数学:6.2定义与命题(2)课件(北师大版八年级下)

合集下载

定义与命题PPT课件(北师大版)

定义与命题PPT课件(北师大版)
《本来》问世之前,世界上还没有一本数学书籍像《本来》 这样编排.因此,《本来》是一部具有划时代意义的著作.
•新知探 九条基究本事实:
1.两点确定一条直线. 2.两点之间线段最短. 3.同一平面内,过一点有且只有一条直线与已知直 线垂直. 4.两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行(即:同位角相等,两直线平行). 5.过直线外一点有且只有一条直线与这条直线平行. 6.两边及其夹角分别相等的两个三角形全等. 7.两角及其夹边分别相等的两个三角形全等. 8.三边分别相等的两个三角形全等. 另外一条基本事实我们将在后面的学习中认识它.
是质数; √(4)如果两条直线都和第三条直线平行,那么这两
条直线也互相平行; (5)你喜欢数学吗? (6)作线段AB=CD.
命题的定义:判断一件事情的句子.
(1)(2)(3)(4)都是命题.你能再举几个例子吗?
•新知探 下面的究语句中,哪些语句是命题?
(1)你喜欢数学吗? (2)作线段AB=a. (3)平行用符号“∥”表示.
·指出上述命题的条件和结论.
·上述命题哪些是正确的?哪些是不正确的?
•新知探 究
真假命题的定义: 正确的命题称为真命题; 不正确的命题称为假命题.
注意: 要说明一个命题是假命题,只需举一个反例.反例
是指具备命题的条件,而不具有命题的结论的例子.
•新知探 究
Ø随堂练习
1.(1)你能分别举出一些学过的定义吗? (2)分别举出一些是命题和不是命题的语句.
定理:对顶角相等.
探究新知
Ø随堂练习
请你完成定理“三角形的任意两边之和大于第三边”的证明.
已知:如图,△ABC. 求证:AB+BC>AC,BC+CA>AB, CA+AB>BC. 证明:∵AC是以点A、点C为端点的线段(已知), ∴AB+BC>AC(两点之间,线段最短). ∵AB是以点A、点B为端点的线段(已知),

八年级数学定义与命题

八年级数学定义与命题

命题的概念与分类
概念
命题是一个陈述句,它表达了一个数 学事实或关系,可以判断其真假。
分类
根据命题的真假性质,可以分为真命 题和假命题。真命题是指描述事实正 确的命题,而假命题则是描述事实错 误的命题。
02 数学中的定义
数的定义
有理数
实数
有理数包括整数和分数,整数包括正整 数、零和负整数,分数包括正分数和负 分数。有理数可以进行四则运算。
实数是有理数和无理数的总称,包括 所有可以表示的数。实数集是数学中 一个最大的数集。
无理数
无理数是不能表示为两个整数的比的 数,常见的无理数有无限不循环小数, 如圆周率π。
运算的定义
01
02
03
04
加法
加法是将两个数合并成一个数 的运算,用加号"+"表示。
减法
减法是从一个数中去掉另一个 数的运算,用减号"-"表示。
证明几何定理
利用命题,可以证明几何定理,如 勾股定理、平行四边形的性质等。
解决几何问题
通过命题,可以解决几何问题,如 求图形的面积、周长等。
在代数中的应用
01
02
03
建立代数方程
利用命题,可以建立代数 方程,如解一元一次方程、 一元二次方程等。
证明代数定理
利用命题,可以证明代数 定理,如合并同类项法则、 分配律等。
例如,要证明“所有的三角形都有内角 和等于180度”,我们可以假设存在一 个三角形其内角和不等于180度,然后 推导出矛盾,从而证明原命题。
反证法
01
反证法是一种常用的数学证明方 法,其基本思想是假设某一命题 不成立,然后通过推理导出矛盾 ,从而证明原命题的正确性。

