清洁成形与改性技术综述
涤纶的改性方法研究--文献综述

涤纶的改性方法研究--文献综述第一章绪论1.1引言涤纶纤维是工艺最简单的合成纤维,涤纶也是目前国内产量最大的合成纤维,它具有许多良好的性能,如弹性模量好,回弹性适中、断裂强度高、热稳定性好、氧化剂以及耐腐蚀性好、抗有机溶剂性能好,耐酸、耐碱等许多优良性能[1]。
基于以上优点,涤纶结实耐用,价格便宜,深受广大消费者喜爱。
虽然涤纶纤维有诸多优点,但是涤纶纤维往往上色困难,这主要是因为涤纶纤维是疏水性的合成纤维,在涤纶纤维分子结构中缺少与染料能够结合在一起的活性基团,分子结构紧密。
同时涤纶纤维分子结构对称,结晶度较高,染色过程中阻碍了染料的扩散与吸附,结构中没有强极性基团,因此亲水性较差,缺乏能与直接染料、酸性染料、碱性染料等结合的官能团,与染料结合能力差,这在很大程度上限制了它的可染性。
虽然涤纶纤维大分子中的酯基能够与分散染料在高温下结合形成氢键的,但是涤纶大分子的分子链结构相对紧密,不易让染料分子进入道涤纶纤维的内部,导致染色困难,因此涤纶染色的色泽比较单一,直接影响到涤纶面料其他各式花色品种的开发[2]。
传统的涤纶染色主要采用高温高压法、载体法、热熔法、超临界CO2法等对涤纶进行染色[3-4]。
但是这些方法都存在一定的缺陷如:设备复杂、能源消耗较多、生产效率低,不能进行大批量生产等。
也有一些研究是先对涤纶表面进行化学改性、低温等离子体改性、紫外光接枝改性等[5],然后再采用阳离子染料、酸性染料等进行染色。
紫外光辐射具有很好的穿透力,而且接枝聚合反应可以只在材料的表面或者亚表面发生,不会损坏材料的原来所具有的性能。
紫外光不但可以通过对纺织材料进行接枝改性实现各种优异的性能,而且紫外光技术属于清洁节能技术。
紫外光具有很高的能量,并且技术简易、效率高,常压空气中就可以操作,易于实现工业化连续生产[6-9]。
这一生态染色方法既缓解了传统染色污染环境的现状,同时节约了能源,缩短了染色时长,因此具有很好的发展前景。
生物医用材料表面改性技术综述

生物医用材料表面改性技术综述随着医疗技术的发展和生物医用材料的广泛应用,生物医用材料表面改性技术越来越受到关注。
在生物医学领域,生物医用材料的表面改性技术可以有效地改善材料的性能,提高其生物相容性和生物亲和力,减少材料与生物组织之间的反应和排斥,提高其临床应用效果。
本文将综述生物医用材料表面改性技术的原理、分类以及应用现状。
一、生物医用材料表面改性技术原理生物医用材料表面改性技术的原理主要是通过对生物医用材料的表面进行化学或物理方法的改变,来实现对材料表面性质的调控,从而使其更加适合医学应用。
表面改性技术的主要作用是改进材料表面的形态结构、表面粗糙度、表面化学组成和表面能,以达到改善生物相容性和生物亲和力的目的。
二、生物医用材料表面改性技术分类1、化学改性技术化学改性技术是将生物医用材料表面进行化学修饰,使其呈现出希望的生物相容性和生物亲和性。
化学改性技术主要包括表面活性剂改性、胶原蛋白覆盖、化学交联和生物活性物质的掺杂等。
表面活性剂改性技术是利用表面活性剂的表面作用力将化合物吸附在表面上,从而改变表面化学性质的方法。
该技术可以改变表面能和表面化学成分,这样就可以增加材料表面的吸附能力和亲水性等,从而促进细胞黏附和增强生物相容性。
胶原蛋白覆盖是指用高分子胶原蛋白在生物医用材料表面覆盖一层胶原蛋白,从而提高其生物相容性和生物亲和力。
胶原蛋白具有良好的生物活性和生物亲和力,可以与细胞黏附,具有很好的生物相容性。
化学交联技术是指通过交联剂将分子或者高聚物与生物医用材料表面共价结合来实现改性。
这种方法可以改变生物医用材料表面的物化性质,从而达到改善其生物相容性和生物亲和力。
