固体物理概念(自己)
固体物理知识点

d 2 E dK 2
,是一种表观质量,并不意味着电子质量的
改变,是由于周期场对电子运动的 影响,使得导带底和价带顶的能量不一样,得出导带底 和价带顶的电子有效质量不一样。 25、晶体中原胞数目与声学波和光学波数目的关系。 26、晶系、布喇菲格子、空间群、空间点阵的数目。 27、 简单立方原胞、 面心立方原胞、 体心立方原胞的正倒格子的相互关系、 基矢与体积。 28、晶体中原胞与格波、振动频率的关系。 29、声子的角频率、能量和动量的表示方法。 30、光学波声子的分类及其含义。 31、金属一维运动的自由电子波函数、能量以及波矢的表示式。 32、能量标度下和动量标度下费米自由电子气系统的态密度。
-1-
r r r
r r r
r r r
固体物理知识点
16、 金刚石的结构特点: 金刚石晶胞中由于位于四面体中心的原子和顶角原子价键的取 向各不相同(即中心原子和顶角原子的周围情况不同) ,所以是复式格子。这种复式格子是 由两个面心立方格子沿体对角线方向位移 1/4 体对角线长度套构而成的。 17、声子:晶格振动能量是量子化的,以 hν l 为单位来增减能量, hν l 就称为晶格振动 能量的量子,即声子。 18、非简谐效应:在晶格振动势能项中,考虑了 δ 以上 δ 高次项的影响,此时势能曲
2
线是非对称的,因此原子振动时会产生热膨胀和热传导。 19、点缺陷的分类:
⎧本征热缺陷: 弗伦克尔缺陷、肖脱基缺陷 ⎪ ⎪杂质缺陷: 置换型、填隙型 晶体点缺陷⎨ ⎪色心 ⎪极化子 ⎩
20、极化子:一个携带者四周的晶格畸变而运动的电子,可看作为一个准粒子(电子+ 晶格的极化畸变) ,叫做极化子。 21、布里渊区:在波矢空间中倒格矢的中垂线把波矢空间分成许多不同的区域,在同一 区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区。 22、费米能级:是温度和电子数目的函数。费米面是绝对零度时电子填充最高能级的能 量位置,从统计的观点来看,费米面就是电子填充几率为二分之一的能级位置。 23、 布洛赫波: 电子在晶格的周期性势场中运动的波函数是一个按晶格的周期性函数调 幅的平面波。 24、电子的有效质量: m = h
固体物理学概论

固体物理学概论固体物理学是研究物质的结构和性质的一门学科,它涵盖了领域广泛且深奥的知识。
本文将为读者介绍固体物理学的基础知识和主要研究内容。
一、晶体结构晶体是物质在固态中具有长程有序的结构,其原子、离子或分子按照规则排列。
晶体结构对物质的性质和功能具有重要影响。
固体物理学研究晶体结构的方法和特性,发展了晶体学的基本理论。
1. 空间点阵空间点阵是描述晶体结构的重要工具,它由一组等距离的格点所组成。
常见的点阵有简单立方点阵、面心立方点阵和体心立方点阵等。
这些点阵可以通过平移和旋转操作来描述晶体的周期性。
2. 晶胞和晶格晶胞是晶体中基本重复单元,它由一组原子、离子或分子构成。
晶格是由晶胞组成的整体结构,它描述了晶体中原子的排列方式。
晶胞和晶格可以通过晶体学的实验方法进行确定。
二、电子结构电子结构是固体物理学中的核心内容,它研究了电子在晶体中的行为和性质。
电子结构决定了物质的导电性、磁性以及光学性质等。
1. 能带理论能带理论是描述晶体中电子分布的重要理论模型。
根据能量分布,电子在晶体中具有禁带和能带的概念。
导带和价带之间的能隙决定了物质的导电性质。
2. 费米能级费米能级是描述固体中电子填充状态的参考能量。
它决定了电子在晶体中的分布规律,以及固体的导电性质。
费米能级的位置和填充程度影响了物质的导电性。
三、磁性和磁性材料磁性是固体物理学研究的另一个重要方向。
固体材料在外加磁场下表现出不同的磁性行为,如铁磁性、顺磁性和反铁磁性等。
1. 磁化强度和磁矩磁化强度是描述材料对磁场响应的物理量,它与材料中的磁矩相关。
磁矩是材料中带有自旋的原子或离子产生的磁场。
2. 磁性材料的分类磁性材料可以根据其磁性行为进行分类。
铁磁材料在外加磁场下显示出强烈的磁化行为,顺磁材料对外加磁场表现出弱磁化行为,而反铁磁材料在一定温度下表现出特殊的磁性行为。
四、光学性质固体物理学还研究了固体材料的光学性质。
物质在光场中的相互作用导致了光的传播、吸收和散射等现象。
固体物理学的基本原理

固体物理学的基本原理固体物理学是物理学的一个重要分支,研究的是固体材料的性质和行为。
固体物理学的基本原理涉及到原子结构、电子结构、晶体结构等多个方面,对于理解和应用固体材料具有重要意义。
