闸室上的全部水平向荷载(KN);PmPmax=η=1/2(Pmax Kcφ项目12345678910111213B12 Pmin= Pmax=η=1/2(Pmax注作项24567891011121314B12 Pmin= Pmax=η=1/2(Pmax Kcφ基本资料:B AGM 偏心距e=M/G1222824827-8609.6638-0.34678631Pmin=G/A (1+6e/B )=90.00950921Pmax=G/A (1-6e/B )=127.7711925<500η=Pmax/Pmin= 1.419529933<1.51/2(Pmax+Pmin)=108.8903509满足稳定要求设计钢筋砼容重为25KN/m3,地基允许承载力为0.5mpaB AGM偏心距e=M/Gφ1222822541.6-7767.7857-0.344597830Pmin=G/A (1+6e/B )=81.8320489Pmax=G/A (1-6e/B )=115.9012844<500η=Pmax/Pmin= 1.416331205<1.51/2(Pmax+Pmin)=98.86666667Kc=(Tan φ∑G+Co*A)/∑H=5.852273911>1.2满足稳定要求B AGM 偏心距e=M/G1222820877.8-12234.5848-0.58600929Pmin=G/A (1+6e/B )=64.73906842Pmax=G/A (1-6e/B )=118.3995281<500η=Pmax/Pmin= 1.828872904<2.01/2(Pmax+Pmin)=91.56929825满足稳定要求注:由于本闸的正常挡水位为1625.6m ,当水位上涨时将分级开闸泄水冲沙,所以当水位在校核洪水位时作用在闸室上的水平力很小,所以只需对此工况的地基承载力进行复核。

水闸稳定计算PPT课件

水闸稳定计算PPT课件
H
(5-39)
式中 f’——闸室基底面与岩石地基之间的抗剪断摩擦系 数,查表5—17;
C’——闸室基底面与岩石地基之间的抗剪断粘结力, kPa,查表5—17
闸室稳定性的判断,要求 : 土基上: KC [K土 ] [K土]查表5-13 岩基上: KC [K岩 ] [K岩]查表5-14
7
2.提高闸室抗滑稳定的工程措施
理论5-3 水闸的稳定分析与地基 处理 (教材5-7,p219)
一、闸室的稳定计算
(一)荷载及其组合
作用在水闸上的荷载 主要有自重、水重、水平 水压力、淤沙压力、扬压 力、浪压力、土压力等。
水闸正常挡水时的荷载计算简图1
1.水平水压力。作用在铺盖与底板连接处的水平水压 力因铺盖所用材料不同而略有差异。如图5—25 (a)和(b)所示。
3
荷载组合 荷载组合分为基本组合与特殊组合两类。
基本组合:由基本荷载组成; 特殊组合:由基本荷载和一种或几种特殊荷载 组成。
荷载见表5—19
4
5
(二)闸室抗滑稳定计算
1.计算公式
(1)土基上水闸闸室沿底板与地基间滑动
对于小型水闸
Kc

f G H
(5-37)
对于大、中型水闸
Kc tg0G C0 A (5-38)
H
式中: G——作用在闸室单元上总的垂直力;
H——作用在闸室单元上总的水平力;
f——闸室底面与土基间的摩擦系数, 根据现场 试验资料选取,初
设时参见表5-15。
0、C0——分别为闸基土体的内摩擦角和凝聚力,见表5-16;
A——闸室单元的底面积。
6
(2)岩基上水闸闸室沿底板与地基间滑动
f 'G C ' A Kc

