青岛版七年级数学上册《线段的比较与作法》

合集下载

青岛版数学—七上—1.4线段的比较

青岛版数学—七上—1.4线段的比较

线段的比较与作法【要点梳理】要点一:线段的比较★度量法:用刻度尺量出两条线段的长度,再比较长短.★叠合法:已知两条线段,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.★截取法:比较两条线段的长短,还可以借助圆规来进行.要点诠释:当两条线段的长短差别很小而又不能放在一起比较时,选用度量法;当两条线段能够放在一起而不需要知道相差的具体数值时,选用叠合法或截取法.【例1】如图所示,(1)+=BC AC ;(2)-=AD CD ;(3)=CD BC -;(4)=+BC AB CD -.【变式1.1】如图所示,CD AB =,则AC 与BD 的大小关系是( ).A .BD AC >B .BD AC < C .BD AC = D .无法确定【变式1.2】已知线段AB=7厘米,在直线AB 上画线段BC=1厘米,那么线段AC=________.【变式1.3】如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有( )A .7个B .6个C .5个D .4个要点二:线段的基本性质★基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图6所示,在A ,B 两点所连的线中,线段AB 的长度是最短的.要点诠释:(1)连接两点的线有无数条,其中线段的长度最短.(2)连线是指以两个点为端点的任意线,包括线段、折线和曲线.(3)数学上连接AB 是指画线段AB.【例2】“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( )A .两点确定一条直线B .直线比曲线短C.两点之间直线最短D.两点之间线段最短【变式2.1】如图,从A到B有三条路径,最短的路径是③,理由是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线【变式2.2】有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④【变式2.3】如图所示,一条河流经过A,B两地,为缩短河道,现将河流改道,怎样才能使两地之间河道最短?要点三:两点间的距离★两点之间线段的长度,就叫做这两点间的距离.★测量两点间的距离,就是测量两点之间的线段的长度.要点诠释:线段是一个图形,两点间的距离是指线段的长度,是一个数值,因此,应还说“A、B两点之间的距离是线段AB的长度”.要点四:“作一条线段等于已知线段”的两种方法★法一:用圆规作一条线段等于已知线段.例如:如图所示,用圆规在射线AC上截取AB=a.★法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a的长度,再画一条等于这个长度的线段.【例3】如图,C是线段AB外一点,按要求画图:(1)画射线CB ;(2)反向延长线段AB ;(3)连接AC ,并延长AC 至点D ,使AC CD =.要点五:线段的中点★定义:把一条线段分成两条相等线段的点,叫做线段的中点.★表示:如图所示,点C 是线段AB 的中点,则AB CB AC 21==,或BC AC AB 22==.★判定:如果点C 在线段AB 上且AB CB AC 21==,那么点C 就是线段AB 的中点. ★三等分点、四等分点:将线段分成相等的三条线段,得到三等分点,还可以得到四等分点.【例4】如图,若cm CB 4=,cm BD 7=,且D 是AC 的中点,则=AC cm .【变式4.1】点P 在线段EF 上,现有四个等式①PF PE =;②PF PE 21=;③PF EF =21;④PF PE =2;其中能表示点P 是EF 中点的有( )A .4个B .3个C .2个D .1个【变式4.2】如图,已知cm AB 2=,延长线段AB 至点C ,使AB BC 2=,点D 是线段AC 的中点,用刻度尺画出图形,并求线段BD 的长度.【变式4.3】已知点C 是线段AB 上一点,D 是AC 的中点,cm BC 4=,cm BD 7=,则=AB ______•cm ,=AC _______cm .【变式4.4】已知:如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若线段6=AC ,4=BC ,求线段MN 的长度;(2)若a AB =,求线段MN 的长度;(3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上”,(1)小题的结果会有变化吗?求出MN 的长度.典型例题题型一:比较线段的长短【练习1.1】如图所示,已知B ,C 两点在线段AD 上,=AC _____=+BC _____-______,=-+BC BC AC ______.【练习1.2】线段cm AB 4=,在线段AB 上截取cm BC 1=,则AC = cm .【练习1.2】如果线段13=AB 厘米,17=+MB MA 厘米,那么下面说法正确的是( ).A .M 点在线段AB 上 B .M 点在直线AB 上C .M 点在直线AB 外D .M 点可能在直线AB 上,也可能在直线AB 外【练习1.3】已知线段cm AB 10=,直线AB 上有一点C ,且cm BC 6=,AC 的长为 .【练习1.4】如图,下列关于图中线段之间的关系一定正确的是( )A .c b x x -+=22B .b a b c 22-=-C .b c a b x -+=+2D .b c a x 232+=+【练习1.5】下列说法中正确的有( )①射线比直线小一半;②连接两点的线段叫两点间的距离;③过两点有且只有一条直线;④两点之间所有连线中,线段最短A .1个B .2个C .3个D .4个 【练习1.6】如图,线段DE AB =,点C 为线段AE 的中点,下列式子不正确的是( )A .CD BC =B .AB AE CD -=21 C .CE AD CD -= D .DE CD = 【练习】如图,C 是线段BD 的中点,2=AD ,5=AC ,则BC 的长等于 .【练习】如图,点C 、D 、E 是线段AB 上的三个点,下面关于线段CE 的表示,其中正确的有 .①DE CD CE +=;②EB CB CE -=;③DB CB CE -=;④AC DE AD CE -+=【练习】如图,点A 、B 、C 、D 在直线上,则+=BC BD =AD ﹣ .【练习】如图,AB BC 41=,AD AC 41=,若cm BC 1=,则CD 的长为 .【练习】已知线段cm AB 8=,点C 是线段AB 所在直线上一点.