马尔可夫链
第四章 马尔可夫链

股市预测
预测股票价格变化 基于历史数据建立模型 考虑股票之间的相关性 用于投资决策和风险管理
05
马尔可夫链的算法
状态转移矩阵算法
定义:状态转移 矩阵算法是马尔 可夫链中用于描 述状态转移概率 的算法
计算方法:根据 历史数据和当前 状态计算未来的 状态转移概率
应用场景:广泛 应用于自然语言 处理、语音识别、 机器翻译等领域
类问题等。
可扩展性强: 马尔可夫链可 以通过增加状 态和转移概率 来扩展模型, 以处理更复杂
的问题。
缺点
状态转移概率矩 阵必须已知
无法处理连续时 间或非齐次过程
无法处理多维或 多状态过程
无法处理非马尔 可夫过程
YOUR LOGO
THANK YOU
汇报人:儿
特点:隐马尔可夫链的状态转移和观测概率是参数化的,需要通过训练数据来估计。
应用:隐马尔可夫链在语音识别、自然语言处理、机器翻译等领域有广泛应用。
算法:隐马尔可夫链的算法包括前向-后向算法、Viterbi算法和Baum-Welch算法等。
04
马尔可夫链的应用
自然语言处理
文本分类:利 用马尔可夫链 对文本进行分 类,如垃圾邮 件过滤、情感
01
添加章节标题
02
马尔可夫链的定义
状态转移
定义:马尔可夫链的状态转移概率是描述状态之间转移的规则
特性:状态转移具有无记忆性,即下一个状态只与当前状态有关,与过去状态无关
转移矩阵:描述状态转移概率的矩阵
稳态分布:在长期状态下,马尔可夫链将趋于一个稳态分布,该分布描述
YOUR LOGO
马尔可夫链
,a click to unlimited possibilities
马尔可夫链

马尔可夫链马尔可夫链(Markov chains )是一类重要的随机过程,它的状态空间是有限的或可数无限的。
经过一段时间系统从一个状态转到另一个状态这种进程只依赖于当前出发时的状态而与以前的历史无关。
马尔可夫链有着广泛的应用,也是研究排队系统的重要工具。
1) 离散时间参数的马尔可夫链 ①基本概念定义 5.7 设{()0,1,2,}X n n ∙∙∙=,是一个随机过程,状态空间{0,1,2,}E =,如果对于任意的一组整数时间120k n n n ∙∙∙≤<<<,以及任意状态12,,,k i i i E ∈,都有条件概率11{()|()}k k k k P X n i X n i --=== (5-17)即过程{()0,1,2,}X n n ∙∙∙=,未来所处的状态只与当前的状态有关,而与以前曾处于什么状态无关,则称{()0,1,2,}X n n ∙∙∙=,是一个离散时间参数的马尔可夫链。
当E 为可列无限集时称其为可列无限状态的马尔可夫链,否则称其为有限状态的马尔可夫链。
定义5.8 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,}E =上的马尔可夫链,条件概率(,){()|()}ij p m k P X m k j X m i i j E =+==∈,、 (5-18)称为马尔可夫链{()0,1,2,}X n n ∙∙∙=,在m 时刻的k 步转移概率。
k 步转移概率的直观意义是:质点在时刻m 处于状态i 的条件下,再经过k 步(k 个单位时间)转移到状态j 的条件概率。
特别地,当1k =时,(,1){(1)|()}ij p m P X m j X m i =+== (5-19)称为一步转移概率,简称转移概率。
如果k 步转移概率(,)ij p m k i j E ∈,、,只与k 有关,而与时间起点m 无关,则{()}X n 称为离散时间的齐次马尔可夫链。
定义5.9 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,}E ∙∙∙=上的马尔可夫链,矩阵000101011101(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)n n j j jn p m k p m k p m k p m k p m k p m k P m k p m k p m k p m k ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(5-20) 称为{()}X n 在m 时刻的k 步转移概率矩阵。
马尔可夫链

马尔可夫链
马尔可夫链(Markov Chain, MC)是概率论和数理统计中具有马尔可夫性质(Markov property)且存在于离散的指数集(index set)和状态空间(state space)内的随机过程(stochastic process)。