2、物理改性技术物理改性技术是改变生物医用材料表面性质,通过物理手段实现。
物理改性技术的方法较多,如电化学处理、离子注入、高压氧气等等。
这些方法可以改变材料表面的形态结构、表面粗糙度和表面能,从而提高其生物相容性和生物亲和力。
3、微纳米技术微纳米技术是利用微纳米技术制造出微米或纳米级别的表面纹理或其它结构,从而改变生物医用材料表面特性的方法。
等离子体技术在材料表面改性方面的研究进展

等离子体技术在材料表面改性方面的研究进展随着科技的不断发展,等离子体技术也被越来越多的人关注和应用。
等离子体技术广泛应用于化学、材料、医学等领域,并在这些领域取得了很好的成效。
其中,在材料表面改性领域,等离子体技术更是发挥了巨大的作用。
一、等离子体技术在材料表面改性中的应用材料的表面特性往往决定了其使用性能和使用寿命。
而等离子体技术通过对材料表面进行化学反应、物理作用和生物功能的改变,从而增强了材料表面的功能和性能。
以下是等离子体技术在材料表面改性领域的主要应用:(1) 表面清洁和改性等离子体喷涂,常用于金属材料表面的清洁和改性。
喷涂等离子体可以清洁金属表面上的油污、水气、铁锈和氧化物等污染物,也可以修复表面的缺陷、增加表面耐磨性和耐腐蚀性。
(2) 表面涂层和改性等离子体表面涂层是等离子体技术中另一个应用广泛的领域。
比如,等离子体氧化可以提高金属表面的高温氧化能力。
在等离子体氮化和碳化过程中,靶材表面会生成氮化物和碳化物层,从而增加其在高温和高应力环境下的稳定性和耐磨性。
等离子体聚合可以引入新的化学官能团,从而在表面层产生新的化学和物理特性。
(3) 表面改性和生物附着性等离子体技术在一些医学设备和生物医学工程领域也被广泛使用,例如植入材料中,等离子体技术可以为其表面引入特定的化学成份,由于不同的化学组合以及物理特性,使得表面可以达到不同的生物相容性和生物附着性。
二、材料表面改性中等离子体技术的主要优势等离子体技术在材料表面改性领域的应用还有许多优势。
(1) 高效、环保、节能等离子体技术是一种高能量、高产量、高效率的技术手段。
通过等离子体特有的物理和化学特性改变材料表面,比传统方法更加环保、能耗更少且包括处理时间在内工期也比其他生产方法明显缩短。
(2) 处理质量好、效果稳定等离子体技术可以实现对材料表面的高精度处理,并且具有很好的可重现性和可控制性。
因此,等离子体技术的改性效果很稳定、效率很高,可以有效的提高材料表面的性能和使用寿命。
木材改性综述

木材改性的发展历史及现状摘要:本文对国内外木材工业现状存在的问题以及入世后木材工业要面临的形势等进行了分析。
同时也对木材改性的背景、方法及意义进行了阐述,重点介绍了热改性、乙酰化、糠基化改性以及压密化和热处理组合改性的基本原理和工艺及其对木材改性的影响;分析了这些改性方法的应用现状及工业化应用前景,并提出提高木材利用率,更新产品结构,发展生产技术,技术与环境相协调等发展方向及其今后需要着重研究的关键问题。
关键词:木材改性技术现状发展方向The development history and Present situation of WoodModificationAbstract:In this paper, the present situation of domestic and international woodindustry and wood industry after wto accession to the situation facing the etc are analyzed.Also wood modification on the background, methods and