北师大版八年级上册数学2 定义与命题 (第2课时)课件

北师大版八年级上册数学2 定义与命题 (第2课时)课件
找出由已知推出结论的途径,写出证明过程,并注明依据. 证明过程的注意事项:
证明的每一步推理都要有根据,不能“想当然”. 这些根据,可以是已知条件,也可以是学过的定义、 基本事实、定理等.
巩固练习
证明定理 :同角的补角相等.
已知:∠2是∠1的补角, ∠3是∠1的补角.
求证:∠2=∠3.
1
证明:∵∠2是∠1的补角(已知 ),
北师大版 数学 八年级 上册
7.2 定义与命题 (第2课时)
导入新知 如何证实一个命题是真命题呢?
用我们以前 学过的观察, 实验,验证 特例等方法.
哦……那可 怎么办
这些方法往往 并不可靠.
能不能根据 已经知道的 真命题证实
呢?
那已经知道的 真命题又是如
何证实的?
素养目标
3. 理解证明要步步有据,培养学生养成科学严谨的学 习态度. 2.了解真命题的证明、公理化思想,以及证明的出发点, 通过具体事例感受证明的基本步骤和书写格式.
).
课堂检测
基础巩固题
5. 已知:b∥c, a⊥b .
求证:a⊥c.
b
c
证明: ∵ a ⊥b(已知),
1
2
a
∴ ∠1=90°(垂直的定义).
又 b ∥ c(已知),
∴ ∠2=∠1=90°(两直线平行,同位角相等).
∴ a ⊥ c(垂直的定义).
课堂小结
公理、定 理、证明
概念
公理:公认的真命 题
定理:经过证明的 真命题
课堂检测
基础巩固题
4.在下面的括号内,填上推理的依据. A
B
E
如图,AB ∥ CD,CB ∥ DE ,
求证∠ B+ ∠D=180°.

7.定义与命题PPT课件(北师大版)

7.定义与命题PPT课件(北师大版)

知3-讲
•1.正确的命题称为真命题,不正确的命题称为假命题. •2.要说明一个命题是假命题,常常可以举出一个例子 , • 使它具备命题的条件,而不具有命题的结论,这种 • 例子称为反例.
知3-讲

例4 指出下列命题的条件和结论,并判断是真命
题还是

假命题.

(1)互为补角的两个角相等;

(2)若a=b,则a+c=b+c;
知识点 1 定 义
知1-讲
•1.对名称和术语的含义加以描述,作出明确的规定 , • 也就是给出它们的定义. •2.定义是今后证明的重要根据,它既可作为性质应 • 用,也可作为判定方法应用.
知1-讲
例1 下列语句属于定义的是( D ) A.两点确定一条直线 B.两直线平行,同位角相等 C.等角的补角相等 D.三条边都相等的三角形叫做等边三边形
1 ②如果b∥a,c∥a,那么b∥c; 2 ③如果b⊥a,c⊥a,那么b⊥c; 3 ④如果b⊥a,c⊥a,那么b∥c. 4 其中真命题是①_②__④_____.(填写所有真命题的序
号)
知3-练
2 (中考·漳州)下列命题中,是假命题的是( B ) A.对顶角相等 B.同旁内角互补 C.两点确定一条直线 D.角平分线上的点到这个角的两边的距离相等
知2-讲

例3 把下列命题改写成“如果……那么……”的情势:

(1)对顶角相等;

(2)垂直于同一条直线的两条直线平行;

(3)同角或等角的余角相等.

导引:紧扣命题的结构情势进行改写.

解:(1)如果两个角是对顶角,那么这两个角相等.

(2)如果两条直线垂直于同一条直线,那么这两条直线

数学:6.2《定义与命题》(第2课时) 教案(北师大版八年级下)

数学:6.2《定义与命题》(第2课时) 教案(北师大版八年级下)

6.2 定义与命题(课时2)
【教学目标】
一、教学知识点
1.命题的组成.
2.命题真假的判断.
二、能力训练要求:
1.使学生能够分清命题的条件和结论,能判断命题的真假
2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法三、情感与价值观要求:
1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一2.帮助学生了解数学发展史,拓展视野,激发学习兴趣
3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值
【教学重点】准确的找出命题的条件和结论
【教学难点】理解判断一个真命题需要证明
【教学方法】探讨、合作交流
【教具准备】投影片。

