统计学知识点汇总情况
统计学知识点全归纳__全面准确

统计学知识点全归纳__全面准确统计学是一门研究和应用统计原理和方法的学科。
统计学的目的是通过收集、整理、分析和解释数据来描述和推断人类活动中的规律性和不确定性。
下面将全面准确地归纳统计学的基本知识点。
1.数据收集和整理-数据的收集方法:可以通过抽样或完全普查进行数据收集。
抽样是从总体中选择一部分样本进行调查或实验,以此来推断总体的特征。
2.描述统计-数据的概括性度量:包括测量中心趋势的平均数(如算术平均值、中位数和众数)、测量离散程度的方差和标准差、测量数据分散程度的四分位数等。
-数据的可视化表示:可以使用直方图、箱线图、散点图、饼图等图表来展示数据的分布和关系。
3.概率与随机变量-概率的概念:概率是描述事件发生可能性的数值,范围从0到1、事件的概率可以通过频率或基于概率模型推断得到。
-随机变量:随机变量是随机试验结果的数值表示。
可以分为离散随机变量和连续随机变量。
4.概率分布-离散分布:包括二项分布、泊松分布等。
二项分布描述了一次试验中两个可能结果的概率分布,泊松分布描述了随机事件在固定时间或空间区域内发生的次数的概率分布。
-连续分布:包括正态分布、指数分布等。
正态分布是最常见的连续概率分布,它以钟形曲线显示数据的分布情况。
-概率密度函数和累积分布函数:概率密度函数描述了随机变量落在一些区间内的概率密度,累积分布函数描述了随机变量小于或等于一些值的概率。
5.抽样分布和统计推断-抽样分布:根据中心极限定理,当样本容量足够大时,样本均值的抽样分布会近似服从正态分布。
-参数估计:通过样本统计量(如样本均值、样本方差)来推断总体参数的数值。
-假设检验:用来检验一个关于总体参数的假设是否成立。
根据样本数据和给定的显著性水平,对假设进行接受或拒绝的判断。
6.相关分析和回归分析-相关分析:用来研究两个变量之间的关系。
可以通过计算相关系数(如皮尔逊相关系数)来衡量两个变量之间的线性相关程度。
-回归分析:用来研究一个或多个自变量与因变量之间的关系。
统计学知识点汇总

统计学知识点汇总第一章:统计学是收集、处理、分析、解析数据并从数据中得出结论的科学。
分类:描述统计、推断统计。
描述统计是研究数据收集、处理和描述的统计学方法. 推断统计是研究如何利用样本数据来推断总体特征的统计学方法(内容包括参数估计和假设检验)。
变量:每次观察都会得到不同结果的某种特征。
分类变量:又称无序分类变量,观测结果表现为某种类别的变量。
顺序变量:又称有序分类变量,观测结果表现为某种有序类别的变量。
数值变量:又称定量变量,观测结果表现为数字的变量.数据:1、分类数据2、顺序数据3、数值型数据总体:包含所研究的全部个体(数据)的集合。
样本:从总体中抽取的一部分元素的集合.样本量:构成样本元素的数目。
抽样方法:1、简单随机抽样2、分层抽样3、系统抽样4、整群抽样简单随机抽样:从含有N个元素的总体中,抽取n个元素组成一个样本,使得总体中的每一个元素都有相同的机会(概率)被抽中。
分层抽样:也称分类抽样,在抽样之前先将总体的元素划分为若干层(类),然后从各个层中抽取一定数量的元素组成一个样本。
软件应用:用Excel抽取简单随机样本。
第二章:一、定性数据的图示:1、条形图2、帕累托图3、饼图4、环形图条形图:是用宽度相同的条形来表示数据多少的图形,用于观察不同类别的多少或分布状况。
帕累托图:是按各类别出现的频数多少排序后绘制的条形图。
通过对条形的排序,容易看出哪类频数出现的多,哪类出现的少。
饼图:主要用于表示一个样本(或总体)中各类别的频数占全部频数的比例。
用图表展示定量数据:生成定量数据的频数分布表时,需要先将原始数据按照某种标准分成不同的组别,然后统计出各组别的数据频数即可。