significance are expounded, mainly introduces the thermal modification, acetylation, furfuryl modification and pressure and heat treatment and the basic principle of combination of modified process and its impact on the modification of wood; Analyzes the present situation of the application of the modification methods and application prospect of industrialization,And put forward for improving the utilization ratio of timber, update the product structure, the development of production technology, technology in harmony with the environment, such as the development direction and the need tofocus on the key issues in the future.Key words:wood modification technology Present situation Development direction1 引言我国是世界上木材及木制品的主要消费大国,但又是人均占有木材资源最少的国家之一。
材料表面改性技术的发展与应用

材料表面改性技术的发展与应用材料表面改性技术是近年来发展迅速的一项技术,它能够对物质的表面性质进行改变,从而赋予材料新的功能和性能。
本文将介绍材料表面改性技术的发展历程,并探讨其在各行业的应用。
一、材料表面改性技术的发展历程材料表面改性技术最早出现在20世纪初,当时主要是通过化学处理和电化学方法对材料表面进行改性,使其具有防腐蚀、防划伤等性能。
随着科学技术的发展,材料表面改性技术逐渐丰富和完善。
在20世纪60年代,物理气相沉积技术(PVD)和化学气相沉积技术(CVD)的引入,使得材料的表面性质得到了更加精细的调控。
随着纳米技术的兴起,表面改性技术在纳米材料领域得到了广泛应用。
目前,各种表面改性技术如离子注入、溅射、电子束处理等已经成为材料工程的重要组成部分。
二、材料表面改性技术的应用领域1. 材料保护领域材料表面改性技术在材料保护领域具有广泛的应用。
例如,通过镀层技术对金属表面进行涂覆,可以防止金属氧化和腐蚀,延长材料的使用寿命。
此外,利用表面改性技术还可以改善材料的防水性、耐磨性和耐高温性能,提高材料在恶劣环境下的使用效果。
2. 生物医学领域生物医学领域对材料表面的要求极高,要求材料表面具有良好的生物相容性和生物附着性。
材料表面改性技术可以通过对材料表面进行生物修饰,改变材料的亲水性和亲油性,使其更适合于生物医学应用。
例如,通过在材料表面引入特定的功能基团,可以实现药物的慢释放和靶向释放,提高治疗效果。
3. 光电子领域材料表面改性技术在光电子领域具有重要的应用价值。
通过对材料表面进行微细结构的改变,可以实现光的反射、透射和散射的控制,从而实现对光的定向传播和调控。
利用表面改性技术可以制备出具有特定光学性质的纳米材料,应用于光电器件和光信息存储等领域。
4. 环境保护领域材料表面改性技术在环境保护领域起着重要的作用。
例如,利用表面改性技术可以制备具有高吸附性能的材料,用于水处理和废气处理等环境污染治理工作。