数学初二下北师大版6.2.2定义与命题(二)教案

数学初二下北师大版6.2.2定义与命题(二)教案

数学初二下北师大版6.2.2定义与命题(二)教案●课题●教学目标〔一〕教学知识点1.命题的组成:条件和结论.2.命题的真假.3.了解数学史.〔二〕能力训练要求1.能够分清命题的题设和结论.会把命题改写成“假如……,那么……”的形式;能判断命题的真假.2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.3.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学进展和人类文明的价值.〔三〕情感与价值观要求1.通过举反例的方法来判断一个命题是假命题,说明任何事物基本上正反两方面的对立统一体.2.通过了解数学知识,拓展学生的视野,从而激发学生学习的兴趣.●教学重点找出命题的条件〔题设〕和结论.●教学难点找出命题的条件和结论.●教学方法讲练相结合法.●教具预备投影片四张第一张:想一想〔记作投影片§6.2.2A〕第二张:做一做〔记作投影片§6.2.2B〕第三张:想一想〔记作投影片§6.2.2C〕第四张:公理〔记作投影片§6.2.2D〕●教学过程Ⅰ.巧设现实情境,引入课题[师]上节课我们研究了命题,那么什么叫命题呢?[生]判断一件情况的句子,叫做命题.[师]好.下面大伙来想一想:〔出示投影片§6.2.2A〕[师]大伙观看后,分组讨论.[生甲]这五个命题基本上用“假如……,那么……”的形式表达的.[生乙]每个命题基本上由得到结论.[生丙]这五个命题的每个命题都有条件和结论.[师]特别好.这节课我们接着来研究命题.Ⅱ.讲授新课[师]大伙刚才观看到上面的五个命题中,每个命题都有条件〔condition〕和结论〔conclusion〕两部分组成.条件是的事项,结论是由事项推断出的事项.一般地,命题都能够写成“假如……,那么……”的形式.其中“假如”引出的部分是条件,“那么”引出的部分是结论.如:上面的命题〔1〕中,假如引出的部分“两个三角形的三条边对应相等”是条件,那么引出的部分“这两个三角形全等”是结论.有些命题没有写成“假如……,那么……”的形式,题设和结论不明显.如:“同角的余角相等”,关于如此的命题,要通过分析才能找出题设和结论,也能够将它们改写成“假如……,那么……”的形式.如:“同角的余角相等”能够写成“假如两个角是同一个角的余角,那么这两个角相等”.注意:命题的题设〔条件〕部分,有时也可用“……”或者“假设……”等形式表述,命题的结论部分,有时也可用“求证……”或“那么……”等形式表述.下面我们来做一做〔出示投影片§6.2.2B〕[生甲]第一个命题的条件是:两个角相等,结论是:它们是对顶角.[生乙]第二个命题的条件是:a>b,b>c,结论是:a=c.[生丙]第三个命题的条件是:在两个三角形中,有两角和其中一角的对边对应相等.结论是:这两个三角形全等.[生丁]第四个命题的条件是:菱形的四条边.结论是:都相等.[生戊]丁同学说得不对.那个命题可改写为:假如一个四边形是菱形,那么那个四边形的四条边都相等.显然,那个命题的条件是:一个四边形是菱形.结论是:那个四边形的四条边都相等.[生己]第五个命题可改写为:假如两个三角形全等,那么这两个三角形的面积相等.那么那个命题的题设是:两个三角形全等.结论是:这两个三角形的面积相等.[师]同学们分析得特别好.能够通过分析,准确地找出命题的条件和结论.接下来我们[师]大伙思考后,来分组讨论.[生甲]第三个、第四个、第五个命题是正确的.第一个、第二个命题是不正确的.图6-10[生乙]我们讨论的结果是与甲同学的一样.如图6-10,∠1=∠2,从图形中可知∠1与∠2不是对顶角.因此第一个命题:假如两个角相等,那么它们是对顶角是错误的.[生丙]第二个命题中的a取6,b取3,c取2,如此可知:a与c是不相等的.因此第二个命题是不正确的.[师]特别好.同学们不仅能辨别命题的正确与否,还能举例说明命题的错误.真棒!我们把正确的命题称为真命题〔truestatement〕,不正确的命题称为假命题〔falsestatement〕.由大伙刚才分析能够明白:要说明一个命题是一个假命题,通常能够举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例〔counterexample〕.注意:关于假命题并不要求,在题设成立时,结论一定....错误.事实上,只要你不能保证结论一定成立,那个命题确实是假命题了.因此,要说明一个命题是假命题,只要举出一个“反例”就能够了.那一个正确的命题如何证实呢?大伙来想一想:〔出示投影片§6.2.2C〕[生甲]用我们往常学过的观看、实验、验证特例等方法.[生乙]这些方法往往并不可靠.[生丙]能不能依照差不多明白的真命题证实呢?[生丁]那差不多明白的真命题又是如何证实的?[生戊]哦……那可如何办呢?……[师]事实上,在数学进展史上,数学家们也遇到过类似的问题,公元前3世纪,人们差不多积存了大量的数学知识,在此基础上,古希腊数学家欧几里得〔Euclid,公元前300前后〕编写了一本书,书名叫《原本》〔Elements〕,为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:选择了一部分数学名词和一部分公认的真命题作为证实其他命题的起始依据.其中的数学名词称为原名,公认的真命题称为公理〔axiom〕.除了公理外,其他真命题的正确性都通过推理的方法证实.推理的过程称为证明〔proof〕.通过证明的真命题称为定理〔theorem〕,而证明所需的定义、公理和其他定理都编写在要证明的那个定理的前面.《原本》问世之前,世界上还没有一本数学书籍像《原本》如此编排.因此,《原本》是一部具有划时代意义的著作.[生]老师,我明白了,除公理、定义外,其他的真命题必须通过证明才能证实.[师]对,我们这套教材有如下命题作为公理:〔出示投影片§6.2.2D〕[师]同学们来朗读一次.[师]好.除这些以外,等式的有关性质和不等式的有关性质都能够看作公理.在等式或不等式中,一个量能够用它的等量来代替.如:假如a=b,b=c,那么,a=c,这一性质也看做公理,称为“等量代换”.注意:〔1〕公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题.〔2〕公理能够作为判定其他命题真假的依照.好,下面我们通过“读一读”来进一步了解《原本》这套书,进而了解数学史.Ⅲ.课堂练习1.课本P185读一读2.看课本P181~185,然后小结.Ⅳ.课时小结本节课我们要紧研究了命题的组成及真假.明白任何一个命题基本上由条件和结论两部分组成.命题分为真命题和假命题.在辨别真假命题时.注意:假命题只需举一个反例即可.而真命题除公理和性质外,必须通过推理得证.大伙要会灵活运用本节课谈到的公理来证明一些题.Ⅴ.课后作业〔一〕课本P187习题6.31、2〔二〕1.预习内容P188~1902.预习提纲〔1〕平行线的判定方法的证明〔2〕如何进行推理Ⅵ.活动与探究将一个命题的条件与结论交换得到一个新命题,我们称那个命题为原命题的逆命题,请写出以下命题的逆命题,并判断是真命题依旧假命题.1.凡直角都相等.2.对顶角相等.3.两直线平行,同位角相等.4.假如两数中有一个是正数,那么这两个数之和是正数.[过程]让学生充分考虑,使他们能分清命题的题设和结论.写出逆命题的关键是分清原命题的题设和结论,而判别真假那么依赖于对知识的掌握.[结果]解:〔1〕凡相等的角基本上直.假命题〔2〕相等的角是对顶角.假命题〔3〕同位角相等,两直线平行.真命题〔4〕假如两个数之和是正数,那么这两个数中必须有一个正数.真命题。