水闸稳定分析和地基处理

水闸稳定分析和地基处理

•增加闸室底板齿墙深度;
•增加铺盖长度或帷幕灌浆深度,或在不影响防渗安全的条
件下,将排水设施向水闸底板靠近;
• 利用钢筋混凝土铺盖作为阻滑板,但闸室自身的抗滑稳定安 全系数不应小于1.0,阻滑板应满足抗裂要求 ; •增设钢筋混凝土抗滑桩或预应力锚固结构。
W1
W2
U
S 0.8 f (W1 W2 U )
(2)基底应力和闸室沉降的验算
对于结构布置及受力情况对称的闸孔,闸基上 下游端的地基压应力:
pmax
min
G M A W
对于结构布置及受力情况不对称的闸孔,闸基上 下游端的地基压应力:
pmax
min
G M A Wx
x
M Wy
y
( pmax pmin ) p [ p] 2
(1)表层抗滑稳定验算 土基上水闸沿地基面的抗滑稳定安全系数
Kc f G
H
Kc
tan 0 G c0 A
H
岩基上水闸沿地基面的抗滑稳定安全系数
Kc f G
H
Kc
f G C A
H
提高闸室抗滑稳定性的措施
•将闸门位置略向低水位一侧移动,或将底板向高水位一侧加长 •适当增大闸室结构尺寸;
第六节
闸室的稳定分析和地基处理
教学内容:闸室的稳定分析;沉降校核;地基处理。
教学要求:了解闸基整体稳定的验算、沉降校核的
基本方法、地基处理的种类及适用条件。
掌握闸室稳定性及其安全指标;
闸室浅层抗滑稳定计算方法。
教学重点:闸室浅层抗滑稳定计算。
一、荷载及其组合
自重 水重 水平水压力
扬压力
浪压力 泥沙压力 土压力 地震力