下列说法:①若点C 为线段AB 的中点,则cm AC 4=;②若cm AC 4=,则点C 为线段AB 的中点;③AC >BC ,则点C 一定在线段AB 的延长线上;④线段AC 与BC 的长度和一定不小于8cm ,其中正确的有 (填写正确答案的序号).题型二:线段的性质:两点之间线段最短【练习】郑万铁路万州往郑州方向的首座隧道“天城隧道”于2018年11月30日贯通,早上品尝重庆小面,晚上享用北京烤鸭,以后这都不是梦,建造隧道的目的用下面哪个数学知识来解释最恰当( )A .经过两点有且只有一条直线B .过一点可以画多条直线C .两点之间线段最短D .连接两点之间线段的长度是两点之间的距离【练习】某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A .两点之间线段最短B .两点确定一条直线C .垂线段最短D .经过直线外一点,有且只有一条直线与这条直线平行【练习】下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④D.因为直线比曲线和折线短【练习】下列生活现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象个数有()A.1B.2C.3D.4【练习】下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是()A.1个B.2个C.3个D.4个【练习】如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B【练习】如图,是从甲地到乙地的四条道路,其中最短的路线是,理由是.【练习】“在山区建设公路时,时常要打通一条隧道,就能缩短路程”,其中蕴含的数学道理是.【练习】如图,从教室到图书馆总有少数同学不走人行道而横穿草坪,虽然明知不对,可他们还是要这样做,用我们所学的数学知识可以解释他们的动机:.【练习】如图是校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是.【练习】为全面实施乡村电气化提升工程,改造升级农村电网,今从A地到B地架设电线,为了节省成本,工人师傅总是尽可能的沿着线段AB架设,这样做的理由是.【练习】如图所示,在△ABC中一定存在下面关系:AB+AC>BC,你能说明原因吗?由此你又能得到什么结论呢?【练习】如图所示,A,B是两个村庄,若要在河边L上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.题型三:线段中点应用【练习】下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM 等于线段BM ,则点M 是线段AB 的中点;⑤连接两点的线段叫做这两点之间的距离.其中正确的个数为( )A .1个B .2个C .3个D .4个【练习】下列说法中,正确的是( )A .过两点有且只有一条直线B .连接两点的线段叫做两点间的距离C .两点之间,直线最短D .到线段两个端点距离相等的点叫做线段的中点【练习】下列说法正确的个数是( )①射线AB 与射线BA 是同一条射线;②两点确定一条直线;③两点之间直线最短;④若AB =BC ,则点B 是AC 的中点.A .1个B .2个C .3个D .4个【练习3.1】C 是线段AB 上的中点,D 是线段BC 上一点,则下列说法不正确的是( ).A .BD AC CD -=B .BD AB CD -=21 C .BC AD CD -= D .BC CD 21= 【练习3.2】如果点B 在线段AC 上,那么下列表达式中:①AC AB 21=,②BC AB =,③AB AC 2=,④AC BC AB =+.能表示B 是线段AC 的中点的有( ).A .1个B .2个C .3个D .4个【练习】点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是( )A .BC AC =B .AB BC AC =+ C .AC AB 2=D .AB BC 21=【练习】如图,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( )A .BD AC CD -=B .BC CD 21= C .BD AB CD -=21 D .BC AD CD -= 【练习】已知线段AB ,画出它的中点C ,再画出BC 的中点D ,再画出AD 的中点E ,再画出AE 的中点F ,那么AF 等于AB 的( )A .41B .83C .81D .163 【练习】两根木条,一根长20cm ,另一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A .2cmB .4cmC .2cm 或22cmD .4cm 或44cm【练习】如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若m EF =,n CD =,则AB =( )A .n m -B .n m +C .n m -2D .n m +2【练习】已知线段cm AB 8=,点C 是直线AB 上一点,cm BC 2=,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( )A .5cmB .5cm 或3cmC .7cm 或3cmD .7cm【练习】如果A 、B 、C 三点在同一直线上,且线段cm AB 8=,cm BC 6=,若M 、N 分别为AB 、BC 的中点,那么M 、N 两点之间的距离为( )A .7cmB .1cmC .7cm 或1cmD .无法确定【练习】如图,若cm CB 4=,cm DB 7=,且D 是AC 的中点,则AC = cm .【练习】在直线l 上取A 、B 、C 三点,使得cm AB 4=,cm BC 3=,如果点O 是线段AC 的中点,则线段OC 的长度为 cm .【练习】已知A 、B 、C 三点在同一直线上,cm AB 16=,cm BC 10=,M 、N 分别是AB 、BC 的中点,则MN 等于 .【练习】某公司员工分别在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C ,区有10人,三个区在一直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在 区.【练习】如图,C 是线段AB 上任意一点,M ,N 分别是AC ,BC 的中点,如果cm AB 12=,那么MN 的长为 cm .【练习】如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点.cm AC 3=,cm CP 1=,线段PN = cm .【练习】如图,已知cm AB 8=,cm BD 3=,C 为AB 的中点,则线段CD 的长为 cm .