1. 原子结构固体物理学的基本原理之一是原子结构。
固体是由原子构成的,而原子又由质子、中子和电子组成。
在固体物理学中,我们研究的核心问题之一就是如何理解和描述原子的结构。
从经典的玻尔模型到量子力学的波函数,人们提出了不同的描述原子结构的模型,并通过实验来验证它们的正确性。
2. 晶体结构在固体物理学中,研究晶体结构也是至关重要的。
晶体是固体中最常见的形态,其结构具有高度的有序性和周期性。
人们通过X射线衍射等手段得以揭示晶格结构,并据此建立了布拉维格点、晶格常数等概念。
一些经典的晶体结构包括简单立方、面心立方和体心立方等,它们对于材料的性质和行为有着深远的影响。
3. 电子结构固体物理学中电子结构也是一个核心问题。
电子作为固体中最活跃的部分,在电导、磁性等性质中发挥着关键作用。
费米能级、能带理论、布里渊区等概念都是固体物理学中描述电子结构的重要工具。
通过对电子结构的深入研究,人们可以更好地理解材料的导电性、光电特性等。
4. 热学性质固体物理学不仅涉及结构性质,还包括了热学性质。
晶格振动和声子是固体热学性质的重要研究对象,而热膨胀、比热容等参数则直接与固体材料的热学行为相关。
5. 光学性质此外,在固体物理学中我们也会探讨材料的光学性质。
折射率、透过率、吸收谱等参数能够帮助我们了解材料在光学上的表现,并指导着诸如激光器、太阳能电池等应用技术。
结语综上所述,固体物理学作为物理学领域中极富挑战性和重要性的一个分支,其基本原理涵盖了原子结构、晶体结构、电子结构以及热学和光学性质等多个方面。
只有深入掌握这些基本原理,我们才能更好地解释和应用各种复杂材料在现实世界中表现出来的特殊行为,并推动科技进步与工程实践。
大学固体物理论文

大学固体物理论文哎呀,一提到大学固体物理,那可真是一门让人又爱又恨的学科啊!先来说说固体物理到底是个啥。
这玩意儿研究的是固体的结构、性质以及它们之间的关系。
你看那晶体,排列得整整齐齐,就像阅兵式上的方阵;再看那非晶体,乱得毫无章法,却也有自己独特的“魅力”。
记得我上大学那会,有一次老师在课堂上讲晶体的晶格结构,我听得云里雾里的。
课后,我跑到图书馆,找了一堆相关的书籍,打算自己好好研究一番。
那时候的我,就像一个在知识海洋里拼命游泳的人,却怎么也找不到岸。
我坐在图书馆的角落里,一本一本翻着那些厚重的书,眼睛都快看花了。
好不容易弄明白了晶格常数的概念,却又被倒格子空间给难住了。
咱们再来说说固体物理中的那些重要概念。
比如说能带理论,这可是理解固体导电性的关键。
就好比在一个大商场里,不同的楼层卖着不同价格的商品,而能带就像是这些楼层,电子在里面跳来跳去,决定了固体是导体、半导体还是绝缘体。
还有声子,它可不是什么音乐里的音符哦,而是晶格振动的能量量子。
想象一下,晶体里的原子们就像一群调皮的孩子,在不停地跳动,而声子就是它们跳动的“节奏”。
固体物理的应用那也是相当广泛。
从我们日常用的手机芯片,到超级计算机的核心部件,都离不开固体物理的知识。
就拿半导体来说吧,通过控制掺杂的浓度和类型,可以制造出各种各样的半导体器件。
这就像是厨师做菜,根据不同的食材和调料,做出一道道美味佳肴。
在学习固体物理的过程中,做实验也是必不可少的一部分。
有一次,我们做一个关于测量晶体电阻的实验。
我小心翼翼地连接着电路,眼睛紧紧盯着仪器上的数字,生怕出一点差错。
当看到数据逐渐稳定,并且和理论值相差不大的时候,我心里那叫一个激动,感觉自己就像一个成功破解谜题的侦探。
总之啊,大学固体物理这门课虽然难度不小,但只要你用心去学,就会发现其中的乐趣和奥秘。
它就像一座神秘的城堡,等待着我们去探索和发现。
希望正在学习这门课的同学们,不要被困难吓倒,勇敢地向前冲,相信你们一定会有所收获的!。
《固体物理学》概念和习题答案

《固体物理学》概念和习题答案《固体物理学》概念和习题固体物理基本概念和思考题:1.给出原胞的定义。
答:最⼩平⾏单元。
2.给出维格纳-赛茨原胞的定义。
答:以⼀个格点为原点,作原点与其它格点连接的中垂⾯(或中垂线),由这些中垂⾯(或中垂线)所围成的最⼩体积(或⾯积)即是维格纳-赛茨原胞。
3.⼆维布喇菲点阵类型和三维布喇菲点阵类型。
4. 请描述七⼤晶系的基本对称性。
5. 请给出密勒指数的定义。
6. 典型的晶体结构(简单或复式格⼦,原胞,基⽮,基元坐标)。
7. 给出三维、⼆维晶格倒易点阵的定义。
8. 请给出晶体衍射的布喇格定律。
9. 给出布⾥渊区的定义。
10. 晶体的解理⾯是⾯指数低的晶⾯还是指数⾼的晶⾯?为什么?11. 写出晶体衍射的结构因⼦。