水闸稳定计算案例

水闸稳定计算案例

水闸稳定计算案例一、工程概况。

咱们来看看这个水闸啊,它在一条挺重要的小河上。

这个水闸的任务可不小呢,要控制水位、调节流量,就像一个严格的交通警察在指挥着水流的来来去去。

水闸是混凝土结构的,闸室的长度有个20米,宽度呢,10米。

上下游的水位差有时候大,有时候小,最大的时候能到5米呢,就像水在上下游之间搭起了一个5米高的小瀑布(当然是被闸挡住流不过去的时候)。

二、荷载计算。

# (一)自重。

首先是水闸自身的重量,这就像它自己的体重一样,是个稳定的力量。

闸室的混凝土墙啊、底板啊,都是实打实的重量。

我们根据混凝土的体积和密度(混凝土密度大概是2500千克每立方米),算出闸室结构的自重是500吨。

这就好比一个超级大胖子稳稳地坐在那里,不容易被推倒。

# (二)水压力。

1. 上游水压力。

上游的水可是个有劲儿的家伙,它对闸室产生的压力可不能小看。

根据水力学的公式,水压力等于水的密度乘以重力加速度乘以水深。

这里上游水深4米,水的密度是1000千克每立方米,重力加速度按9.8米每二次方秒算。

那上游水压力在闸室垂直面上的分布就像一个三角形,底部压力最大,顶部压力为0。

算出来总的上游水压力就有800千牛呢,这感觉就像有一群大力水手在推着闸室的上游面。

2. 下游水压力。

下游也有水啊,不过水位低一点,水深2米。

同样按照上面的公式算下来,下游水压力在闸室垂直面上的分布也是个三角形,总的下游水压力是200千牛。

就好像下游也有几个小不点在推着,但是力量比上游的小多了。

# (三)扬压力。

扬压力这个东西有点狡猾,它是因为水在闸基下渗流产生的向上的压力。

咱们想象一下,水在闸基下面偷偷摸摸地往上顶,想要把闸室往上抬起来呢。

通过一些专业的计算方法(比如说渗透系数、地下水位等参数的分析),算出来扬压力的合力是300千牛。

这就像有个看不见的小恶魔在下面使坏,想把闸室给顶歪了。

三、稳定计算。

# (一)抗滑稳定计算。

1. 计算公式。

抗滑稳定就是看闸室能不能抵抗住水平方向的滑动。

水闸闸室的稳定分析和地基处理

水闸闸室的稳定分析和地基处理

水闸闸室的稳定分析和地基处理闸室在运用、检修或施工期都应该是稳定的。

在运用期,闸室受到水平推力等荷载作用,有可能沿着地基面滑动(通常称为表层滑动),还可能连同一部分地基土体滑动(通常称为深层滑动)。

闸室竣工时,一般地,闸室地基表面所受的应力很大,或者应力分布很不均匀,这不但使闸室高程降低,而且会使闸基倾斜甚至断裂,地基也有可能失去稳定性。

因此,必须验算闸室的稳定性,以保证在各种情况下闸室均能安全可靠地运用。

1荷载计算及组合1.1荷载计算闸室荷载主要有以下7种(图7-44)。

1. 自重自重指闸室自身重力,包括底板、闸墩、胸墙、工作桥及桥墩、交通桥、便桥、闸门及启闭设备等的重力。

2. 水重水重指闸室范围内作用在底板上面的水体重力。

3. 水平水压力水平水压力指胸墙、闸门及闸墩侧面所受到的水平水压力。

当有钢筋混凝土铺盖时(图7-45),止水片以上的水平水压力按静水压力分布考虑;止水片以下缝内的水平水压力按下述方法计算:由于渗流区内任一点的水压力强度等于该点的静水压强(相对于下游水位)与渗透压强之和,在止水片以下的缝内水流状态可以认为是静止的,所以,缝内渗透压强处处相等,其数值即为缝底这一点(图7-45中的第7点)的渗透压强,而缝内静水压强按一般方法计算。

图 7-44 闸室荷载(第5版 图7-41 图名相同)1p 、2p 、3p —水平水压力;zl p —波浪压力;G —底板重;1G —启闭机重;2G —工作桥及桥墩重;3G —胸墙重;4G —闸墩重;5G —闸门重;6G —交通桥重;1w G 、2w G —水重;b p —扬压力;fb p —浮托力;sb p —渗透压力;f F —地基反力;p h —波浪高度;z h —波浪中心线超出计算水位的高度;m L —波浪长度图 7-45 闸室上游水平水压力计算图(单位:m )图7-45所示,已知第7点渗透压强为31.9kPa ,第8点渗透压强为30.5kPa ,通过上述计算即可获得闸室上游面各点水平水压强及其分布情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