【练习】如图,若D 是AB 的中点,E 是BC 的中点,若8=AC ,5=BC ,则AD = .【练习】已知:C 为线段AB 的中点,D 在线段BC 上,且7=AD ,5=BD ,求:线段CD 的长度.【练习】如图已知点C 为AB 上一点,cm AC 12=,AC CB 32=,D 、E 分别为AC 、AB 的中点,求DE 的长.【练习】如图,已知C 点为线段AB 的中点,D 点为BC 的中点,cm AB 10=,求AD 的长度.【练习】如图:线段cm AB 14=,C 是AB 上一点,且cm AC 9=,O 是AB 的中点,求线段OC 的长度.【练习】如图,O 是AC 的中点,M 是AB 的中点,N 是BC 的中点,试判断MN 与OC 的大小关系.【练习】如图所示,已知CD AB BC 4131==,点E ,F 分别是AB ,CD 的中点,且60=EF 厘米,•求AB ,CD 的长.【练习】如图所示,已知线段80=AB 厘米,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14=NB 厘米,求PA 的长.【练习】如图,已知B 是线段AC 的中点,D 是线段CE 的中点,若4=AB ,AC CE 43=,求线段BD 的长.【练习】如图,C 为线段AD 上一点,点B 为CD 的中点,且cm AD 8=,cm BD 1=,(1)求AC 的长;(2)若点E 在直线AD 上,且cm EA 2=,求BE 的长.【练习】如图所示,点C 在线段AB 上,线段6=AC 厘米,4=BC 厘米,点M ,N 分别是AC ,•BC 的中点.(1)求线段MN 的长度.(2)根据(1)的计算过程和结果,设a BC AC =+,其他条件不变,你能猜测出MN 的长度吗?请用一句简洁的话表述你发现的规律.【练习】如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有AC PD 2=,请说明P 点在线段AB 上的位置;(2)在(1)的条件下,Q 是直线AB 上一点,且PQ BQ AQ =-,求ABPQ 的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有AB CD 21=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PN PM -的值不变;②ABMN 的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【练习】如图,线段12=AB ,动点P 从A 出发,以每秒2个单位的速度沿射线AB 运动,M 为AP 的中点.(1)出发多少秒后,AM PB 2=?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②PN MA +的值不变,选择一个正确的结论,并求出其值.【练习】【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离丨丨b a AB -=,线段AB 的中点表示的数为2b a +. 【问题情境】如图,数轴上点A 表示的数为﹣2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).【综合运用】(1)填空:①A 、B 两点间的距离AB = ,线段AB 的中点表示的数为 ;②用含t 的代数式表示:t 秒后,点P 表示的数为 ;点Q 表示的数为 .(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,AB PQ 21=; (4)若点M 为P A 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【练习】【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点 这条线段的“巧点”;(填“是”或“不是”).(2)若cm AB 12=,点C 是线段AB 的巧点,则AC = cm ;【解决问题】(3)如图②,已知cm AB 12=.动点P 从点A 出发,以2cm /s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm /s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q 三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由题型四:线段等分【练习】已知点M 是线段AB 的三等分点,E 是AM 的中点,cm AB 12=,则线段AE 长 . 【练习4.1】如图所示,C 和D 是线段的三等分点,M 是AC 的中点,那么CD =______BC ,AB =______MC .【练习】已知线段AB AD 32=,AC AE 32=,且6=BC ,则DE = .【练习】如图,已知BC AD CD 5141==,E 、F 分别是AC 、BC 的中点,且cm BF 40=,则EF 的长度为 cm .【练习】如图,点D 把线段AB 从左至右依次分成1:2两部分,点C 是AB 的中点,若3=DC ,则线段AB 的长是( )A .18B .12C .16D .14【练习】如图,线段AB 表示一条对折的绳子,现从P 点将绳子剪断.剪断后的各段绳子中最长的一段为30cm .若BP AP 32=,则原来绳长为( )cm .A .55cmB .75cmC .55或75cmD .50或75cm 【练习】如图,将一根绳子对折以后用线段AB 表示,现从P 处将绳子剪断,剪断后的各段绳子中最长的一段为60cm ,若PB AP 32=,则这条绳子的原长为( )A .100cmB .150cmC .100cm 或150cmD .120cm 或150cm 【练习】如图,将一根绳子对折后用线段AB 表示,现从P 处将绳子剪断,剪断后的各段绳子中最长的一段为60cm ,若PB AP 32=,则这条绳子的原长为 cm .【练习】将一张长方形的纸对折,如图可以得到一条折痕,继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_______条折痕,如果对折n 次,可以得到______条折痕.【练习】已知一直线上有A 、B 、C 三点,且线段AB =5,线段AC =2,D 为线段BC 上一点,且BC BD 31=,则CD 的长为 . 【练习】已知线段AB =8cm ,点C 在直线AB 上,AB AC 41=,则BC = cm . 【练习】如图,线段CD 在线段AB 上,且2=CD ,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .31【练习】如图,点C 为线段AB 的中点,BD AD 2=,则CD :AB 的值为 .。