6.2 定义与命题 课件1(北师大版八年级下)

6.2 定义与命题 课件1(北师大版八年级下)

上面“如果…那么…”都是对事情进行判 断的句子,判断一件事情的句子,叫做命题。
1、你能举出一些命题吗?
• 熊猫没有翅膀
• 对顶角相等
• 任何一个三角形一定有直角 • 无论n为怎样的自然数,式子n2-n+11的值都是 质数
• 如果两条直线都和第三条直线平行,那么 这两条直线也互相平行
2、举出一些不是命题的句子。
• 你喜欢数学吗? • 线段AB=CD
3、判断下列句子哪些是命题?
• 动物都需要水 • 猴子是动物的一种 • 玫瑰花是动物 • 美丽的天空 • 三个角对应相等的两个三角形一定全等 • 负数都小于零 • 你的作业做完了吗?
• 所有的质数都是奇数 • 过直线l外一点作l的平行线 • 如果a>b, a>c, 那么b=c
第六章 证明(一)
第二节 定义与命题 (一 )
根据上面的情境,你能得出什么结论? • 交流必须对某些名称和术语有共同的语 言认识才能进行。 • 要对名称和术语的含义的一个灌溉系统
•如果B处水流受到污染,那么____处水流便受到污染; •如果C处水流受到污染,那么____处水流便受到污染; •如果D处水流受到污染,那么____处水流便受到污染;
今天的收获:
• 定义的含义:对名称和术语 的含义 加以描述,作出明 确的规定,就是它们的定义;
命题的含义:判断一件事情的句子叫
做命题,如果一个句子没有对某一件 事情作出任何判断,那么它就不是命 题。
今天的作业:
学习小组收集八年级下册数学课本中 的新学的部分定义、命题,看谁找得多。