允许值
2 1.1 1.25
备注 偏外河侧
<[η] >[Kf] >[Kc]
外河为上游,内河为下游)
0.6
排架长1
0.6
0.3
排架宽1
0.3
2
排架高1
3.9
2
排架长2
1.3
0.3
排架宽2
0.3
0.39
排架高2
0.4
3.69
排架长3
0.3
2
排架宽3
4
0.3
排架高3
0.4
5.4
排架数
2
4
6
10.7
力臂(m) 6.85 6.85 6.10 12.95 6.10 12.95 0.85 3.95 12.95 6.40 7.75 7.75 6.80 10.36 11.20 9.20 7.95 9.20 7.75 7.95 3.95 3.95 0.53 ΣM=
满足要求 满足要求 满足要求源自上游交通桥高0.4
电机层楼板长1
边墩数
2
上游交通桥墩面积
0.1
电机层楼板长2
边墩高1
5
下游工作桥长
1.5
电机层楼板宽
边墩高2
4
下游工作桥宽
6
闸室房屋楼板厚
边敦厚
0.5
下游工作桥高
0.2
闸室房屋楼板长
边墩顺水流长度1
12.2
后墙高
5
闸室房屋楼板宽
边墩顺水流长度2
1.5
后墙厚
0.4
房屋长
中墩高1
5
后墙宽
体积(m3) 57.60 14.60 143.10 23.00
ΣG=
垂直力(kN)
576.00
146.00
1431.00
230.00
5245.26
1541.25 1798.13
基本组合(设计水位)运行期
数值
单位
0.21
m
55.82
kN/m2
46.28
kN/m2
51.05
kN/m2
1.21
2.57
2.54
平均应力P 不均匀系数η
外河水位 内河水位 底板顶高程
泵室外河侧水重 泵室内河侧水重 闸室外河侧水重 闸室内河侧水重 外河侧水压力 内河侧水压力
浮托力 渗透压力
项目 偏心距e=B/2-∑MB/∑G 应力Pmax=∑G/A×(1+6×e/B) 应力PmIn=∑G/A×(1-6×e/B)
平均应力P 不均匀系数η 抗浮稳定安全系数Kc= 抗滑稳定安全系数Ko=
备注 偏内河侧
满足要求
期 7.95 5.75 4
水平力(kN)
759.38
721.88 备注 偏外河侧
37.50
力臂(m) 弯矩(kN·m)
3.20 10.05 3.98 10.83 1.50 0.33 6.85 4.57 ΣM=
1843.20 1467.30 5688.23 2489.75 1139.06 -12.50 -10557.56 -8211.44 34810.12
75.00 51.00 285.00 45.00 100.00 24.00 18.00 5.85 55.35 1.00 162.00 66.90 642.00 48.00 10.00 486.90 363.83 9.00 6201.64
备注 偏内河侧
应力Pmax=∑G/A×(1+6×e/B) 应力Pmin=∑G/A×(1-6×e/B)
尺寸数据(顺水流方向为长,垂直水流方向为宽,竖直方向为高)(外河为上游,内河为下游)
底板顺水流长
13.7
上游工作桥长
1.7
电机梁高
底板宽
7.5
上游工作桥宽
6
电机梁长
底板厚
0.5
上游工作桥高
0.2
电机梁宽
齿坎矩形长
0.4
上游交通桥长
4.5
电机梁数
齿坎三角形长
0.3
上游交通桥宽
6
电机层楼板厚
齿坎厚
0.3
72.17 48.54 60.36 1.49
kN/m2 kN/m2
2
<[η]
基本组合(设计水位)运行期
3.5
泵室外河侧长度
6.4
闸室外河侧长度
0
泵室内河侧长度
7.3
闸室内河侧长度
-1
泵室净宽
2
闸室净宽
容重(kN/m3)
10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
2
房屋宽
中墩高2
4
水泵梁高
0.4
中敦厚
0.5
水泵梁长
0.3
中墩顺水流长度1
12.2
水泵梁宽
2
中墩顺水流长度2
1.5
水泵梁数
4
序号 1
2
3
4 5
6
7 8 9 10 11 12 13 合计
项目 偏心距e=B/2-∑MB/∑G
站身稳定计算(对上游齿)
名称
容重(kN/m3)
体积(m3)
底板
25.00
51.38
齿坎
25.00
1.24
边墩1
25.00
61.00
边墩2
25.00
6.00
中墩1
25.00
30.50
中墩2
25.00
3.00
上游工作桥
25.00
2.04
上游交通桥
25.00
11.40
下游工作桥
25.00
1.80
后墙
25.00
4.00
水泵梁
25.00
0.96
电机梁
25.00
0.72
电机层地面底板1
25.00
弯矩(kN·m) 8797.97 211.92 9302.50 1942.50 4651.25 971.25 43.35 1125.75 582.75 640.00 186.00 139.50 39.75 573.15 11.20 1490.40 531.86 5906.40 372.00 79.50 1923.26 1437.11 4.73 40964.08
0.23
电机层地面底板2
25.00
2.21
配电箱
闸室地面底板
25.00
6.48
排架
25.00
2.68
房屋
10.00
64.20
水泵
手动葫芦
汽车与人均布荷载
汽车集中荷载
闸门
25.00
1.57
ΣG=
基本组合(完建期)
数值
单位
0.24
m
允许值
重量(kN) 1284.38
30.94 1525.00 150.00 762.50
相关文档
最新文档