霍尔测速实验

合集下载

霍尔转速传感器测速实验

霍尔转速传感器测速实验

实验九霍尔转速传感器测速实验一、实验目的了解霍尔转速传感器的应用。

二、基本原理根据霍尔效应表达示U H=K H IB,当K H I不变时,在转速圆盘上装上N只磁性体,并在磁钢上方安装一霍尔元件。

圆盘每转一周,表面的磁场B从无到有就变化N次,霍尔电势也相应变化N次。

此电势通过放大、整形和计数电路就可以测量被测旋转体的转速。

三、需用器件与单元霍尔转速传感器、转速测量控制仪。

四、实验步骤1、根据图9-1,将霍尔转速传感器装于转动源的传感器调节支架上,探头对准转盘内的磁钢。

图9-1 霍尔转速传感器安装示意图2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、绿( ),不要接错。

3、将霍尔传感器输出端(黄线)接示波器或者频率计。

4、调节电动转速电位器使转速变化,用示波器观察波形的变化(特别注意脉宽的变化),或用频率计观察输出频率的变化。

五、实验结果分析与处理1、记录频率计六组输出频率数值如下:由以上数据可得:最快转速对应的频率f1=152.83Hz,最慢转速对应频率f6=20.1Hz。

随着转速的减小,脉宽T1逐渐变大,但占空比基本保持不变,而且速度不能无限减小。

六、思考题1、利用霍尔元件测转速,在测量上是否有所限制?答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。

2、本实验装置上用了二只磁钢,能否只用一只磁钢?答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

1。

霍尔测速实验报告

霍尔测速实验报告

霍尔测速实验报告
《霍尔测速实验报告》
嘿,大家好呀!今天来给大家讲讲我做霍尔测速实验的那些事儿。

话说那一天,我来到实验室,看到那一堆实验器材,心里还有点小激动呢。

我看着那些霍尔传感器呀,就像看到了一个个小宝贝,嘿嘿。

我开始小心翼翼地组装起实验装置来。

我把电机接上电源,让它欢快地转起来,就像个小风车似的。

然后把霍尔传感器靠近电机,准备开始测量速度啦。

我眼睛紧紧地盯着那个小小的显示屏,心里默默祈祷着数据能准确点。

这时候呀,我感觉自己就像个侦探,在寻找着速度的秘密。

电机转呀转,我盯着看呀看,那紧张的感觉,就好像在等着彩票开奖一样。

突然,数据出来了,我兴奋地差点叫出声来。

我又反复测了几次,每一次都特别认真,感觉自己都快钻进那些数据里去了。

在这个过程中,我还发现了一些小细节呢。

比如传感器的位置稍微变动一下,数据就会有点不一样,真是神奇得很呐!
经过一番折腾,我终于完成了实验。

看着那一串串的数据,心里别提有多满足了。

就好像我收获了满满的宝藏一样。

这次霍尔测速实验,让我深深体会到了科学的魅力。

虽然过程中也遇到了一些小麻烦,像一开始不太会组装呀,数据不太稳定呀,但这些都让我更加投入,更加想要弄清楚其中的奥秘。

现在想想,科学实验还真是有趣呀,就像一场奇妙的冒险。

我期待着下一次的实验,再去探索那些未知的领域。

嘿嘿,这就是我的霍尔测速实验之旅啦,是不是很有意思呀!大家也快去试试吧!
以上就是我的霍尔测速实验报告啦,希望你们也能喜欢这个有趣的实验哦!。

霍尔测速设计实验报告

霍尔测速设计实验报告

霍尔测速设计实验报告1. 实验目的在本实验中,我们旨在通过利用霍尔传感器对电机的转速进行测量,实现一个基于霍尔传感器的测速装置,并对其性能进行测试和评估。

2. 实验器材和装置- 霍尔传感器x1- 电机x1- Arduino开发板x1- 面包板x1- 连线和其他辅助器材3. 实验原理霍尔传感器是一种能够检测磁场存在和变化的电子元器件,其原理基于霍尔效应。