青岛版数学七年级上册_《线段的比较与作法》学习指导

青岛版数学七年级上册_《线段的比较与作法》学习指导

《线段的比较与作法》学习指导学习目标1、理解“两点之间的所有连线中,线段最短”的性质。

2、能利用直尺、圆规比较两条线段的长短.3、能用刻度尺度量的方法画一条线段等于已知线段。

学习重点能借助直尺、圆规等工具比较两条线段的长短,能用圆规作一条线段等于已知线段。

学习难点借助具体情境,了解“两点之间的所有连线中,线段最短”的性质。

学习要点1、线段的基本性质:所有连接两点的线中,线段最短。

即:两点之间线段最短。

2、两点的距离:连接两点间的线段的长度,叫做这两点的距离。

3、线段的中点及等分点:图中,点B 把线段AC 分成两条相等的线段,点B 叫做线段AC 的中点。

这时有,AC=2AB=2BC 。

点B 和C 把线段AD 分成三条相等的线段,点B 和点C 叫做线段AD 的三等分点,等等。

学习指导(一)自主学习阅读教材第18页~第21页,完成下列问题:1、两点之间的所有连线中,______最短,简单地说“两点之间,_______最短。

”2、两点之间线段的______,叫做这两点间的距离。

3、如图,如果点M 把线段AB 分成相等的两条线段______与______,那么点M 叫做线段AB 的中点.这时AM =______=21________。

(二)合作交流1、如图,如何比较线段AB 与线段CD 的长度? D C B A2、比较图中线段AB ,BC 和CA 的长短。

CB A3、如图,已知线段AB ,怎样画出一条线段等于线段AB ?画一画。

B A4、如图,已知线段AB ,画出它的中点C 。

B A巩固练习 1、画一条线段AB ,使它的长度等于已知线段a 。

a2、如图,用刻度尺量出图中每两点间的距离。

3、如图,如果点C为线段AB的中点,那么AB=2________=2_______。

AC B当堂测试1、如图,从公园甲到公园乙的三条路线中,最短的是_____,这是因为________________。

2、下列说法中,正确的有()①过两点有且只有一条直线;②连接两点的线段叫做两点间的距离;③两点之间,线段最短;④如果点C为线段AB的中点,则BCAC=。

青岛版数学七年级上册1.4《线段的比较与作法》教学设计

青岛版数学七年级上册1.4《线段的比较与作法》教学设计

青岛版数学七年级上册1.4《线段的比较与作法》教学设计一. 教材分析《线段的比较与作法》是青岛版数学七年级上册1.4节的内容,本节内容是在学生已经掌握了线段的性质和基本概念的基础上进行讲解的。