适用于连续指数集的马尔可夫链被称为马尔可夫过程(Markov process),但有时也被视为马尔可夫链的子集,即连续时间马尔可夫链(Continuous-Time MC, CTMC),与离散时间马尔可夫链(Discrete-Time MC, DTMC)相对应,因此马尔可夫链是一个较为宽泛的概念。
马尔可夫链的命名来自俄国数学家安德雷·马尔可夫以纪念其首次定义马尔可夫链和对其收敛性质所做的研究。
马尔可夫链

(3) P( n) P P( n1) (4) P( n) P n
初始概率和绝对概率
初始概率: 绝对概率:
p j (n) P{X n j}, ( j I )
p j P{X 0 j}, ( j I )
初始分布:
{ p j } { p j , j I}
绝对分布:
(第七章)马尔可夫链
马尔可夫链的概念及转移概率 马尔可夫链的状态分类 状态空间的分解 遍历性与平稳分布
马尔可夫过程的四种类型
马尔可夫链
时间、状态都离散 时间离散、状态连续
马尔可夫序列
纯不连续马尔可夫过程
时间连续、状态离散
时间、状态都连续
连续马尔可夫过程(或扩散过程)
(3)函数表达式
[例3] 设 { Xn , nT } 是一个马尔可夫链,其状态
空间 I = {a, b, c},转移矩阵为
1 / 2 1 / 4 1 / 4 P 2 / 3 0 1 / 3 3 / 5 2 / 5 0
求: (1) P{ X 1 b, X 2 c, X 3 a, X 4 c X 0 c};
一步转移概率矩阵
p11 P p21 p12 p22 p1n p2 n
性质: (1) pij 0 , i, j I
(2)
p
jI
ij
1, i I
(随机矩阵)
n 步转移概率
[定义] 称条件概率
( n) pij P{X mn j X m i}, (i, j I , m 0, n 1)
( n) n 0, 0 l < n 和 i , j I ,n 步转移概率 pij 具有下 列性质:
马尔科夫链_马尔可夫过程

马尔科夫链_马尔可夫过程一、引言1、马尔科夫链的数学背景马尔可夫链,因安德烈?马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
马尔可夫链是随机变量X_1,X_2,X_3...的一个数列。
这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而X_n的值则是在时间n的状态。
如果X_{n+1}对于过去状态的条件概率分布仅是X_n的一个函数,则PX_{n+1}=x|X_0, X_1, X_2, \ldots, X_n = PX_{n+1}=x|X_n. 这里x为过程中的某个状态。
上面这个恒等式可以被看作是马尔可夫性质。
2、马尔科夫链的典型应用①马尔科夫链在股指期货投资中的应用马尔科夫链转移矩阵的有效状态以近时点动量策略原时点反转策略为主,有效抓住了上涨和下跌的中期和初期.从而准确的抓住了日内股指波动. ②马尔科夫链在天气预报中的应用通过对马尔科夫链理论和切普曼-柯尔莫哥洛夫方程方程的探讨,,结合天气情况不确定等诸多特点,构想了天气情况预报的马尔科夫链预测模型,给出了马尔科夫链的初始概率和多重转移概率的计算方法,根据此算法可以预报短期天气情况,同时扩展到对未来天气情况趋势的预测。
③马尔科夫链在环境预测中的应用鉴于目前环境质量预测在理论方法和实践上的缺乏,把马尔科夫链引入环境质量的预测中,将各种污染物的浓度变化过程视作马尔科夫过程,通过预测各种污染物的污染负荷系数来推知其浓度值/④马尔科夫链在桥梁状态预测中的研究与应用马尔科夫链以矩阵的形式来表达桥梁状况,通过求解状态转移矩阵,进一步预测桥梁未来数年内的基本状况。
综合考虑了桥梁检修的影响,给出了桥梁检修后不同状态的状态转移矩阵,为进一步引入实际数据做了充分的准备。
3、相关文献《程序设计实践》作者 Brian W.Kernighan程序设计实践并不是只是写代码。
马尔可夫链公式

马尔可夫链公式1. 什么是马尔可夫链马尔可夫链是指一个随机过程,在这个过程中某些状态可以通过概率转移去到其他状态,而且转移只与当前状态有关,与之前的状态无关。
具有这个特点的随机过程称为马尔可夫过程,而它产生的序列称为马尔可夫链。
2. 马尔可夫链的特点马尔可夫链具有以下几个特点:- 状态空间:指该随机过程中所有可能的状态的集合。