当通过一个电流在霍尔元件上流动时,如果这个电流和一个垂直磁场共线,那么产生的侧边电势差(Hall电压)与磁场强度成正比。

基于这个原理,我们可以将霍尔传感器放置在旋转的电机附近,通过检测霍尔电压的变化来确定电机的转速。

4. 实验步骤1. 将霍尔传感器连接到Arduino开发板的数字引脚。

2. 将电机与Arduino开发板连接,确保其旋转轴与霍尔传感器附近。

3. 编写Arduino代码,以读取霍尔传感器的数字信号。

4. 设置一定的时间间隔,在每个时间段内读取霍尔传感器的数值,并根据数值变化计算电机的转速。

5. 运行代码,并通过串口监视器输出转速信息。

5. 实验结果在实验中,我们成功地实现了基于霍尔传感器的测速装置。

通过监测霍尔传感器的数字输出,我们能够准确地计算出电机的转速。

表格中列出了不同电压下的电机转速测量结果:电压(V) 转速(rpm)-3.0 1004.5 1506.0 2007.5 2509.0 300我们还绘制了一个转速-电压曲线图,以更直观地展示电机转速与输入电压之间的关系。

![转速-电压曲线图](speed-voltage.png)根据实验结果,我们可以看出电机的转速与输入电压是呈线性关系的,这也验证了我们所使用的测速装置的准确性和可靠性。

6. 实验总结通过本次实验,我们成功地设计了一个基于霍尔传感器的测速装置,并对其进行了测试和评估。

实验结果表明,我们所设计的装置能够准确地测量电机转速,并与输入电压呈线性关系。

这说明我们所选用的霍尔传感器和测速算法是可行的。

霍尔测速

霍尔测速
//显示模式为汉字模式,直接将12864插入12864接口即可
//注意选择液晶的电源,位于电位器附近,可选5V或3.3V,根据液晶电压进行选择
//调试环境:EW430 V5.40
//作者:
//时间:2013.07.21
********************************************************************/
}
/*************************************************
Function:main
Description:主函数
Calls:Timers_init(),LcdInit(), LCD_InitDisplay(), sprintf(),Display()
Called By:main()
/*****************************************************************************
头文件调用
*****************************************************************************/
这里将T0当作计数器使用,记录电动机转动的圈数;T1作定时器用,确定计数周期。
这里将计数周期设为1s,上一周期计数器记录下的电机转动圈数,作为当前的转速显示。
******************************************************************************/
#include <reg52.h>
#include <intrins.h>

最新传感器实验霍尔测速和光速测控

最新传感器实验霍尔测速和光速测控

传感器实验霍尔测速和光速测控传感器实验实验报告实验三霍耳测速一、实验目的:了解霍耳传感器N3120U的特性,学习霍耳传感器的应用,NE555时基集成电路应用。

二、实验设备及器件:显示器、稳压电源、频率计数器;霍耳传感器、万用表、小磁铁、小电机等。

三、实验原理:霍耳元件是一种磁电转换元件,用于检测磁场并将磁信号转换成电压。

把霍耳元件置于外磁场中,沿垂直于磁力线方向通过电流时,其中的载流子受洛仑兹力作用,被推向一侧,积累以后形成电场,这个电场阻止载流子的偏移,当达到动态平衡后,电场中电位差即形成霍耳电压。

当电流一定时,测量霍耳电压即可得知磁场的场强大小。

本实验采用的N3120U霍耳器件是一种集成的开关元件。

它的输出可直接与多种电子元件相连。

它的内部结构和主要性能如上图,其中:图(一)显示了N3120U的内部结构和外接电路的种类。

图(二)显示了对于N3120U器件来说磁场为负的情况。

图(三)、图(四)、图(五)表示了对于磁感应强度大小的不同区域输出电压翻转的情况。

图(六)给出了实验装置的示意图和磁铁与传感器的相对位置图,当磁铁转动时,N3120U输出波形为一系列方波,这时就可送计数器进行计数。

实验原理框图所示:四、实验步骤:1、测试传感器特性:(1)按图(一)连接电路,输出接示波器。

(2)如图(七)所示,测试图(五)区域的器件特性。

用示波器观察N3120U的输出情况。

将小磁铁由远及近移向N3120U,当输出电压发生跳变时,记录小磁体靠近霍耳探头的一端(现在是N极)与霍耳探头N3120U的距离,然后由此点由近及远移动小磁铁,观察N3120U 的输出,当示波器上输出电压出现反向跳变时,再记录小磁体与N3120U的距离。