一组数据所分的组数K应不少于5组且不多于15组。
组距=(最大值-最小值)/组数组数=全距 /组距每组组距均相等称为等距数列,反之则为异距数列在比较等距数列与异距数列的次数分布时常用:次数密度=本组次数/本组组距2.组中值 class midpoint组中值=(本组上限+本组下限)/2或组中值=(本组假定上限+本组假定下限)/2二、定量数据的图示:1、分组数据看分布:直方图2、未分组数据看分布:茎叶图和箱线图、垂线图和误差图最小值 25%四分位数中位数 75%四分位数最大值箱线图的示意图: Array3、两个变量间的关系:散点图是用二维坐标展示两个变量之间关系的一种图形。
统计学基础知识点总结

统计学基础知识点总结统计学是研究数据收集、分析和解释的科学。
它提供了一种用来了解和解释各种数据的方法和工具。
统计学的基础知识点是学习统计学的基础,下面是一些重要的基础知识点总结:1. 数据类型:统计学中的数据可以分为两类:定量数据和定性数据。
定量数据是可以量化的,例如身高、温度等,而定性数据是描述性质和特征的,例如性别、颜色等。
2. 数据收集:数据收集是统计学的基础,它包括设计问卷、调查、实验等方法来收集数据。
收集数据时需要注意样本的代表性,并尽量避免抽样偏差。
3. 描述性统计:描述性统计是用来总结和描述数据的方法。
常用的描述性统计包括计算平均数、中位数、范围和标准差等指标来衡量数据的集中趋势和离散程度。
4. 概率:概率是研究随机事件发生可能性的数学工具。
它可以用来计算事件发生的概率,从而预测未来事件的可能性。
概率可以分为古典概率和条件概率等不同类型。
5. 概率分布:概率分布是描述随机变量的分布规律的数学模型。
常见的概率分布包括均匀分布、正态分布和泊松分布等。
概率分布可以用来计算随机变量的期望、方差等统计指标。
6. 假设检验:假设检验是统计学中用来验证关于总体参数的假设的方法。
通过对样本数据进行统计分析,可以得出关于总体参数是否符合假设的结论。
假设检验包括设定假设、选择检验统计量、计算显著性水平和做出决策等步骤。
7. 相关分析:相关分析是用来研究两个变量之间关系的方法。
它可以通过计算相关系数来衡量两个变量之间的相关性,并判断相关性是否显著。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
8. 回归分析:回归分析是研究因果关系的统计方法。
它通过建立数学模型来描述自变量和因变量之间的关系,并可以用来预测因变量的取值。
常见的回归分析包括线性回归和多元回归等。
9. 抽样分布:抽样分布是指统计量在不同样本中的分布情况。
它可以用来计算统计量的置信区间和显著性水平等,从而对总体参数进行推断。
10. 统计软件:统计软件是进行统计分析的工具。
统计的知识点总结

统计的知识点总结1. 描述统计描述统计是通过数据的收集、整理和呈现,来对数据的特征进行描述和解释的方法。
描述统计包括了测度中心趋势的方法(如均值、中位数、众数)、测度离散程度的方法(如标准差、方差、极差)以及数据的呈现方法(如表格、图表、频率分布)。
2. 推论统计推论统计是通过对样本数据的分析和推断,来对总体特征进行推测和预测的方法。
推论统计包括了参数估计和假设检验两个主要方法。
在参数估计中,我们通过样本数据来估计总体的参数值;在假设检验中,我们通过样本数据来对总体的某个假设进行检验。
推论统计方法在科学研究和决策制定中具有重要的应用价值。
3. 概率统计概率统计是研究随机现象规律性的科学,它包括了概率的概念、概率分布、随机变量的概念和性质、大数定律和中心极限定理等。
概率统计的基本概念对于理解统计学的理论和方法具有重要的意义。
4. 回归分析回归分析是一种对两个或多个变量之间关系进行建模和分析的方法。