12. 请描述离⼦晶体、共价晶体、⾦属晶体、分⼦晶体的结合⼒形式。
13. 写出分⼦晶体的雷纳德-琼斯势表达式,并简述各项的来源。
14. 请写出晶格振动的波恩-卡曼边界条件。
15. 请给出晶体弹性波中光学⽀、声学⽀的数⽬与晶体原胞中基元原⼦数⽬之间的关系以及光学⽀、声学⽀各⾃的振动特点。
(晶体含N个原胞,每个原胞含p个原⼦,问该晶体晶格振动谱中有多少个光学⽀、多少个声学⽀振动模式?)16. 给出声⼦的定义。
17. 请描述⾦属、绝缘体热容随温度的变化特点。
18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。
19. 简述晶体热膨胀的原因。
20. 请描述晶体中声⼦碰撞的正规过程和倒逆过程。
21. 分别写出晶体中声⼦和电⼦分别服从哪种统计分布(给出具体表达式)?22. 请给出费⽶⾯、费⽶能量、费⽶波⽮、费⽶温度、费⽶速度的定义。
23. 写出⾦属的电导率公式。
24. 给出魏德曼-夫兰兹定律。
25. 简述能隙的起因。
26. 请简述晶体周期势场中描述电⼦运动的布洛赫定律。
27. 请给出在⼀级近似下,布⾥渊区边界能隙的⼤⼩与相应周期势场的傅⽴叶分量之间的关系。
28. 给出空⽳概念。
固体物理学的基础

固体物理学的基础引言固体物理学是研究固体材料的结构、性质及其内部粒子运动规律的一门学科。
它在现代科技发展中扮演着重要角色,为材料科学、电子学、光学等领域提供了理论基础和技术支撑。
本文将简要介绍固体物理学的基本概念和核心内容。
固体的分类与结构晶体和非晶体固体可以分为晶体和非晶体两大类。
晶体内部的原子或分子排列具有周期性和对称性,如食盐、金刚石等。
非晶体则没有这种长程有序结构,例如玻璃、塑料等。
晶格理论晶体内部的基本单位是晶格,它是构成晶体的最小重复单元。
常见的晶格类型有简单立方、面心立方、体心立方等。
晶格理论通过分析原子在空间中的排列方式,解释了晶体的宏观物理性质。
固体的结合力固体内部的粒子之间存在相互作用力,这些力决定了固体的稳定性和物理特性。
主要的固体结合力包括离子键、共价键、金属键和范德华力等。
离子键离子键是由正负离子之间的静电吸引力形成的,常见于盐类化合物,如氯化钠(NaCl)。
共价键共价键是由两个原子共享电子对形成的化学键,典型例子是金刚石和硅晶体。
金属键金属键是金属原子之间的电子云重叠形成的键合,使得金属具有良好的导电性和延展性。
范德华力范德华力是分子间较弱的吸引力,主要存在于非金属材料中,如石墨层之间的相互作用。
能带理论能带理论是固体物理学的核心内容之一,它描述了电子在固体中的运动状态。
根据能带理论,固体中的电子能量分布形成能带,能带之间的空隙称为禁带。
导体、半导体和绝缘体的电学性质可以通过能带结构来解释。
导体导体的能带中有部分未填满,电子可以自由移动,因此具有良好的导电性。
半导体半导体的能带间隙较小,温度升高或掺杂可以使其导电性显著增加。
绝缘体绝缘体的能带完全填满,电子无法自由移动,因此几乎不导电。
结论固体物理学作为一门基础科学,对于理解材料的微观结构和宏观性能具有重要意义。
通过对晶体结构、结合力以及能带理论的研究,我们能够设计出性能更优的材料,推动科技进步和产业发展。
固体物理精品教学(华南理工大学)《固体物理》基本概念和知识点.docx

《固体物理》基本概念和知识点第一章基本概念和知识点1)什么是晶体、非晶体和多晶?(□)□晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程屮不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。
由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。
2)什么是原胞和晶胞?(0)□原胞是最小的晶格重复单元,不考虑对称性,原胞只包含1个原子;从对称性的角度,选取几倍于原胞大小的重复单元,称为品胞,一个品胞中有大于2个以上的原子。
3)晶体共有几种晶系和布喇菲格子?(□)□按结构划分,晶体可分为7大晶系,共14布喇菲格子。
4)立方晶系有几种布喇菲格子?画出相应的格子。
(□)□立方晶系有简单立方、体心立方和面心立方三种布喇菲格子。
5)什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。
(□)0简单晶格中,一个原胞只包含一个原子,所有的原子在儿何位置和化学性质上是完全等价的。