磁铁由远到近磁铁由近到远跳变点与N3120U距离 8mm 11mm注:反复操作,测量结果与表中相差无几,由于不便于测量,难以得到精确值,故不必进行多次记录。

(3)用小磁体的 S极指向N3120U,重复 (2)的步骤,测试图(三)所示的器件特性。

各类传感器测速性能比较实验

各类传感器测速性能比较实验

各类传感器测速性能比较实验一、实验目的比较各类传感器对测速实验的性能差异。

二、实验要求通过实验二十(霍尔测速实验)、实验二十一(磁电式传感器测速实验)、实验二十八(电涡流传感器测转速实验)、实验三十一(光纤传感器测速实验)以及实验三十二(光电转速传感器的转速测量实验),获得实验数据,进而对实验数据进行比较,获得各传感器测速的性能。

三、基本原理(一)霍尔测速实验:利用霍尔效应表达式UH = KHIB,当被测圆盘上装上N只磁性体时,圆盘每转一周,磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12)。

(二)磁电式传感器测速实验:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N 个磁钢时,每转一周线圈感应电势产生N次变化,通过放大、整形和计数等电路即可测量转速。

(三)电涡流传感器测转速实验:利用电涡流的位移传感器及其位移特性,当被测转轴的端面或径向有明显的位移变化(齿轮、凸台)时,就可以得到相应的电压变化量,再配上相应电路测量转轴转速。

本实验请实验人员自己利用电涡流传感器和转动源、数显单元组建。

(四)光纤传感器测速实验:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。

(五)光电转速传感器的转速测量实验:光电式转速传感器有反射型和直射型两种,本实验装置是反射型的,传感器端部有发光管和光电管,发光管发出的光源在转盘上反射后由光电管接收转换成电信号,由于转盘上有黑白相间的12个间隔,转动时将获得与转速及黑白间隔数有关的脉冲,将电脉冲计数处理即可得到转速值。

四、主要器件及单元霍尔式传感器、磁电式传感器、电涡流传感器、光纤传感器、光电转速传感器、直流源±15V、转速调节2~24V,转动源模块、光纤传感器实验模块、+5V直流电源、转动源单元及转速调节2-24V、数显转速/频率表。

霍尔测速实验数据记录

霍尔测速实验数据记录

霍尔测速实验数据记录1. 实验目的本实验旨在通过霍尔效应测量物体的速度,并记录实验数据。

通过分析实验数据,研究霍尔效应的应用特点。

2. 实验原理霍尔效应是电流通过带电粒子具有电荷载流子而产生磁场时,会在垂直于电流方向上产生电势差的现象。

通过测量电势差和外磁场之间的关系,可以推算物体的速度。

在进行霍尔测速实验时,需准备以下器材和材料:•一个霍尔传感器•一个电源•一个示波器•一个磁铁•一根导线•计算机3. 实验步骤1.将电源连接到示波器和霍尔传感器上,设置合适的电流和电压;2.将磁铁靠近霍尔传感器,使其在传感器附近产生磁场;3.通过示波器观察霍尔传感器输出信号;4.在计算机上打开数据采集软件,连接示波器和计算机,开始记录数据;5.将物体放在磁铁附近,以一定速度移动;6.观察示波器上的输出波形,并记录相应的数据;7.移动物体,改变速度,重复步骤6,以获取不同速度下的数据;8.实验完成后,保存数据并断开连接。

4. 实验数据记录下表为实验过程中记录的霍尔传感器输出电压和对应的速度数据:速度 (m/s)霍尔传感器输出电压 (V)0.50.1231.00.2451.50.3672.00.4892.50.6123.00.7345. 数据处理与分析根据实验数据,我们可以进行以下处理和分析:1.绘制速度与霍尔传感器输出电压的关系图:速度与霍尔传感器输出电压关系图速度与霍尔传感器输出电压关系图2.根据数据图像可以观察到,速度与霍尔传感器输出电压呈线性关系;3.通过线性回归可得到直线方程:V = k * v + b,其中V 为霍尔传感器输出电压,v 为速度;4.根据线性回归结果,可以得到斜率 k 的值,它代表了速度与霍尔传感器输出电压的比例关系。

6. 实验结论通过分析实验数据,我们得到以下结论:•霍尔效应可以用于测量物体的速度;•速度与霍尔传感器输出电压呈线性关系;•可通过线性回归得到速度与霍尔传感器输出电压的比例关系。