本节主要让学生了解和掌握线段的比较方法和作法,进一步培养学生的空间想象能力和实际操作能力。

教材中安排了丰富的例题和练习题,可以帮助学生更好地理解和掌握知识点。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于线段的概念和性质已经有了一定的了解。

但是,学生在学习过程中可能会对线段的比较方法和作法产生混淆,因此,教师在教学过程中需要耐心引导,让学生逐步理解和掌握。

三. 教学目标1.让学生了解和掌握线段的比较方法和作法。

2.培养学生空间想象能力和实际操作能力。

3.提高学生分析问题和解决问题的能力。

四. 教学重难点1.线段的比较方法。

2.线段的作法。

五. 教学方法1.采用直观演示法,让学生直观地了解线段的比较和作法。

2.采用案例分析法,分析线段的比较和作法在实际问题中的应用。

3.采用小组讨论法,让学生在讨论中加深对线段比较和作法的理解。

六. 教学准备1.准备相关的教学PPT,展示线段的比较和作法的相关知识点。

2.准备一些实际的案例,用于分析线段的比较和作法的应用。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一些线段的图片,让学生观察并回答以下问题:a.这些线段有什么特点?b.如何比较这些线段的长度?通过这些问题,引出本节课的主题——线段的比较与作法。

2.呈现(10分钟)讲解线段的比较方法和作法,让学生了解和掌握以下知识点:a.线段的比较方法:直接比较、工具比较(尺子、直尺等)。

b.线段的作法:利用直尺和圆规作线段、利用勾股定理作线段等。

通过PPT和实物演示,让学生直观地了解线段的比较和作法。

3.操练(10分钟)让学生分组进行实际操作,练习线段的比较和作法。

青岛版七年级数学上册 1.4.1《线段的比较与作法》教学设计

青岛版七年级数学上册 1.4.1《线段的比较与作法》教学设计

1.4.1线段的比较与作法教学设计教学目标:1、能利用直尺、圆规比较两条线段的长短,并会用符号“>”“<”“=”表示;2、掌握“两点之间线段最短”的基本性质,理解两点间距离的意义,能度量两点之间距离。

教学重难点:重点:比较两条线段的长短难点:借助具体情境,了解“两点之间的所有连线中,线段最短”的性质课时安排:1课时教学过程:导入环节:(一)导入新课:1、怎样比较两个同学的高矮? (请同桌两同学站起来各自发表意见)2、要比较两条绳子的长短,你能想出几种方法?(用两根绳子作教具)3、你能用眼睛准确看出下列图形中线段a与b的长短吗?学习本节以后你就会清楚了。

(二)展示学习目标:(多媒体展示学习目标,指导学生观看)(设计意图:让学生明确本节课的学习目标,教师强调学习重点.)课内助学任务一:比较两条线段的长短(教学目标1)活动一:让学生结合学案自学课本第19页,并在学案上填空,引导学生总结比较两条线段长短的方法。

跟踪练习教师活动:利用课本19页,引导学生学会总结方法.评价要点:通过倾听学生的语言叙述,观察跟踪自学的情况,判断目标1的达成情况,要求全部学生达标.(设计意图:充分利用教材“实验与探究”培养学生探究和自学能力.)任务二:线段的基本性质及两点间距离(学习目标2)活动二:展示问题,学生思考,分组交流。

教师活动:课件展示课本19页的问题,要求学生独立思考,合作探究,分组交流,找学生代表回答。

学生活动:画图,交流,猜想结论:(设计意图:让学生独立思考、自主探索和合作交流,让学生掌握线段的性质.)归纳总结1、比较线段大小常用的方法有:、。

2、线段的基本性质。

3、两点之间线段的______,叫做这两点间的距离。

学生活动:理解并背诵线段的基本性质和两点间距离的概念.评价要点:通过观察学生课堂展示、借助小组统计,评价对目标2的达成情况. 注意评价学生书写格式是否规范、叙述是否严谨、简明。