- 转移概率:在任意时刻,从一个状态转移到另一个状态的概率。
- 状态的分布:表示在任意时刻每个状态出现的概率。
- 稳定性:表示在长时间运转后达到的稳定状态的分布。
3. 马尔可夫链的公式马尔可夫链的公式描述了该过程中某个状态在下一时刻的概率分布与当前状态的概率分布之间的关系。
数学表示如下:P(X_n+1=i | X_n=j) = Pij其中,Pij表示从状态j转移到状态i的概率。
上述公式可以表示为一个矩阵形式:P = [Pij]其中P是一个n×n的矩阵,表示马尔可夫链的状态转移概率矩阵。
矩阵中的每个元素都是非负的,且每一行元素之和为1。
4. 马尔可夫链的应用马尔可夫链可以应用于许多现实生活中的问题。
例如:- 预测天气:根据前面几天的天气情况,通过马尔可夫链可以预测后面几天的天气情况。
- 音乐生成:通过马尔可夫链可以生成新的音乐片段,以及根据既有音乐生成新的音乐曲目。
- 股票分析:通过分析历史数据,使用马尔可夫链可以预测未来股票价格的走势。
- 自然语言处理:使用马尔可夫链可以构建文本生成模型,例如自动泡面爆款语录。
总之,马尔可夫链是一种极为重要的随机过程,在很多领域都有广泛的应用。
熟悉马尔可夫链公式,能够帮助我们更好地理解和应用这个概念,从而解决很多实际问题。
马尔可夫链

马尔可夫过程一类随机过程。
它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。
该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 ( 过去 ) 。
例如森林中动物头数的变化构成——马尔可夫过程。
在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。
关于该过程的研究,1931年 A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。
目录马尔可夫过程离散时间马尔可夫链连续时间马尔可夫链生灭过程一般马尔可夫过程强马尔可夫过程扩散过程编辑本段马尔可夫过程Markov process1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。
1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。
流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。
类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。
人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。
这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。
荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。
青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。
如果将荷叶编号并用X0,X1,X2,…分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{Xn,n≥0} 就是马尔可夫过程。
液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。
马尔可夫链

三.有限维概率分布 马尔可夫链{ X ( t ), t t
0
, t 1 , t 2 , }在初始时刻t 0 的概率
分布:
p j ( t 0 ) P { X ( t 0 ) j },
j 0 ,1, 2 ,
称为初始分布. 初始分布与转移概率完全地确定了马尔可夫链的 任何有限维分布.下面的定理二正是论述这一点. 不妨设齐次马尔可夫链的参数集和状态空间都是 非负整数集,那么有如下定理。
P { X ( k 1 ) j1 , X ( k 2 ) j 2 , , X ( k n ) j n }
p i ( 0 ) p ij1 1 p j1 j22
(k )
( k k1 )
p j n n1 j n n 1
(k k
)
i0
(13.9)
例6 在本节例5中,设初始时输入0和1的概率分别为 1/3和2/3,求第2、3、6步都传输出1的概率.
