初中数学 数列的找规律

合集下载

初中数学找规律的方法

初中数学找规律的方法

初中数学找规律的方法
初中数学中,找规律常用的方法有以下几种:
1. 数列法:观察数列的前几项,找出数列的通项公式。

常见的数列有等差数列、等比数列、斐波那契数列等。

2. 图形法:观察图形的形状、位置、图案等特征,找出图形的规律。

可以通过绘制表格、拆分图形等方式来帮助分析。

3. 代数法:将题目中的未知数设定为x或n,建立方程式,通过解方程找出规律。

可以通过代入法、消元法、因式分解等方法解方程。

4. 反推法:从结果出发,通过逆向的思维反推出规律。

常用于找等式、判断大小关系等题型。

5. 分类讨论法:针对题目中的不同情况,进行分类讨论,找出每种情况下的规律。

可借助列举法或排除法等帮助分类。

以上方法仅为初中数学中常用的找规律方法,具体应根据题目特点和个人理解选择合适的方法。

在实际解题中,多练习、多思考,对各种类型题目进行归纳总结,是提高找规律能力的有效途径。

初中数学找规律解题方法及技巧

初中数学找规律解题方法及技巧

初中数学找规律解题方法及技巧通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n 位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

找规律数列(7年级)

找规律数列(7年级)

初中数学培优训练找规律(一)-数列规律一、记忆一些常见数列的规律一次数列1,3,5,7,9…… (2n-1)3,5,7,9, 11 … (2n+1)2,4,6,8,10…… (2n)0,2,4,6, 8 … (2n-2)-1,1,3,5, ,9…… (2n-3)2,5,8,11,14…… (3n-1)-1,5,11,17,23…… (6n-7)其他数列2,4,8,16, 32 … n 21,3,7,15, 31 … 12-n3,5,9,17, 33 … 12+n0,2,6,14, 30 … 22-n1,2,4,8,16,32 …… 12-n2,6,18,36 …… 132-⨯n1,4,9,16, 25 … 2n2,5,10,17,26 … 12+n0,3,8,15, 24 … 12-n二、几个重要数列的求和公式1+2+3+4+……+n=)1(21+n n1+3+5+7+……+2n-1=2n2+4+6+8+……+2n=n(n+1)3333321n ++++ =()2321n ++++ 三、练习1.一组数据 ,1125,916,79,54,31请你按照这种规律写出第七个数 1549 2古希腊科学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,第12个三角形数与第10个三角形数的差为 23 第n 个数 (连续递增)3有一数列为0,3,8,15,24,35,48,…,则此数列中第2010个数是 4040099 .4下列数据 ,3236,2125,1216,59这组数是一组光谱数据,按照这组数据的规律,第n(n ≥1)个数据应是 ()()42222-++n n 5 找规律,207,103,41,51,203,101,201 则第n 个数是 20n 6 观察下列数,按规律在横线上填上适当的数:1,-5,9,-13,17,-21 .7 数组,,174,103,52,21 --中第7个数是 507- 8 一组按规律排列的数: ,3621,2513,167,93,41则第 7个数是 6443 9 1/2,1/3,1/10,1/15,1/26,1/35,的排列规律?(区分奇偶项)10、数列 1,3,7,13,21,31的规律是什么?通式怎么写?(按2的倍数递增)11、在一列数1,2,3,4,…,200中,数字“0”出现的次数是( B )A. 30个B. 31个C. 32个D. 33个12、把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式AM=(i ,j )表示正奇数M 是第i 组第j 个数(从左往右数),如A7=(2,3),则A 2013=(C )A. (45,77)B. (45,39)C. (32,46)D. (32,23)13.人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级…逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、21…这就是著名的斐波那契数列.那么小聪上这9级台阶共有( B )种不同方法.A. 34B. 55C. 56D. 89(每一项等于前两项的和)14.一组有规律的数字依次是1,5,11,19,29,A ,55,其中A 的值是( B )A. 40B. 41C. 39D. 4215.给出两列数:(1)1,3,5,7,…,2007;(2)1,6,11,16,…,2006,则同时出现在两列数中的数的个数为(A )A. 201B. 200C. 199D. 19816、有2009个数排成一行,其中任意相邻的三个数中,中间的数总等于前后两数的和,若第一个数是1,第二个数是-1,则这2009个数的和是( A )A. -2B. -1C. 0D. 217、(循环)有一列数a1,a2,a3,a4,…,an ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2014值为(A )A. 2B. -1C. 1/2D. 201418、古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,下列属于三角数的是( A )A. 55B. 60C. 65D. 7519、古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”(如图①),而把1,4,9,16,…这样的数称为“正方形数”(如图②). 如果规定a 1=1,a 2=3,a 3=6,a 4=10,…;b 1=1,b 2=4,b 3=9,b 4=16,…;y 1=2a 1+b 1,y 2=2a 2+b 2,y 3=2a 3+b 3,y 4=2a 4+b 4,…,那么,按此规定,y 6= ( A )A. 78B. 72C. 66D. 5620、一组有规律的数字依次是1,5,11,19,29,A ,55,其中A 的值是( B )A. 40B. 41C. 39D. 4221、下面是按一定规律排列的一列数:个数是,那么第,,,,n 1971257341 3122+-n n。