清洁表面技术

• 2.PIG清洗:PIG清洗广泛应用到管道的清洗维护,尤其适用于长输
管道的清洗。英国吉拉德公司、国内沈阳、廊坊及日本在该领域均
具有较高技术水平。廊坊管道局PIG专业技术水平较高,蓝星公司 PIG技术综合应用水平较高
• 3.激光清洗技术:激光清洗是利用高能单色光束聚焦于污垢表面,利
用产生的高温来清洗的高新技术。离子束射线清洗则是利用高速离 子束的很强冲击能力,集中在一个质点上,将污物去除的一种超精 密清洗技术。
剂的日益完善,各种更安全、使用方法更简单的专用型清洗剂大量涌现
和系列化,使清洗剂更加专业化、精细化、高效化、安全化、系列化, 形成了各种专用型清洗剂模块。
化学清洗技术的现状
化学清洗技术的发展已取得很大进步,成功的解决了生产实践中的很 多实际问题,但化学技术总体上呈衰减趋势。目前化学清洗约占工业清洗 整体市场份额的70%以上。为保护自然环境,化学清洗技术将向环保型、 功能型、精细化、集成化方向发展。 随着精细有机合成技术、生物技术和检测技术等相关技术的进步,化
面的锈蚀等。
• 水垢:在贮水容器、输水管道和散热器中,由于水中含有 钙、镁等矿物盐和其他杂质,使与水接触的表面逐步产生 了一种坚硬的沉积物。它也是属于较难清除的污染物。
表面油垢清洗
• 油脂分为皂化性油脂和非皂化性油脂。动物油属于皂 化性油脂,能与碱发生皂化反应生成可溶于水的肥皂;
矿物油属于非皂化性油脂,不能与碱发生皂化反应
化学清洗技术的发展
第二阶段主要是组合型清洗剂。各种功能型清洗助剂如渗透剂、
剥离剂、促进剂、催化剂、三价铁离子还原剂和铜离子抑制剂等也逐步
进入清洗剂配方,使清洗剂的功能更强、协同性更好、除垢性能和缓蚀 效果更佳。 第三阶段的标志是简单的专用方便型清洗剂、特殊污垢专用清洗剂 和低剂量不停车清洗剂的大量应用。随着清洗剂助剂、缓蚀剂和清洗助
海藻纤维的表面改性技术研究与应用评述

海藻纤维的表面改性技术研究与应用评述海藻纤维是一种天然的纤维材料,具有良好的生物可降解性、吸湿性和柔软性。
然而,由于其结构特殊,海藻纤维在一些方面的性能仍然有待改进。
为了提高海藻纤维的使用性能,研究人员开展了许多表面改性技术的研究,并将其成功应用于不同领域。
本文将对海藻纤维表面改性技术的研究进展进行评述。
目前,海藻纤维的主要表面改性技术包括化学改性、物理改性和生物改性。
化学改性是最常见的一种方法,主要通过改变海藻纤维的化学结构来改善其性能。
例如,利用酸碱处理、酶解、酯化等化学反应可以改变海藻纤维的表面形态和化学性质,从而提高其强度、耐磨性和抗菌性能。
物理改性则是通过改变海藻纤维的物理状态来提高其性能,例如利用高温热处理、超声波处理、等离子体处理等方法可以增强海藻纤维的纤维结构和力学性能。
生物改性主要是利用生物体颗粒或酶促反应来改变海藻纤维的性能,例如利用微生物发酵、酶法催化等方法可以改变海藻纤维的表面形貌和化学性质。
近年来,随着纳米技术的发展,海藻纤维的纳米复合材料也成为表面改性的研究热点。
纳米复合海藻纤维具有高强度、高增塑性和良好的抗菌性能,可以应用于纺织品、医用材料等领域。
纳米复合海藻纤维的制备方法有溶液浸渍法、原位聚合法、界面修饰法等。
通过这些方法,可以将纳米材料均匀分散到海藻纤维的表面,增加了纤维的强度和可塑性。
海藻纤维表面改性技术的应用领域广泛。
在纺织品行业中,通过改性海藻纤维的应用可以大大提高纺织品的吸湿性、透气性和舒适性,使其具有更好的抗菌性能和耐磨性。
在医学领域,改性海藻纤维可以用作医用敷料、药物载体和组织工程材料,具有良好的生物相容性和附着性能,在伤口愈合、药物缓释和组织修复等方面具有重要应用价值。