t 2 t n t n 1
和 S 内任意 n 1 个状态
j1 , j 2 , , j n , j n 1 , 如果条件概率
P { X ( t n 1 ) j n 1 | X ( t 1 ) j1 , X ( t 2 ) j 2 , , X ( t n ) j n }
二:马尔可夫链的分类 状态空间 S 是离散的(有限集或可列集),参数集 T 可为离散或连续的两类. 三:离散参数马尔可夫链 (1)转移概率 定义2 在离散参数马尔可夫链{ X ( t ), t 中,条件概率 P { X ( t
m 1
t 0 , t 1 , t 2 , , t n , }
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例7 设马氏链{Xn}的状态空间为 I={1, 2, 3, 4, 5}, 转移概率矩阵为
1 2
1
2
0 0
0
1 2
1 2
0
0
0
P 0 0 1 0 0
3 / 16 . 1/ 4
于是: (1) P{X0 0, X2 1}
P{ X0 0}P{ X2 1 | X0 0} 1 5 5 ;
3 16 48
2020年5月21日星期四
(2)P{X2 1}
P{X0 0}P{X2 1 | X0 0} P{X0 1}P{X2 1 | X0 1}
显然有
p(n) 11
p(n) 21
P(n)
p(n j1
)
L
p(n) 12
p(n) 22
p(n) 1j
L
p(n) 2j
L
p(n) j2
p(n) jj
L
LL
L
(1)
0
p(n) ij
1
(2)
p(n) ij
1,
i
1,
2,L
j
2020年5月21日星期四
切普曼-柯尔莫哥洛夫方程(C-K方程): 对任意的m,n≥0,有
的矩阵
p11 p21
P
L
pj1 L
p12 L p22 L LL pj2 L LL
p1 j L
p2 j L
L
L
p jj L
L L
称为一步转移概率矩阵. 显然有
(1) 0 pij 1
(2)
pij 1, i 1, 2,L
j
2020年5月21日星期四
3、马尔可夫链举例
例1 一维随机游动 一随机游动的质点在如图所示直线的点集 I {1,2,3,4,5}上作随机游动,并且仅仅在1秒、2秒 等时刻发生游动.
P{X0 2}P{X2 1 | X0 2}
1 3
5 16
1 2
9 16
11 .
24
2020年5月21日星期四
例4 设任意相继的两天中, 雨天转晴天的概率为 1 3, 晴天转雨天的概率为1 2, 任一天晴或雨是互 为逆事件. 以0 表示晴天状态,以1表示雨天状态, Xn 表示第n天状态 ( 0或1). 试写出马氏链{ Xn , n 1} 的一步转移概率矩阵. 又已知5月1日为晴 天 ,问5月3日为晴天, 5月5日为雨天的概率各等 于多少? 解 由于任一天晴或雨是互为逆事件且雨天转 晴天的概率为1 3, 晴天转雨天的概率为1 2,
以Xn表示第n次抽取后甲袋的球数,n=1,2,… 则{Xn,n=1,2,…}是一随机过程,I={0,1,2,3,4,5}, 且当Xn=i时,Xn+1=j的概率只与i 有关,与n时刻 之前的结果是无关的,从而是一个齐次马氏链.
其一步转移概率矩阵为:
2020年5月21日星期四
0 1 2 34 5
0
1
故一步转移概率矩阵为
2020年5月21日星期四
又由于
01
P
0 1 1 1
2 3
1 2 2 3
0
1
P (2)
0 1
5 7
12 18
7 12 11 18
故 5月1日为晴天, 5月3日为晴天的概率为
p(2) 00
5
12
0.4167 ,
2020年5月21日星期四
又由于
0
P (4)
0 0.4005 1 0.3997
注:可达关系与互通关系都具有传递性 (1) 若ij , jk ,则ik ; (2) 若ij , jk ,则ik .
2020年5月21日星期四
定理 若ij ,则 (1) i与j同为常返或非常返,如为常返,则它们同 为正常返或零常返; (2) i与j有相同的周期.
1
1
1
22
1 2
1
3
4
1
2020年5月21日星期四
二、马尔可夫链的状态分类
设{Xn, n0}是齐次马尔可夫链,pij为转移概率, i,jI,I={1,2,}为状态空间,{pi, i I}为初始分布. 定义 状态i的周期d:
d=G.C.D{n:n≥1, p(n) >0} ii
(最大公约数greatest common divisor) 如果d >1,就称i为周期的; 如果d =1,就称i为非周期的.
P{ X n+1 j | X0 i0 , X1 i1, , X n1 in1 , X n i, }
记
P{ Xn1 j | Xn i} = Pij . Pij表示处于状态i的过程下一步转移到状态j的概率.