它包括了简单线性回归、多元线性回归、非线性回归等。
回归分析的方法对于预测和决策具有重要的应用价值。
5. 方差分析方差分析是一种用于比较两个或两个以上样本均值之间差异的方法。
它包括了单因素方差分析、双因素方差分析、多因素方差分析等。
方差分析的方法在生物、医学、社会科学等领域都具有重要的应用价值。
6. 生存分析生存分析是一种对时间至事件发生之间关系进行建模和分析的方法。
它包括了生存函数、风险集与危险比、生存曲线、生存比较等。
生存分析的方法在医学、流行病学、生物统计学等领域都具有重要的应用价值。
以上是统计学的一些基本知识点总结。
统计学作为一门科学,它的研究对象是数据,通过数据的收集、整理、分析和解释,来探索数据之间的关系和规律,从而推断和验证问题的解答。
统计学的方法和技术在各个领域都有着广泛的应用价值,它不仅可以帮助我们理解世界,还可以指导我们进行决策和预测。
统计学的知识点非常丰富,每一个知识点都有着自己的理论和方法,对于我们学习和应用统计学都具有着重要的意义。
统计学期末知识点总结

1.多重共线性:当回归模型中存在两个或两个以上的自变量彼此相关时,则称回归模型中存在多重共线性。
2.相关关系:变量之间存在的不确定的数量关系,称为相关关系。
3.五个相关关系:正线性相关,负线性相关,完全正线性相关,完全负线性相关,非线性相关,不相关。
若 0<r≤1,表明 x 与 y 之间存在正线性相关关系;若-1≤r <0,表明 x 与 y 之间存在负线性相关关系;若 r=+1,表明 x 与 y 之间为完全正线性相关关系;若 r=-1,表明 x 与 y 之间为完全负线性相关关系。
|r|→1 说明两个变量之间的线性关系越强;|r|→0 说明两个变量之间的线性关系越弱。
4.回归直线的拟合优度:回归直线与各观测点的接近程度称为回归直线对数据的拟合优度。
判定系数 R2测度了回归直线对观测数据的拟合程度。
5.最小二乘估计法:通过使因变量的观测值 yi 与估计值yi ∧之间的离差平方和,即残差平方和,达到最小来估计β0和β1的方法。
6. F 检验和 t 检验各有什么作用:F 检验是检验自变量 x 和因变量 y 之间的线性关系是否显著;t 检验是检验自变量对因变量的影响是否显著,也就是回归系数的检验。
7.8.正态分布—Z分布:大样本或小样本总体标准差σ已知。
9.N-1的T分布:小样本σ未知。
10.参数估计:点估计与区间估计11.置信区间:由样本统计量所构造的总体参数的估计区间。
12.置信水平:置信区间中包含总体参数真值的次数所占的比例。
置信水平越大,所需的样本量也就越大,置信区间越宽。
13.评价估计量的标准:无偏性:是指估计量抽样分布的数学期望等于被估计的总体参数有效性:是指对同一参数的两个无偏估计量,有更小方差的估计量越有效。
一致性:是指随着样本量n的增大,估计量的值越来越接近总体参数的真值。
14.样本量越大,样本均值的抽样标准差就越小。
15.总体数据的方差越大,估计时所需的样本量越大。
16.数据概括性度量:(数据分布特征的测量)集中趋势,离散程度,分布形态(偏态与峰态)17.三个分布:对称分布—众数=中位数=平均数左偏分布—平均数<中位数<众数右偏分布—众数<中位数<平均数18.标准分数的用途:①变量值与其平均数的离差除以标准差后的值称为标准分数,用Z表示。
根据统计学知识点总结

根据统计学知识点总结
统计学是一门研究收集、整理、分析和解释数据的学科。
以下是统计学的一些重要知识点总结:
1. 数据类型:
- 定性数据:描述性数据,例如性别、民族等。
- 定量数据:数值型数据,可以进行数学运算,例如年龄、身高等。
2. 描述统计:
- 集中趋势:用于描述数据分布的中心位置,包括均值、中位数和众数。
- 变异程度:用于描述数据分布的离散程度,包括方差、标准差和极差。