复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成相同的简单晶格(子晶格),复式格子由它们的子晶格相套而成。
Au、Ag和Cu具有面心立方晶格结构,碱金属Li、Na. K为体心立方结构,它们均为简单晶格。
NaCK CsCl、ZnS以及具有金刚石结构的Si、Ge等均为复式格子。
6)钛酸顿是由几个何种简单晶格穿套形成的?(□)□ BaTiO.在立方体的项角上是锲(Ba),钛(Ti)位于体心,面心上是三组氧(0)。
三组氧(01, OIL 0111)周围的情况各不相同,整个晶格是由Ba、Ti和01、OIL 0111各自组成的简立方结构子晶格(共5个)套构而成的。
7)为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?(□)□金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。
金刚石结构由两套完全等价的面心立方格子穿套构成。
金刚石属于面心立方格子,原胞中有2个C原子,单胞中有8个C原子。
固体物理概念

固体物理概念简谐近似:把晶格振动看视为平衡位置附近的微小振动,体系的势能函数只取到二阶近似。
简正模:在简谐近似下,晶格的振动是由若干独立简正振动模式组成。
单电子近似:利用哈特里-福克平均场近似将多电子问题化为单电子问题,每个电子处在其它电子或离子实的平均场中。
周期性近似:指由晶体平移对称性出发,认为单电子势场为周期场。
满带:所有状态都被电子填充的能带。
空带:没有任何电子填充的能带。
价带:指价电子所填充的最高满带。
导带:最低的空带。
带隙:价带最高能级与导带最低能级之间的能量范围。
共价结合:主要是原子用电子云重叠作用,具有饱和性和方向性。
离子性结合:就是靠离子间的库仑吸引作用。
晶格:晶体中原子排列的具体形式一般是晶格。
原胞:指一个晶格最小的周期性单元。
晶列:布拉伐格子的格点可以看成分列在一系列相互平行的直线系上,这些直线系统称为晶列。
晶向:同一个格子可以形成方向不同的晶列,每一个晶列定义1个方向,称为晶向。
格波:晶格具有周期性,因而,晶格的振动模具有波的形式。
原子的负电性:是用来标志原子得失电子能力的物理量; 负电性=0.18(电离能+亲和能),单位:电子伏声子:就是指格波的量子,它的能量等于q w固体的定容热容v C :vv T E C ⎪⎪⎭⎫⎝⎛∂∂=,E 是固体的平均内能。
固体热容主要有两部分贡献:一是晶格热容,二是电子热容。
K 称为简约波矢:是对应于平移操作本征值的量子数,它的物理意义是表示原胞之间电子波函数位相的变化。
朗道能级:根据量子理论,在x-y 平面内的圆周运动对应一种简谐运动能量。
晶体中电子准经典运动的两个基本关系式:dtdk F k E V k=∇=)(1 倒有效质量张量:βαk k E ∂∂∂221 费米统计分布函数:11)(/+=-T k E E B F e E f ,它直接给出能量为 E 的本征态被一个电子占据的几率。
F E 具有能量的量纲,称为费米能级,等于这个系统中电子的化学势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理概念(自己整理)————————————————————————————————作者:————————————————————————————————日期:1.晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。
晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。
金属及合金在大多数情况下都以结晶状态使用。
晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。
2.晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。
3.单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。
4.基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。
倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。
倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。