2020年5月21日星期四
具有这种平稳转移概率的马尔可夫链称为齐次的
Pij称为一步转移概率,由所有的一步转移概率构成
非周期的正常返态称为遍历状态.
例:判断下面马氏链各状态的类型
1
1
1
22
1 2
1
3
4
1
2020年5月21日星期四
马氏链状态分类图
状态空间
周期
非周期
常返
非常返
正常返
零常返
遍历
2020年5月21日星期四
状态的可达与互通 如果存在n>0,使 pi(jn),称 自0 状态i可达状态j ,
并记为 i j. 如果 i j且j i, 则称i与j 互通,记为 i j.
以Xn表示时刻 n时Q的位置,则{X n,n 0,1, 2,L } 是一个齐次马氏链. 其状态空间就是 I .
2020年5月21日星期四
一维随机游动的演示
单击图形播放/暂停 ESC键退出
2020年5月21日星期四
一步转移概率 pij P{ Xn1
j
|
Xn
i}
1 13,
,
ji i 1,
1, j
初始分布P{X0 i} 1 / 3, i 0,1,2.
试求 : (1)P{X0 0, X2 1}; (2)P{X2 1}.
2020年5月21日星期四
解 先求出二步转移概率矩阵
012
0 5/8
P(2) P2 1 5 / 16
2 3 / 16
5 /16 1/ 2 9 /16
1 / 16
1 0.5995 0.6003 ,
故 5月1日为晴天, 5月5日为雨天的概率为
p(4) 01
0.5995.
2020年5月21日星期四
课堂练习
设齐次马氏链的转移概率矩阵为
1 3
1 3
1 3
0
(1) 问马尔可夫链有几个 状态?
1 P 12
1
2 1
0 0
0
1
.
(2) 问从第二状态至少几 步才能到第三状态?
P{ X 0
i0 , X1
i1,L
, X n1
i } P n1
in1 ,in
P P P L P . i0 i0 ,i1 i1 ,i2
in1 ,in
5月21日星期四
5、切普曼-柯尔莫哥洛夫方程
在齐次条件下,可得到n步转移概率
p(n) ij
P{ X mn
j|
Xm
i}
由所有的n步转移概率就可得到n步转移概率矩阵
注:(1) 若状态i为非常返的,则由该状态出发将
以1-fii的概率永不返回.
(2) 若状态i为常返的,则 f (n), n构 1成一 ii
概率分布,其期望值为
i
nf (n) ii
n1
表示由i出发再返回到i的平均返回时间(步数).
2020年5月21日星期四
定义 设i为常返态
若i <,则称常返态i为正常返的; 若i =,则称常返态i为零常返的.
12345 游动的概率规则 如果 Q 现在位于点i(1 i 5), 则下一时刻各1 的概率向左或向右移动一格,
3 或以1的概率在原处;
3
2020年5月21日星期四
12345 如果Q现在位于1(或5)这点上, 则下一时刻就以概率1 移动到 2(或4)这一点上 . 1和5这两点称为反射壁. 上面这种游动称为带有两个反射壁的随机游动. 理论分析:
i, i 1, 1 2 或 i 5,
i j
5 4
0, j i 2.
一
12345
步 转 移
1 0 1 0 0 0
2 1 / 3 1 / 3 1 / 3 0
0
概
P 3 0 1/3 1/3 1/3 0
率 矩
4
0
0 1 / 3 1 / 3 1 / 3
阵
5 0 0 0 1 0
2020年5月21日星期四
例6 设马氏链{Xn}的状态空间I={0,1,2,},转
移概率为
1
1
1
p00
2
,
pi ,i1
, 2
pi 0
2
,i
I
试讨论各状态的常返性和周期性.
解:根据题意作出状态转移图如下
1
1
1
1
1
2
2
2
2
20
1 2
11
2
3
2 1
2
2020年5月21日星期四
f (1) 00
1 2
,
f (2) 00
1 2
1 2
2020年5月21日星期四
例5 设马尔可夫链的状态空间I={1,2,3,4},转移概 率如下图
1
1
1
22
1
3
4
1
1
2
易得状态2和3有相同的周期d=2.但是从状态3出发
经两步必定返回状态3,而从状态2出发一旦转移