- 分布形态:用于描述数据分布的形状,包括偏度和峰度。
3. 概率:
- 概率基本原理:用于计算事件发生的可能性,包括事件的互斥性和独立性。
- 概率分布:描述随机变量的可能取值及其发生的概率,包括离散分布和连续分布。
4. 抽样与估计:
- 简单随机抽样:随机选择样本的抽样方法。
- 参数估计:使用样本数据估计总体参数的方法,包括点估计和区间估计。
5. 假设检验:
- 假设与备择假设:对总体参数进行猜测的两个假设。
- 显著性水平:用于判断拒绝或接受原假设的标准。
- 检验统计量:用于比较样本和总体的差异。
6. 相关与回归:
- 相关分析:分析两个变量之间的相关关系。
- 简单线性回归:用于建立两个变量之间的线性回归模型。
以上是根据统计学知识点的总结,这些知识点将帮助您理解和应用统计学于实际问题。
统计学各章节期末复习知识点

统计学各章节期末复习知识点统计学是一门研究数据收集、分析和解释的学科。
作为一门广泛应用于各个领域的学科,统计学的知识点非常丰富。
以下是统计学各章节的期末复习知识点汇总:1.数据收集与描述-数据类型:定量数据和定性数据-数据收集方式:问卷调查、观察、实验-描述统计:中心趋势(均值、中位数、众数)、离散程度(范围、方差、标准差)、数据分布(直方图、条形图、饼图)2.概率论基础-随机试验与样本空间-事件与事件概率-古典概型、几何概型和统计概型-条件概率与独立性-伯努利试验与二项分布3.随机变量及其分布-随机变量与分布函数-离散型随机变量与其分布律-连续型随机变量与其概率密度函数-均匀分布、正态分布、指数分布等常见分布4.多个随机变量的分布-边缘分布与条件分布-两个离散型随机变量的联合分布律-两个连续型随机变量的联合概率密度函数-相互独立的随机变量的分布5.随机变量的数字特征-数学期望与其性质-方差与标准差-协方差与相关系数-矩、协方差矩阵与相关系数矩阵6.大数定律与中心极限定理-辛钦大数定律-中心极限定理-切比雪夫不等式与伯努利不等式7.统计推断基础-参数估计:点估计、区间估计-置信区间与置信水平-假设检验:原假设与备择假设、显著性水平、拒绝域-类型Ⅰ错误和类型Ⅱ错误-样本容量与统计检验的效应大小8.单样本与双样本推断-单个总体均值的推断:正态总体与非正态总体-单个总体比例的推断-两个总体均值的推断:独立样本与配对样本-两个总体比例的推断9.方差分析与回归分析-单因素方差分析-两因素方差分析-简单线性回归分析:最小二乘法-多元线性回归分析:拟合优度、剩余平方和、变量选择10.非参数统计方法-指标:秩和检验、秩和相关检验、符号检验- 分布:符号检验、秩和检验、秩和相关检验、Kolmogorov-Smirnov检验这些是统计学各个章节的期末复习知识点的一个概述。
每个章节都拥有更加详细和复杂的内容,需要学生在复习中深入理解并进行练习。
统计学知识点

统计学知识点关键信息项:1、统计学的定义与范围统计学的基本概念涵盖的主要领域2、数据收集方法普查与抽样调查观察法与实验法问卷设计要点3、数据整理与描述数据分类与分组集中趋势的度量(均值、中位数、众数)离散程度的度量(方差、标准差、极差)4、概率与概率分布随机事件与概率的定义常见概率分布(正态分布、二项分布等)概率计算方法5、抽样分布样本均值与样本比例的分布中心极限定理6、参数估计点估计与区间估计置信区间的构建与解释7、假设检验原假设与备择假设的设定检验统计量的选择与计算显著水平与决策规则8、方差分析单因素方差分析原理多重比较方法9、相关与回归分析相关系数的计算与解读简单线性回归模型回归系数的估计与检验11 统计学的定义与范围111 统计学是一门研究数据收集、整理、分析和解释的学科,它通过运用数学、概率论和数理统计等方法,从数据中提取有价值的信息,以帮助人们做出决策、解决问题和发现规律。