此外,改性海藻纤维还可以应用于食品、环境保护、油水分离等领域,在提高产品的性能和附加值方面发挥着重要作用。
然而,海藻纤维表面改性技术仍然存在一些挑战和问题。
首先,海藻纤维表面改性技术的研究还比较初级,特别是在纳米复合方面仍然存在一些技术难题。
表面改性技术

•
维氏硬度计试件允许最 大高度:130毫米
粒子的表面形貌分析
图4(a)与图4(b)粒子尺寸在数十至数百纳米范围内, 但粒 子形状不一样, 图4(b)中粒子形状更规则, 呈正多边形。
铜片上沉积粒子的X射线衍射分析
1、 当处理电压为600V 时, 沉积的粒子是铁的氧化物(Fe3O4)和少量 的铁的氮化物(γ′-Fe4N、ε-Fe3N)。 当处理电压高于800V 后, 这些粒子则是铁的氮化物(γ′, ε少量)和少量 的氧化物, 并且随着电压的升高, γ′增多, ε和Fe3O4 减少。电压达到 1000V 时, 粒子中几乎没有氧化物存在。
表面改性技术
概述
• 定义:采用某种工艺手段使材料表面获得 与其基体表面材料的组织结构、性能不同 的一种技术。 传统表面改性技术有喷丸强化、表面热处 理、化学热处理; 优质清洁表面工程技术包括等离子体、激 光、电子束、高密度太阳能表面处理和离 子注入表面改性。
1.等离子体表面处理
等离子体表面处理概述
金相组织
由图2 所示的金相照片可知, 38CrMoAl 钢在600V 进 行纯氮ASPN 处理后观察不到明显的渗氮层; 电压高 于800V 后才能形成明显的渗氮层, 见图2(b)、(c)。
显微硬度分析
放电电压在600V 时几乎没有渗 氮效果, 在高于800V 才有明显的 渗氮硬化效果, 而且渗氮层较深, 与金相组织相对应。
样本横截面
• Si是与Al有共晶反应的合金 元素,预置Si粉经激光照射熔 化后,与基板上的Al宏观上形 成了均匀的合金化层,其横截 面组织如图2所示,可以看出, 整个激光表面合金化层组织 均匀、致密、无气孔、无裂 纹,且与基体呈冶金结合。相 对于原始基板合金,预置Si粉 末激光表面合金化层组织较 为细小,合金化层中Si含量约 20 wt% ) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
清洁成形与改性技术综述
华南农业大学车辆工程2 陈树郁201131150501
摘要:本文阐述了清洁成形与改性技术的概念,介绍了清洁成形与改性技术的起源、发展与趋势。
关键词:清洁成形、改性技术、综述
1、清洁成形与改性技术概念
清洁成形与改性技术是实现机械制造业自身清洁生产的重要举措。
传统制造成形与改性技术是以物理、化学、冶金相平衡为基础理论,将热、电、光、声及化学现象散发出来的燃烧、压力、电阻、电弧、电感应、电子束、激光、超声波、等离子体等能量作用于成形及改性,使其产生熔化、凝固、结晶、塑性变形、扩散相变等物理化学性能的变化,以达到使工件成形与改性的目的,伴随这些过程,将产生大量污染物、高温和噪声,严重污染环境。
为了减少、杜绝生产污染,在成形与改性过程中,清洁成形与改性技术采用无毒、无害的原材料,利用率高的能源及高效、节能降耗的工艺与设备,使材料、能源消耗及排污最少,使先进的成形与改性技术与环境保护、生态系统协调发展,因而它是新的知识集约型技术,是21世纪科技发展的关键技术之一。
其研究范畴与内容可以概括为:(1)节能节材、无污染成形与改性技术;(2)成形与改性过程“三废”治理及利用技术;(3)成形与改性设备的改造及延寿技术。
2、技术的发展现状及发展趋势
清洁成形与改性技术是产品、零部件加工过程中具有与生态度环境相协调的先进实用技术,自然受到国内外的关注。
我国在“九五”期间已开始强调从清洁技术的重要性。
1.成形与改性技术清洁化