八年级数学下册 6.2.2定义与命题(二)教案 北师大版 教案

八年级数学下册 6.2.2定义与命题(二)教案 北师大版 教案
些是正确的?哪些是不正确的?你怎么知道它们是不正确的?
3、真命题和假命题
我们把正确的命题称为真命题(true statement),不正确的命题称为假命题(false statement).
思考:如何证实一个命题是真命题呢?
4、我们这套教材有如下命题作为公理:
1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
§定义与命题(二)
●教学目标
(一)教学知识点
1.命题的组成:条件和结论.. 3.了解数学史.
(二)能力训练要求
“如果……,那么……”的形式;能判断命题的真假.
2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.
3.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值.
观察下列命题,你能发现这些命题有什么共同的结构特征?
(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.
(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.
(3)如果一个三角形是等腰三角形,那么这个ቤተ መጻሕፍቲ ባይዱ角形的两个底角相等.
(4)如果一个四边形的对角线相等,那么这个四边形是矩形.
截,同位角相等.
3.两边及其夹角对应相等的两个三角形全等.
等.
三角形全等.
6.全等三角形的对应边相等,对应角相等.
Ⅲ.课堂练习
Ⅳ.课时小结
假命题.
在辨别真假命题时.注意:假命题只需举一个反例即可.而真命题除公理和性质外,必须通过推理得证.
Ⅴ.课后作业
(1)平行线的判定方法的证明
(2)如何进行推理
(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.
学生分组讨论.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 指出下列命题的条件和结论,并改写 成“如果……那么……”的形式: ⑴三条边对应相等的两个三角形全等;
条件是:两个三角形的三条边对应相等 结论是:这两个三角形全等 改写成:如果两个三角形有三条边对应相 等,那么这两个三角形全等。
例 指出下列命题的条件和结论,并改写 成“如果……那么……”的形式: (2)对顶角相等 条件是: 两个角是对顶角 结论是:这两个角相等 改写成:如果两个角是对顶角,那么这两 个角相等。
例 指出下列命题的条件和结论,并改写 成“如果……那么……”的形式: (3)在同一个三角形中,等角对等边;
条件是: 同一个三角形中的两个角相等 结论是: 这两个角所对的两条边相等 改写成:如果在同一个三角形中,有两个 角相等,那么这两个角所对的 边也相等。
指出下列命题的条件和结论,并改写 “如果„„那么„„”的形式: ⑴两条边和它们的夹角对应相等的两个 三角形全等;
这些命题的共同的结构特征.
每个命题都由条件和结论两部分 组成.条件是已知事项,结论是由已 事项推断出的事项. 一般地,命题可以写成“如 果……,那么……”的形式,其中 “如果”引出的部分是条件,“那么” 引出的部分是结论.
1、如果两个三角形的三条边对应相等, 那么这三角形全等;
条件
已知事项
结论
等式的有关性质和不等式的有关 性质都可以看作公理 在等式或不等式中,一个量可以用它 的等量来代替.例如,如果,那么,这一 性质也看作公理,称为“等量代换”.
小结
拓展
原名、公理、证明、定理 的定义及它们的关系
+ 原名、公理
一些条件
推理的过程 叫证明
经过证明的真 命题叫定理
推 理
证实其它命 题的正确性
如何证实一个命题是真命题呢
用我们以前学
过的观察,实验, 验证特例等方 法.
能不能根据已 经知道的真命 题证实呢? 那已经知 道的真命 题又是如 何证实的?.
这些方法 往往并不 可靠.
哦……那 可怎么办
想一想

如何证实一个命题是真命题呢?
古希腊数学家欧几里得 编写一本书《原本》, 他的方法是:
经过证明的真命 题叫定理
说明假命题的方法: 举反例

这几个命题哪些是正确的?哪些不正确?你是 怎么知道它们是不正确的?
1.如果两个角相等,那么它们是对 顶角; 假命题 2.如果a>b,b>c,那么a=c; 假命题 3.两角和其中一角的对边对应相等 的两个三角形全等; 真命题 4.菱形的四条边都相等; 真命题 真命题 5.全等三角形的面积相等.