(设计意图:让学生通过自己动手操作、猜想、合作探究,从而总结归纳比较两条线段的方法和线段的性质.)任务三:从“数”的角度去比较两条线段的长短精讲例题:课本P20例1跟踪练习:1.比较下列线段的长短(填“<”,“>”,或“=”).①AD BC;②AB CD;③AC BD;④AO CO.2.如图,直线MN表示一条铁路,铁路两旁各有一点A和B表示工厂,要在铁路近处建一个货物中转站,使它到两厂的距离和最短,问这个货站应建在何处?NMBA评价要点:通过观察学生课堂听讲状态和即时反馈情况,评价对目标1、2的达成情况.(设计意图:注重在具体问题中比较两条线段长短的方法的灵活运用,借助具体情境理解线段的基本性质,引导学生学会运用所学知识分析解决问题,培养解题习惯,感悟分类讨论、数形结合思想.)任务四:课堂小结:本节课你学习了哪些知识?你学会了解决什么类型的问题?感受到哪些数学思想方法?课末测学(时间:5分钟,分数:20分)1.如果线段AB=5cm,BC=3cm,且A,B,C三点在同一条直线上,那么A,C两点之间的距离是.2.如图,一根10cm长的木棒,棒上有两个刻度,把它作为尺子,量一次要量出一个长度能量出的长度有().(A)7个(B)6个(C)5个(D)4个链接中考:(ppt)联系中考,让学生感受中考命题原则和评价标准.评价要点:通过纸笔测试,及时反馈订正,评价对目标的达成情况.(设计意图:及时了解学生对所学知识的运用情况.)布置作业:(分层作业)必做:课本20 练习T1、T2;P22习题1.4 T1、T2选做:P20练习T3习题1.4 T3板书设计:1.4线段的比较与作法(第1课时)例1.(讲解示范)学生板演:1.比较线段的长短的方法:叠合法(形)和度量法(数)2.线段的基本性质:两点之间线段最短。

青岛版七年级数学上册《线段的比较与作法》课件

青岛版七年级数学上册《线段的比较与作法》课件
想一想:
问题(1):小狗、小猫为什么都选 择直的路?
问题(3):你怎样比较线段AB、CD的长短?
A B D
问题(2)C:小狗跑得远,还是小猫跑得
远?你是怎么比较的?
(在此问题中,把小狗、小猫、骨头和鱼看作点, 路径看作线段,其实质就是比较两条线段的长短)
线段的比较:
A
C AB>CD
B D
线段的比较: 叠合法
谈谈这节课你的收获? 1.线段的基本性质:两点之间线段最短. 2.两点之间的距离:两点之间线段的长度. 3.线段的两种比较方法:叠合法和测量法. 4.线段的中点的概念及表示方法.
解:三种情形
AB
AB
AB
CD
CD
CD
2.下列叙述正确吗?为什么?
(1)线段AB叫做A,B两点间的距离; √
(2)经过点A和点B的直线的长度叫做A,B两
点间的距离.
×
3.如图,MN表示一条河流,A,B两点表示两个村庄 ,它们分别在河流两旁.现准备在河上建一座桥,使 两村人们来往最便捷.小亮想,如果能在MN上找到 一点D,使D点与A,B两点的距离相等,那么,在D 点建桥最合理.你认为他的想法正确吗?为什么?
a CB
已知线段AB,在线段AB上找一点M,使点
M平分线段AB .
A
MB
点M把线段AB分成相等的两条线段AM与 BM,点M叫做线段AB的中点.
表达式:如果点M是线段AB的中点,
那么AM=BM= AB. 反过来:如果 AM=BM= AB ,
那么点 M是线段AB的中点.
(2) 在直线上顺次取出A、B、C三点使AB=4cm, BC=3cm,如果O是线段AC的中点,求线段OB 的长度?
∴线段AB为所求

青岛版(新)数学七年级上册 1.4线段的比较与作法

青岛版(新)数学七年级上册 1.4线段的比较与作法

青岛版(新)数学七年级上册 1.4线段的比较与作法一、引言在数学中,线段是一种基本的几何图形。

线段的比较与作法是数学七年级上册的重要内容之一,我们将在本文中详细介绍线段的比较与作法的概念、原理和方法。

二、线段的比较2.1 线段的比较概念在线段的比较中,我们主要涉及到线段的长度的比较。

线段的长度表示了线段的大小,可以通过比较线段的长度来确定它们的大小关系。

2.2 线段长度的比较原理在线段的比较中,我们可以使用比较符号(大于、小于、等于)来表示线段长度的大小关系。

具体比较原理如下:•当两条线段的长度相等时,我们可以使用等号(=)表示它们的大小关系。

•当一条线段的长度大于另一条线段时,我们可以使用大于号(>)表示它们的大小关系。

•当一条线段的长度小于另一条线段时,我们可以使用小于号(<)表示它们的大小关系。

2.3 线段比较的方法在线段的比较中,有几种常用的方法可以用来比较线段的长度:2.3.1 使用直观感受法进行线段比较直观感受法是一种直观比较线段长度的方法,通过目测直观地判断出线段长度的大小关系。