数列的找规律

数列的找规律

数列的找规律:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b 为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,…?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。

(完整word版)初中数学找规律常见公式

(完整word版)初中数学找规律常见公式

一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+n2-1=n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3,4,5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8...答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,…?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×15^2-3^2=8×27^2-5^2=8×3……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。

初一找规律的数学题及解题方法

初一找规律的数学题及解题方法

初一找规律的数学题及解题方法初一找规律的数学题通常涉及数列、图形、数字变换等问题,需要观察、分析、归纳和推理。

下面是一些初一找规律的数学题及解题方法:一、数列规律题题目:观察数列1,3,7,15,31,...,求第n项的值。

解题方法:首先观察数列中相邻两项的差,发现差值分别为2,4,8,16...,即每次乘以2。

这是一个等比数列的差数列。

根据这个规律,我们可以推导出第n项的公式:第n项=2^(n-1)-1。

二、图形规律题题目:有一组图形,第一个图形有1个点,第二个图形有3个点,第三个图形有7个点,第四个图形有15个点,...,求第n个图形中点的个数。

解题方法:首先观察图形中点数的变化规律,发现相邻两项的差分别为2,4,8,...。

这是一个等比数列的差数列。

根据这个规律,我们可以推导出第n个图形中点的个数公式:第n个图形中点的个数=2^(n-1)-1。

三、数字变换规律题题目:观察数字序列1,11,21,1211,111221,...,求第n项的值。

解题方法:首先观察数字序列的变化规律,发现每个数字都是由前一个数字生成的。

具体地,第一个数字是“1”,第二个数字表示前一个数字有“1”个“1”,所以是“11”,第三个数字表示前一个数字有“2”个“1”,所以是“21”,以此类推。

这是一个描述性规律题,需要通过观察和描述来找出规律。

根据这个规律,我们可以逐步推导出第n项的值。

四、等差数列规律题题目:观察等差数列2,5,8,11,...,求第n项的值。

解题方法:首先观察等差数列的公差,发现相邻两项的差为3。

根据等差数列的通项公式an=a1+(n-1)d,其中a1为首项,d为公差,n为项数,我们可以推导出第n项的公式:第n项=2+3(n-1)。

以上是初一找规律的数学题及解题方法的一些例子。

对于找规律的数学题,重要的是通过观察和分析来发现其中的规律和模式,并根据这些规律和模式来推导出解决问题的方法。

初中数学数列的找规律

初中数学数列的找规律

初中数学数列的找规律初中数学数列的找规律:一、基本方法——看增幅一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察以下各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.解答这一题,能够先找普通规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3.4.5,…….容易发现,已知数的每一项,都等于它的序列号的平方减 1.因此,第n项是n2-1,第100项是1002-1.二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2三)看例题:A:2、9、28、65.增幅是7、19、37.增幅的增幅是12、18答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.答案与2的乘方有关即:2n四)有的可对每位数同时减去第一位数,成为第二位入手下手的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的干系.再在找出的规律上加上第一位数,规复到原先.例:2、5、10、17、26……,同时减去2后得到新数列:3、8、15、24……。