1、命题都是由条件和结论两部分组成
“如果……那么……”
条件
举反例
结论
• 2、说明一个命题是假命题的方法: • 3、说明一个命题是真命题的方法:
证明
证明的依据:公理(等式的性质) 定义、已证明的定理
做一做 想一想☞
1.下列命题的条件是什么?结论是什么? (1)如果两个角相等,那么它们是对顶角; (2)如果a>b,b>c,那么a=c; (3)两角和其中一角的对边对应相等的两个三角形全等; (4)菱形的四条边都相等; (5)全等三角形的面积相等.
用推理的方法证实其它命题的正确性
推理的过程叫证明
确定一些公认的命题作为公理
古希腊数学家欧几里得(Eyclid,公元前300前后). 原名:某些数学名词称为原名. 公理:公认的真命题称为公理. 证明:除了公理外,其它真命题的正确性都通 过推理的方法证实.推理的过程称为证明. 定理:经过证明的真命题称为定理.
如果两个三角形有两互余。
如果两个角是一个直角三角形的两个锐角, 那么这两个角互余。
将下列命题改写为“如果…… ,那 么……” 的形式。 1、同角或等角的余角相等。 2、平角的一半是直角;
3、末位数字是2的整数是2的倍数; 4、角平分线上的点到角两边的距离 相等。

观察下列命题:
1. 1 、如果两个三角形的三条边对应相等, 如果两个三角形的三条边对应相等, 那么这两个三角形全等; 2、如果一个四边形的一组对边平等且相 2. 如果一个四边形的一组对边平等且相 等,那么这个四边形是平行四边形; 3、如果一个三角形是等腰三角形,那么 3. 如果一个三角形是等腰三角形,那么 这个三角形的两个底角相等; 4、如果一个四边形的对角线相等,那么 4. 如果一个四边形的对角线相等,那么 这个四边形是矩形; 5、如果一个四边形的两条对角线互相垂 5. 如果一个四边形的两条对角线互相垂 直,那么这个四边形是菱形。 直,那么这个四边形是菱形 . 这些命题有什么共同的结构待征?
由已知事项推断 出来的事项
命题都可以写成“如果……那么……” 的形式;其中“如果”引出的部分是 条件,“那么”引出的部分是结论.
指出下列命题的题设和结论
1、如果两条直线相交,那么它们只 有一个交点; 题设:两条直线相交
结论: 它们只有一个交点
指出下列命题的题设和结论
2、如果∠1=∠2,∠2=∠3, 那么∠1=∠3; 题设: ∠1=∠2,∠2=∠3 结论: ∠1=∠3

什么是命题?
判断一件事情的句子,叫做命题 • 下列句子哪些是命题? 1.猫有四只脚; 2.三角形两边之和大于第三边; 3.画一条曲线; 4.四边形都是菱形; 5.潮湿的空气; 6.有三个角是直角的四边形是长方形
正确的命题称为真命题 不正确的的命题称为假命题
要说明一个命题是假命题,通常可以 举出一个例子,使之具备命题的条件, 而不具备命题的结论,这种例子称为反 例

4、下列句子中,是定理的是( ), 是公理的是( ),是定义的是( ) A、若a=b,b=c,则a=c; B、对顶角相等 C、全等三角形的对应边相等, 对应角相等 D、有一组邻边相等的平行四边形 叫做菱形 E、两条平行直线被第三条直线所截, 同位角相等
A、B、C、D、E五名学生猜自己 的数学成绩: A说:“如果我得优,那么B也得优。” B说:“如果我得优,那么C也得优。” C说:“如果我得优,那么D也得优。” D说:“如果我得优,那么E也得优。” 大家都没有说错,但只有三个人得 优。请问:得优的是哪三个人?
1、“两点之间,线段最短”这个语句是( A、定理 B、公理 C、定义 D、只是命题
2、“同一平面内,不相交的两条直线 叫做平行线”这个语句是( ) A定理 B公理 C定义 D只是命题
3、下列命题中,属于定义的是( A、两点确定一条直线 B、同角的余角相等 C、两直线平行,内错角相等 D、点到直线的距离是该点到这条 直线的垂线段的长度
3、两条直线被第三条直线所截,如果 同旁内角互补,那么这两条直线平行; 两条直线被第三条直线所截, 题设:
同旁内角互补 结论: 这两条直线平行
4 、如果两条平行线被第三条直线所截, 4 、两条平行线被第三条直线所截, 那么内错角相等; 内错角相等; 题设: 两条平行线被第三条直线 题设: 所截 结论: 内错角相等 结论:
有关概念、公理
条件1
定理1
有关概念、公理
定理2
定理3
……
……
条件2
本套教材选用如下命题作为公理 :
1.两直线被第三条直线所截,如果同位角 相等,那么这两条直线平行; 2.两条平行线被第三条直线所截,同位角 相等; 3.两边夹角对应相等的两个三角形全等; 4.两角及其夹边对应相等的两个三角形 全等; 5.三边对应相等的两个三角形全等; 6.全等三角形的对应边相等,对应角相等
相关文档
最新文档