这种方法相对简便,但对于较长的线段可能会不太准确。

2.3.2 使用尺子法进行线段比较尺子法是一种利用尺子来测量线段长度,进而进行线段比较的方法。

使用尺子可以直接得到线段的准确长度,可以较为准确地比较线段的大小关系。

2.3.3 使用数值法进行线段比较数值法是一种使用数值来表示线段长度的方法,通过将线段的长度转化为数值,可以直接进行数值的比较。

这种方法较为准确,适用于较长的线段比较。

三、线段的作法3.1 线段的比较作法在线段的比较作法中,我们主要涉及到几何构造的方法,可以通过构造一些辅助线段来进行比较。

3.1.1 比较线段的长度比较线段的长度时,可以通过构造两个相等的辅助线段,然后比较它们与待比较线段的关系,进而得出待比较线段的大小关系。

3.1.2 比较线段的位置比较线段的位置时,可以通过考察线段的起点和终点的坐标,或通过画出线段在坐标系中的图像来进行比较。

1.4.1线段的比较课件2023-2024学年青岛版数学七年级上册

 1.4.1线段的比较课件2023-2024学年青岛版数学七年级上册

2.如图所示,在△ABC中一定存在下面关系:AB+AC>BC,你
能说明原因吗?由此你又能得到什么结论呢?
A
解:原因:两点之间线段最短.
结论:三角形两边之和大于第三边.
B
C
当堂检测 1.把两条线段AB和CD放在同一条直线上比较长短时,下列说法
错误的是( C )
A.如果线段AB的两个端点均落在线段CD的内部,那么AB<CD B.如果A,C重合,B落在线段CD的内部,那么AB<CD C.如果线段AB的一个端点在线段CD的内部,另一个端点在线段 CD的外部,那么AB>CD D.如果B,D重合,A,C位于点B的同侧,且A落在线段CD的外 部,则AB>CD
3.1cm
A
B
4.1cm
C
D
0 因 所为 以3A.B11厘<C米D<. 4.21厘米, 3 度量4法
5
6
7
8
例:如图,比较点A,B和C两两之间距离的大小.
解:连接AB,BC,CA.
用刻度尺量得线段AB=1.3厘米,
C
线段AC=1.1厘米,
线段BC=1.2厘米,
B
因为1.3厘米>1.2厘米>1.1厘米,
思考:什么情况下AB=CD ,AB>CD?
探究1:利用叠合法比较两条线段的长短.
先把两条线段的一端重合,另一端落在同侧,根据另一端落下 的位置来比较长短.
注意:起点对齐,看终点.
A
B
(2)如果点B与点D重合,
记作AB=CD.
C
D
探究1:利用叠合法比较两条线段的长短.
先把两条线段的一端重合,另一端落在同侧,根据另一端落下 的位置来比较长短.
A
所以AB>BC>AC.01 Nhomakorabea2

青岛版七年级数学上册《线段的比较与作法》

青岛版七年级数学上册《线段的比较与作法》
所以 CA < BC < AB.
A
B
练一练
(1) 判 断 : 两 点 之 间 的 距 离 是 指 两 点 之 间 的 线 段 。
( 错)
(2)如图:这是A、B两地之间的公路,在公路工程改造 计划时,为使A、B两地行程最短,应如何设计线路? 在图中画出。你的理由是
B.
A
两点之间线段最短
3、下列说法正确的是( D ) A、连结两点的线段叫做两点间的距离 B、两点间的连线的长度,叫做两点间的距离 C、连结两点的直线的长度,叫做两点的距离 D、连结两点的线段的长度,叫做两点间的距离
类似地,线段c是线段a,b的差,记做c=a-b
合作探究:
已知线段a,b,(如图)用尺和圆规画一条线段c,使
它的长度等于a-b。
画法:
1、画射线OP; 2、用圆规在射线OP上截 取OA=a;
一看起 点,二 看方向,
a
3、用圆规在线段OA
三看落
上截取AB=b;
点。
b
OB
A
P
线段OB就是所求作的线段。c=a-b
线段的比较:
第一种方法是:度量法,
即用一把刻度尺量出两条线段的长度,
再进行比较。
3.1cm
4.1cm
0
1
2
3
Байду номын сангаас
4
5
6
7
8