七年级数学找规律经典题型

七年级数学找规律经典题型

七年级数学找规律经典题型一、数字规律1. 数列规律例1:观察数列1,3,5,7,9,…,求第n个数。

解析:首先观察这个数列,发现相邻两个数的差值都是2。

第1个数是1 = 2×1 1;第2个数是3 = 2×2 1;第3个数是5 = 2×3 1;第4个数是7 = 2×4 1;第5个数是9 = 2×5 1。

所以可以得出第n个数为2n 1。

例2:观察数列2,4,8,16,32,…,求第n个数。

解析:这个数列中,后一个数都是前一个数的2倍。

第1个数是2 = 2^1;第2个数是4 = 2^2;第3个数是8 = 2^3;第4个数是16 = 2^4;第5个数是32 = 2^5。

所以第n个数为2^n。

2. 数字循环规律例:有一组数按照1, 1,1, 1,…的规律排列,求第n个数。

解析:观察这组数字,发现数字是1和 1交替出现。

当n为奇数时,第n个数为1;当n为偶数时,第n个数为 1。

可以用(-1)^(n + 1)来表示,当n = 1时,(-1)^(1+1)=1;当n = 2时,(-1)^(2 + 1)= 1。

二、图形规律1. 图形数量规律例1:用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴棒,…,求搭n个三角形需要多少根火柴棒。

解析:搭1个三角形需要3根火柴棒,即2×1+1;搭2个三角形时,第二个三角形和第一个三角形共用一条边,所以需要3 + 2 = 5根火柴棒,即2×2+1;搭3个三角形时,第三个三角形和前面的三角形共用两条边,所以需要3+2×2 = 7根火柴棒,即2×3 + 1。

所以搭n个三角形需要2n+1根火柴棒。

例2:观察下列图形的点数规律:第1个图形有1个点;第2个图形有1 + 3 = 4个点;第3个图形有1+3 + 5 = 9个点;第4个图形有1+3+5 + 7 = 16个点;求第n个图形的点数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学数列的找规律:
一、基本方法——看增幅
(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b 为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.
例:4、10、16、22、28……,求第n位数.
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法.
基本思路是:
1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数.
举例说明:2、5、10、17……,求第n位数.
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:
[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位数是:2+ n2-1= n2+1
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.
(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.
二、基本技巧
(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.
例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,…….
序列号:1,2,3, 4, 5,…….
容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.
例如:1,9,25,49,(),(),的第n为(2n-1)2
(三)看例题:
A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.
即:n3+1
B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n
(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第
一位数,恢复到原来.
例:2、5、10、17、26……,同时减去2后得到新数列:
0、3、8、15、24……,
序列号:1、2、3、4、5
分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1
(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.
例:4,16,36,64,?,144,196,…?(第一百个数)
同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.
(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.
三、基本步骤
1、先看增幅是否相等,如相等,用基本方法(一)解题.
2、如不相等,综合运用技巧(一)、(二)、(三)找规律
3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律
4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题
四、练习题
例1:一道初中数学找规律题
0,3,8,15,24,······
2,5,10,17,26,·····
0,6,16,30,48······
(1)第一组有什么规律?
(2)第二、三组分别跟第一组有什么关系?
(3)取每组的第7个数,求这三个数的和?
例2、观察下面两行数2,4,8,16,32,64,...(1)
5,7,11,19,35,67...(2)
根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)
例3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式
五、对于数表
1、先看行的规律,然后,以列为单位用数列找规律方法找规律
2、看看有没有一个数是上面两数或下面两数的和或差
下面是常用的一些求和公式:。

相关文档
最新文档