5.原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。
6.晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。
7.原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。
8.布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。
9.简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。
10.密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。
晶体中每个原子周围的最近邻原子数称为配位数。
由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)和2(一维)。
11.晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,晶列上格点周期性重复排列,相互平行的晶列上格点排列周期相同,一簇相互平行的晶列可将晶体中所有格点包括无遗;晶向指晶列的方向,晶向指数是晶列的方向余旋的互质整数比,表为[uvw];等效晶列是晶体结构中由对称性相联系的一组晶列,表为<uvw>。
12.晶面、晶面指数和等效晶面----晶面是晶体结构中包括无数格点的平面,相互平行的晶面的面间距相等,一簇相互平行的晶面可将晶体中所有格点包括无遗;晶面指数是晶面法线方向的方向余旋的互质整数比,表为(hkl);等效晶面是晶体结构中由对称性相联系的一组晶面,表为{hkl}。
密勒指数特指晶胞坐标系中的晶面指数。
13.晶体衍射----晶体的组成粒子呈周期性规则排列,晶格周期和X-射线波长同数量级,因此光入射到晶体上会产生衍射现象,称为X-射线晶体衍射。
14.劳厄方程和布拉格公式----晶体衍射时产生衍射极大的条件。
劳厄将晶体X-射线衍射看作是晶体中原子核外的电子与入射X-射线的相互作用,而布拉格父子则将晶体X-射线看作是晶面对X-射线的选择性反射,分别得到衍射加强条件为劳厄方程和布拉格公式,两者其实是15劳厄方程16. 布拉格公式布拉格定律——考虑间距为d 的平行晶面,入射辐射线位于纸面平面内。
相邻平行晶面反射的射线行程差是2dsinx ,式中从镜面开始量度。
当行程差是波长的整数倍时,来自相继平面的辐射就发生了相长干涉。
这就是布拉格定律。
17. 几何结构因子----晶胞中所有原子对X-射线的散射振幅与一个电子对X-射线的散射振幅之比,几何结构因子是一种相对振幅。
18.消光规律----因晶胞中原子的几何排列所引起的衍射线消失的规律,称为结构消光。
19.倒格子------晶格经傅里叶变换所得到的几何格子。
倒格子基矢定义: (1) (2)倒格子空间是正格子的倒易空间20布里渊区-----布里渊区是倒空间中由倒格矢的中垂面(二维为中垂线)所围成的区域,按序号由倒空间的原点逐步向外扩展,每个布区的体积(或面积)等于倒格子原胞的体积(或面积)。
第一布里渊区(中心布区或简约布区)是倒格矢的中垂面(线)所围成的最小区域,是倒空间中的对称性原胞。
第n 布区是跨越第(n-1)布区的边界所能到达的,由倒格矢的中垂面(线)所围成的一些分离区域,且各区域体积(面积)之和等于倒格子原胞体积(面积)。
21. 晶体对称性----晶体的外形或物理性质在不同方向上有规律地重复的现象。
22.对称操作----使对称图形复原的动作或变换(保持晶体上任意两点间距离不变的变换——正交变换)。
23.对称要素---施行对称操作时所凭借的几何元素。
描述晶体宏观对称性的独立基本对称要素只有八个:1,2,3,6,I,m 和 。
24.对称操作数----晶体投影图中由对称性联系起来的等同点的数目,其值体现了对称性的高低。
25. 群的概念:群是一些元素的集合,记为 G={E ,A ,B ,C ,……},群元素满足下述群的乘法定则:1) 闭合性: ;2) 存在单位元素E :对任意 ,有 AE=EA=A ; 3) 存在逆元素对任意 ,存在 ,有:)K ( 或:)( 或:)为整数(2)(***h 000c l b k a h K k -k S s s R S S R k -k h m m m m m2d sin n 220123i j ij i j a b i j i,j ,, r r 2131********a a b a a b a a b G C AB G B G A ,G A G A 1 A E A A AA 114) 结合律:A(BC)=(AB)C26. 对称群----对称要素和对称操作的集合构成对称群。