王庄

李庄
图1—28
从王庄到李庄有三条路,你会选择哪一条路?
生活常识告诉我们:
两点之间的所有连线中,线段最短。 (两点之间线段最短。)
‹# ›
实验与探究
用刻度尺量得线段A,B两点的距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的比较:
第一种方法是:度量法,
即用一把刻度尺量出两条线段的长度,
再进行比较。
3.1cm
4.1cm
01Βιβλιοθήκη 2345
6
7
8


王庄

李庄
图1—28
从王庄到李庄有三条路,你会选择哪一条路?
生活常识告诉我们:
两点之间的所有连线中,线段最短。 (两点之间线段最短。)
‹# ›
实验与探究
用刻度尺量得线段A,B两点的距离。
课本练习:
观察下列三组图形,分别比较线段a、b的长短。 再用刻度尺量一下,看看你的观察结果是否正确。
(1) (2)
a
b a
(3)
b
a
b
1、已知线段a,用直尺和圆规画一条线 段AB,AB=a。
请说说你的画法
直尺只用
来画线,
不用来量
a
距离;
尺规作图注意事项: 1、作图语言要规范, 要说明作图结果; 2、保留作图痕迹。
类似地,线段c是线段a,b的差,记做c=a-b
合作探究:
已知线段a,b,(如图)用尺和圆规画一条线段c,使
它的长度等于a-b。
画法:
1、画射线OP; 2、用圆规在射线OP上截 取OA=a;
一看起 点,二 看方向,
a
3、用圆规在线段OA
三看落
上截取AB=b;
点。
b
OB
A
P
线段OB就是所求作的线段。c=a-b
两点之间线段的长度,叫做这 两点的距离。用刻度尺可以测量线 段的长度。
3厘米
A
B
例1 如图1-30,比较点A,B和C两两之间距离的大小。 析: 连接AB,BC,CA.用刻度尺测量长度,从数量上 比较。 解: 用刻度尺量得线段AB=2.6厘米,线段BC=2.4 厘米,线段CA=2.2厘米。
因为2.2厘米<2.4厘米<2.6厘米, C
ABC
线段AB就是所求做的线段.
2、你能用直尺和圆规画出一条线段c, 使它等于已知线段a的2倍。
请说说你的画法 a
尺规作图注意事项: 1、作图语言要规范, 要说明作图结果; 2、保留作图痕迹。
O
A
B
P
线段OB就是所求做的线段c
已知:线段a,b(如图),用直尺和圆规画一条
线段c,使得它的长度等于两条已知线段的长度
所以 CA < BC < AB.
A
B
练一练
(1) 判 断 : 两 点 之 间 的 距 离 是 指 两 点 之 间 的 线 段 。
( 错)
(2)如图:这是A、B两地之间的公路,在公路工程改造 计划时,为使A、B两地行程最短,应如何设计线路? 在图中画出。你的理由是
B.
A
两点之间线段最短
3、下列说法正确的是( D ) A、连结两点的线段叫做两点间的距离 B、两点间的连线的长度,叫做两点间的距离 C、连结两点的直线的长度,叫做两点的距离 D、连结两点的线段的长度,叫做两点间的距离
的和。
a
b
画法:
1、画射线OP;
O
A
C
P
2、用圆规在射线OP上截取OA=a ;
3、用圆规在射线AP上截取AC=b。
线段OC的长度就是等于线段a,b的长度和,
即线段OC就是所求的线段c. 记作 OC=a+b
一看起点, 二看方向, 三看落点。
线段c的长度是线段a,b的长度的和,我们就说线段c是
线段a,b的和,记做c=a+b;
1.4.1 线段的比较与作法
七年级上册 第一章
一、复习:
有几个端点 向几个方向延伸
直线 射线 线段
能否度量
2、________确定一条直线。
本节学习目标: 1、知道比较线段长短的方法。 2、会比较线段的长短。 3、会用尺规画出线段的和差。
讨论:
你们平时是如何比较两个同学的身高 的?你能从比身高的方法中得到启示 来比较两条线段的长短吗?
相关文档
最新文档