霍尔转速传感器测速研究

霍尔转速传感器测速研究

霍尔转速传感器测速研究一、引言随着现代工业的不断发展,各种自动化生产设备不断涌现,其中就包括了不少需要进行高精度测速的装置。

测速为控制设备转速、监测设备工作状态提供了可靠的手段。

很多装置中采用的测速器件是霍尔转速传感器,其主要特征是响应速度快,抗干扰能力强,线性度高,适用范围广。

本文将对霍尔转速传感器进行测速研究,为工业生产中使用霍尔传感器提供理论依据和技术支持。

二、霍尔转速传感器简介霍尔传感器是一种测量电磁场变化的传感器,通过电压信号转换成与磁场强度成正比的电信号输出。

其主要原理是基于霍尔效应,即磁场通过导体时,在导体内部会产生一侧电压差,霍尔元件正是利用这一效应进行测量。

霍尔传感器可分为线性霍尔传感器和霍尔效应旋转传感器两种,这里主要介绍霍尔效应旋转传感器(又称霍尔转速传感器)。

霍尔转速传感器内部的器件包括霍尔元件、磁芯和信号处理电路。

其中,磁芯的作用是提供磁场,霍尔元件感应磁场,信号处理电路负责将感应到的电压信号转换为相应的电信号输出。

霍尔转速传感器所测量的转速是指通过连轴器传递给传感器的实际转速,转速信号输出为脉冲信号,频率与转速成正比。

三、霍尔转速传感器测速原理霍尔转速传感器测速原理基于磁场感应的基本原理,但是由于测速器件的工作环境不同,传统的磁场强度测量方法不再适用。

因此,针对霍尔转速传感器的测速方法一般采用电信号处理。

像霍尔转速传感器这样的脉冲测速器件,通过记数器来测量脉冲信号数量,从而计算实际转速。

其中,计算公式为:转速= (每秒脉冲个数X 60)/(脉冲个数/圈数)由此可知,如果要提高测速的准确性,需要提高采样的精度,这可以通过增加计数器的位数实现。

同时,还需要注意脉冲信号的波形和特性,确保信号稳定、干扰少。

四、霍尔转速传感器测速的应用由于霍尔转速传感器具有响应速度快、抗干扰能力强、线性度高、适用范围广的特点,因此在很多工业领域得到了广泛的应用:1.汽车行业:汽车中许多需要精确控制转速的部件,例如变速器、传动轴等,都需要使用高精度的霍尔转速传感器进行测速,以确保行车安全和性能稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

246810
1214
1618202224
500
1000
1500
2000
2500
3000
3500
霍尔传感器V-n 曲线图
电压(V )/V
转速(n )/r p m
霍尔测速实验报告
一、实验目的:
了解霍尔组件的应用——测量转速。

二、实验仪器:
霍尔传感器、+5V 、+4、±6、±8、±10V 直流电源、转动源、频率/转速表。

三、实验原理;
利用霍尔效应表达式:U H =K H IB ,当被测圆盘上装上N 只磁性体时,转盘每转一周磁场变化N 次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。

四、实验内容与步骤
1.安装根据图28-1,霍尔传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。

图28-1
2.将+5V 电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到频率/转速表(切换到测转速位置)。

3.打开实验台电源,选择不同电源+4V 、+6V 、+8V 、+10V 、12V (±6)、16V (±8)、20V (±10)、24V 驱动转动源,可以观察到转动源转速的变化,待转速稳定后记录相应驱动电压下得到的转速值。

也可用示波器观测霍尔元件输出的脉冲波形。

五、数据记录与分析 1、数据记录表格
电压(V) +4V +6V +8V +10V 12V 16V 20V 24V 转速(rpm)
360
742
1045
1363
1663
2348
2893
3320
2、用matlab 绘制V -RPM 曲线图
3、霍尔组件产生脉冲的原因
因为霍尔传感器本身是磁场和霍尔元件之间由于磁性交替变化而产生的脉冲信号变化。

两者之间通常会设有遮光原件,能够在变化过程中间断的影响到两者之间的磁通量。

有磁场照射霍尔元件导通,没有磁场照射霍尔元件截止,不断的交替变化引起了脉冲的信号变化,所以霍尔测速时,所长生的波形也就是脉冲电,只是随转速的改变频率发生了改变,频率变化越快证明转速越快。

六、实验报告
1.分析霍尔组件产生脉冲的原理。

2.根据记录的驱动电压和转速,作V-RPM曲线。

相关文档
最新文档