27.点群----晶体中相交于一点的对称要素及相应的对称操作的集合,晶体共有32种点群,又称32种宏观对称类型。
28.宏观对称要素----描述晶体宏观对称性的对称要素,晶体中独立的基本对称要素只有八个:1、2、3、4、6、i 、m 和 。
29.微观对称要素-----描述晶格对称性的对称要素,在宏观对称要素的基础上加上平移轴及平移与旋转、镜象形成的复合对称要素螺旋轴和滑移面。
30.空间群-----晶格中全部对称要素及相应的对称操作的集合;晶体共有230种空间群。
第二章1. 元素电负性-----元素电负性是原子对核外电子束缚能力大小的量度,通常用电离能与亲合能之和表示。
2.结合键-----指原子结合成晶体的方式,晶体的典型结合方式有:离子键、共价键、金属键、分子键和氢键。
3.离子键-----吸引力来源于正、负离子间的静电库仑力。
4.共价键-----吸引力来源于共用电子对的交换作用能(量子效应)。
5.金属键-----吸引力来源于带正电的金属原子实与带负电的自由的价电子(电子云)间的静电库仑力。
6. 分子键----吸引力来源于分子间的范德瓦尔斯力,即电偶极矩间的相互作用为力。
7.氢键------吸引力来源于裸露的氢核(带正电)与电负性较大的原子之间作用力。
8.结合能-----晶体中粒子组成晶体后的总能量与粒子间无相互作用时总能量之差称为晶体结合能.(常令无相互作用时势能为零点)9.最近邻间距-----晶体中最近邻原子之间的平衡距离。
10.范德瓦尔斯力-----电偶极矩间的相互作用力,包括:固有偶极矩间的互作用力、瞬时偶极矩间的互作用力和诱导偶极矩间的互作用力。
11. 共价键的饱和性和方向性-----饱和性指两原子间能形成的共价键有一定的数目限制[(8-N)定则];方向性指两原子间的共价键总是沿波函数重叠最大的方向成键。
12.轨道杂化-----电子的不同状态(分子轨道)间重新进行线性组合后再形成共键键,如金刚石(碳原子)中的SP3杂化:第三章1. 简谐近似----晶体中原子之间相互作用能按平衡距离作泰勒展开,只取到距离的二次方项,忽略距离的高阶项;简谐近似下原子间互作用力与相对位移成正比。
2.Born-Von Karman 边界条件-----即周期性边界条件,一维情况下将晶格原子链视为由N 个原胞组成的无穷大半径之圆环,则环上第n 个原子与第(N+n )个原子系同一原子,具有完全相同的属性。
三维情况则可将每一个独立方向视为Ni 个原胞组成的无穷大半径之圆环。
412342222222232222222212121212x y z x y zx y z x y z s p p p k s p p p k s p p p k s p p p k ()()SP ()()r r r r3.格波-----晶格中原子的集体振动模式形成格波。
4. 色散关系-----晶格振动时格波之圆频率与波矢间的关系。
5.声子-----格波的能量量子,声子的能量为ħω,准动量为 ; 声子是玻色子,服从玻色-爱因斯坦统计,能量为ħω的声子的平均声子数为:6.声学波-----声频支格波,描述晶体中原胞的整体运动。
7.光学波-----光频支格波,描述晶体中原胞内原子之间的相对运动。
8. 晶格振动的一般结论:对于由N 个原胞组成,每个原胞中有s 个原子的三维复式格子,晶格振动中,有3s 支色散关 系,其中3支为声学波,其余3(s -1)支为光学波,且: 9.晶格振动波矢的取值数=晶体的原胞数N10.晶格振动格波(模式)数=晶体的总自由度数3sN11.模式密度-----又称为频率分布函数,定义为单位频率范围内的模式数:12. 黄昆方程----关于离子晶体中的长光学波的维象方程:振动方程受极化电场修正 极化方程受晶格振动修正13. LST 关系-Lyden-Sachs-Teller relation1)静态介电常数总大于光频介电常数→长光学纵波的频率总是大于横波的频率;因此,长光学纵波是极化波; 2)当 时, ,晶体中出现自发极化现象(铁电软模理论),有自发极化的晶体称铁电体。
14. 杜隆-珀替定律-----固体比热的经验规律:固体的比热是与温度无关的常数。
(高温与实验相符)15.爱因斯坦模型----固体比热模型,爱因斯坦假设晶体中各原子的振动相互独立,且所有原子都以同一频率ω0振动。