112 统计学涵盖了多个领域,包括社会科学、自然科学、工程技术、医学、商业等。
在社会科学中,统计学可用于研究人口趋势、经济发展、社会现象等;在自然科学中,可用于实验数据分析、模型验证等;在工程技术中,可用于质量控制、可靠性分析等;在医学中,可用于临床试验、疾病监测等;在商业中,可用于市场调研、销售预测等。
12 数据收集方法121 普查是对研究对象的全体进行调查,其优点是能够获得全面、准确的信息,但成本高、耗时长,且在实际操作中往往难以实现。
抽样调查则是从研究对象的总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的特征。
抽样调查可以分为概率抽样和非概率抽样,概率抽样包括简单随机抽样、分层抽样、系统抽样和整群抽样等,非概率抽样包括方便抽样、判断抽样、配额抽样等。
122 观察法是通过观察研究对象的行为、现象等来收集数据,适用于无法直接询问或干预的情况。
实验法是通过控制实验条件来研究因果关系,其优点是能够更有效地确定变量之间的因果关系,但实验设计和实施较为复杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学知识点汇总一、统计学统计学是一门关于数据资料的收集、整理、分析和推断的科学。
三、统计的特点(1)数量性:社会经济统计的认识对象是社会经济现象的数量方面,包括现象的数量表现、现象之间的数量关系和质量互变的数量界限。
(2)总体性:社会经济统计的认识对象是社会经济现象的总体的数量方面。
例如,国民经济总体的数量方面、社会总体的数量方面、地区国民经济和社会总体的数量方面、各企事业单位总体数量方面等等。
(3)具体性:社会经济统计的认识对象是具体事物的数量方面,而不是抽象的量。
这是统计与数学的区别。
(4)社会性:社会经济现象是人类有意识的社会活动,是人类社会活动的条件、过程和结果,社会经济统计以社会经济现象作为研究对象,自然具有明显的社会性。
四、统计工作过程(1)统计设计根据所要研究问题的性质,在有关学科理论的指导下,制定统计指标、指标体系和统计分类,给出统一的定义、标准。
同时提出收集、整理和分析数据的方案和工作进度等。
(2)收集数据统计数据的收集有两种基本方法,实验法和调查法。
(3)整理与分析描述统计是指对采集的数据进行登记、审核、整理、归类,在此基础上进一步计算出各种能反映总体数量特征的综合指标,并用图表的形式表示经过归纳分析而得到的各种有用的统计信息。
推断统计是在对样本数据进行描述的基础上,利用一定的方法根据样本数据去估计或检验总体的数量特征。
(4)统计资料的积累、开发与应用对于已经公布的统计资料需要加以积累,同时还可以进行进一步的加工,结合相关的实质性学科的理论知识去进行分析和利用。
五、统计总体的特点(1)大量性大量性是指构成总体的总体单位数要足够的多,总体应由大量的总体单位所构成,大量性是对统计总体的基本要求;(2)同质性同质性是指总体中各单位至少有一个或一个以上不变标志,即至少有一个具有某一共同标志表现的标志,使它们可以结合起来构成总体,同质性是构成统计总体的前提条件;(3)变异性变异性就是指总体中各单位至少有一个或一个以上变异标志,即至少有一个不同标志表现的标志,作为所要研究问题的对象。
变异性是统计研究的重点。
六、标志与指标的区别与联系■区别:标志是说明总体单位特征的;指标是说明总体特征的。
标志中的品质标志不能用数量表示;而所有的指标都能用数量表示。
标志(指数量标志)不一定经过汇总,可直接取得;而指标(指数量指标)一定要经过汇总才能取得。
标志一般不具备时间、地点等条件;但完整的统计指标一定要讲明时间、地点、范围。
■联系:有些数量标志值汇总可以得到指标的数值。