(1)铸造型砂
在铸造成形清洁化中,为控制其大量的有害气体和粉尘的产生,先后开发并应用了多种诸如压铸、金属型、金属型复砂等少无型砂铸造工艺,在砂型铸造中采用无毒CO2硬化的树脂砂制芯,减少树脂中游离和游离甲醛含量,解决了造型、制芯砂溃散性差的难点,开发各种类型的水玻璃旧砂干法及湿法再生装置[1],使高性能旧砂获得再生和回收,控制了环境污染,并达到节能、节材的目的。
(2)摩擦焊
在接成形清洁化过程中,不用填充材料的摩擦焊[2],已趋向于大型化,其最大功率达700KW,最大焊接截面积为20000mm²,焊接机的焊接控制已实现了数字化,电子束焊可不开坡口、不加填料,其耗电量为手工焊接的23%,埋弧焊的58%,CO2气焊的76%,是节能节材、少无污染的焊接工艺。
(3)新型涂料和喷涂技术
清洁表面改性技术,重点在于开发无污染、低能耗、排污少、高效能的新型涂料,如:水性涂料,粉末涂料,高固分涂料等,特别是水性涂料[3],水性涂料属于环保型涂料,是用水作溶剂或分散介质的涂料,其以安全、简便、环保、节能四大特征,受到不少涂料生产企业和消费者的青睐。
美、德、日等汽车工业发达国家已经基本实现了水性涂料取代传统溶剂型涂料的更新换代过程。
国际上解决表面处理污染问题采用的方法,一是采用低毒或无毒化工原料;其二是采用封闭式生产,使产生的废水、废气在工厂再生循环使用。
水热喷涂技术是90年代新兴的热喷涂工艺方法,水热氢还原是湿法冶金的一种常用方法,广
泛应用于制备金属粉末、金属复合粉末等领域,经过几十年的发展已经成为一种十分成熟可靠的工艺过程,具有工艺成熟、经济性好、包覆量准确可控以及生产规模灵活等优点[4]。
水下喷涂避免了噪声辐射和烟尘的污染,可较好地控制喷涂中的成分,以防止喷涂材料的氧化等,局部干法水下等离子喷涂就是其中一种,已基本上消除了弧光辐射、噪音、有害烟尘、粉尘的影响, 大大改善了工作环境[5],这些无污染的新技术都有助于生态环境的保护。
2.新能源及新工艺
(1)激光
激光作为一种新的能源,近年来在国际上发展迅猛,国外激光焊接已进入应用阶段,全世界拥有1KW以上的激光加工设备超过10000台,其中1/3用于焊接,美国占48%,工业发达国家焊机功率为10-30KW,焊接厚度已超过100mm,应用十分广泛。
其原理是将高强度的激光辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接[6]。
(2)真空热处理
国际热处理联合会(IFHT)预测,真空热处理在欧洲工业国家有完全取代污染严重的盐浴炉的趋势,美国真空热处理已占15%。
这一发展趋势今后将进一步增长。
我国真空热处理技术的发展趋势和国际热处理工业的发展趋势同步。
我国真空热处理工艺的研究和应用已经遍及真空退火、真空油(气)淬火、真空高压气体淬火、真空负压高流率气体淬火、真空渗碳、渗氮、真空回火、真空烧结、真空钎焊、真空渗金属、真空离子渗碳( 渗氮、渗金属) 、真空清洗、真空喷涂等广阔领域, 取得了长足的进展。
据资料介绍和最新统计, 我国现有各类真空热处理设备约2000 台, 占我国热处理设备的1. 6%[7]。
我国今后10年内应优先发展真空热处理技术。
3.三废治理与综合利用技术
(1)真空脱脂清洗技术
近年来出现了几种改型的真空脱脂清洗技术,整个过程由可编程序控制器(PLC)自动控制,技术先进,自动化程度高。
其中的蒸气脱脂设备,工作原理是在开始清洗操作之前, 先将清洗箱抽成真空然后将有机溶剂加热到沸腾温度在1大气压的蒸气压力下完成清洗过程,操作完成后,再把空气放回箱内。
清洗过程的特征是用溶剂蒸气完成清洗操作。
清洗槽中排空清洗液后使空气在冷凝系统中循环将除油器中释放的溶剂蒸气通过过滤装置一碳床过滤去除杂质后回收使用。
蒸气脱脂具有清洗效率高、清洗过程节能等优点[8]。
(2)铸造水玻璃再生
铸造行业水玻璃砂再生的应用发展迅速,水玻璃具有无毒、成本低的特点。
它比树脂砂成本低,来源广,造型(芯)工艺易掌握,我国目前年产铸件1200万吨,其中应用水玻璃砂(CO2法、VRH法、酯硬化法)生产的约150~ 170万吨,旧砂如不回用,将严重污染环境。
若再生利用,直接经济效益可达12~14亿元,目前已有研究将造型废砂与其它材料混合制造建筑用材。
以上海沪东造船厂铸钢分厂、铜陵有色金属公司机械总厂等单位为代表的一些铸造厂,采用了干法逆流式旧砂再生设备, 为醋自硬砂的再生回用解决了一个难题[9]。
所以综合利用技术在改性与成形技术中占据重要位置。
3、“十五”目标及主要研究内容
1.目标
清洁成形与改性技术涉及能源、材料、制造、环境与管理等领域,改变大量消耗能源、粗放经营的传统模式,组建新的生产模式,采用清洁工艺,以节能、降耗、减污为目标,在热加工过程中实施全过程控制,杜绝污染源的产生,实现机械生产与环境协调发展。
2.主要研究内容
(1)节能节材及少无污染成形与改性技术
包括低毒或无毒CO2硬化的树脂砂高效制芯工艺;焊接锰尘防治技术;真空高压气淬热处理及智能控制系统;节能型超音速火焰喷涂技术;水下热喷涂技术;低污染节能自泳涂装技术。
(2)成形及改性过程“三废”治理及综合利用
采用生产过程控制技术,减少废物、废水的排放,实现水耗降低40%,循环利用率提高到80%,能耗降低30%,废物利用率达到60%。
如冲火炉废气利用的研究;铸造水玻璃砂的再生回用工艺技术研究;无污染处理电镀废水及其它污水处理新技术;无公害真空脱脂清洗技术等。
(3)成形与改性设备改造及延寿技术
包括关键部件在运行过程中材料的蜕化、破坏及失效机理研究;提出关键部件的失效判据、诊断方法、监控措施、关键部件的维护、改造及延寿的可行性和方法;设备失效分析和破损机理的交互作用及耦合研究,寿命估算判据和方法的集成,维修管理决策系统的研究,复合表面工程技术的研究和推广;设备寿命评估、失效机理的研究;寿命估算法和集成;维修管理决策系统的研究。
参考文献
[1] 用水玻璃基型砂代替树脂砂的应用[J].
[2] 刘红兵, 陈洁, 占小红, 等. 铝合金搅拌摩擦焊搭接焊的研究概述[J]. 热加工工艺, 2011(19).
[3] 唐奕扬, 陈虹, 陈绍峰, 等. 水性涂料在我国汽车工业中的应用及其发展前景[J]. 现代涂料
与涂装, 2013(02).
[4] 尹春雷, 冀国娟. 水热氢还原制粉技术及其在热喷涂领域的应用[J]. 热喷涂技术, 2009(02).
[5] Lugscheider E, Haeuser B, Bugsel B. UNDERWATER PLASMA SPRAYING OF
HARDSURFACING ALLOYS.[J]. Surface and Coatings Technology, 1986,30(1):73-81.
[6] Nishar D V, Schiano J L, Perkins W P, et al. Adaptive control of temperature in arc welding,
Vancouver, BC, Can, 1993[C]. Publ by IEEE, 1993.
[7] 阎承沛. 我国真空热处理技术的现状和未来[J]. 热处理, 2000(02).
[8] Coulton Tom, 张亚平. 真空脱脂清洗系统在美国清洗市场的应用趋势[J]. 洗净技术,
2003(05).
[9] 水玻璃砂再生现状及其前景[J]. 铸造设备研究, 1994(02).。