既可指总体各单位标志量的总和,也可指总体单位数的总和。
数量标志与指标之间存在变换关系。
随着统计目的的改变,如果原来的总体单位变成了统计总体,则与之相对应的数量标志就成了统计指标。
七、统计指标体系统计指标体系是各种互相联系的指标群构成的整体,用以说明所研究的社会经济现象各方面互相依从和互相制约的关系。
八、相对指标相对指标又称统计相对数。
它是两个有联系的现象数值的比率,用以反映现象的发展程度、结构、强度、普遍程度或比例关系。
(1)结构相对指标结构相对指标是在对总体分组的基础上,以总体总量作为比较标准,求出各组总量占总体总量的比重,来反映总体内部组成情况的综合指标。
(2)比例相对指标比例相对指标是总体中不同部分数量对比的相对指标,用以分析总体范围内各个局部、各个分组之间的比例关系和协调平衡状况。
(3)比较相对指标比较相对指标是不同单位的同类现象数量对比而确定的相对指标,用以说明某一同类现象在同一时间内各单位发展的不平衡程度,以表明同类实物在不同条件下的数量对比关系。
(4)强度相对指标强度相对指标是两个性质不同但有一定联系的总量指标之间的对比,用来表明某一现象在另一现象中发展的强度、密度和普遍程度。
(5)计划完成程度相对指标计划完成程度相对指标是用来检查、监督计划执行情况的相对指标。
它以现象在某一段时间内的实际完成数与计划数对比,来观察计划完成程度。
九、权数指变量数列中各组标志值出现的次数,是变量值的承担者,反映了各组的标志值对平均数的影响程度十、中位数将总体各单位标志值按大小顺序排列后,指处于数列中间位置的标志值,用 表示十一、众数指总体中出现次数最多的变量值,用 表示,它不受极端数值的影响,用来说明总体中大多数单位所达到的一般水平。
十二、标志变异指标统计上用来反映总体各单位标志值之间差异程度大小的综合指标,也称做标志变动度。
十三、标准差——标准差是各个数据与其算术平均数的离差平方的算术平均数的开平方根,用 来表示;标准差的平方又叫作方差,用 来表示。
【例A 】某售货小组5个人,某天的销售额分别为440元、480元、520元、600元、750元,求该售货小组销售额的标准差。
解:eM 0Mσ2σ()元558527905750600520480440==++++=X即该售货小组销售额的标准差为109.62元。
十四、变异系数——各种变指标与其算术平均数之比。
一般用V 表示。
【例】某年级一、二两班某门课的平均成绩分别为82分和76分,其成绩的标准差分别为15.6分和14.8分,比较两班平均成绩代表性的大小。
解:一班成绩的标准差系数为:二班成绩的标准差系数为:因为 ,所以一班平均成绩的代表性比二班大。
十五、时间数列——把反映现象发展水平的统计指标数值,按照时间先后顺序排列起来所形成的统计数列,又称动态()()()()元62.10956008055587505584402221==-++-=-=∑= N XXNi iσ﹪﹪﹪02.19100826.15100111=⨯=⨯=X V σσ﹪﹪﹪47.19100768.14100222=⨯=⨯=X V σσ21σσV V ≤数列。
※时间数列的研究意义(1)能够描述社会经济现象的发展状况和结果(2)能够研究社会经济现象的发展速度、发展趋势和平均水平,探索社会经济现象发展变化的规律,并据以对未来进行统计预测;(3)能够利用不同的但互相联系的时间数列进行对比分析或相关分析。
十六、统计指数——统计指数是研究社会经济现象数量关系的变动状况和对比关系的一种特有的分析方法。
※指数的作用❑综合反映复杂现象总体变动的方向和程度;❑分析复杂现象总体变动中因素变动的影响。
❑研究事物的长期变动趋势;❑研究平均指标变动及其受水平因素和结构因素变动的影响程度※统计指数的性质❑综合性;反映的不是个体事物的变化,而是综合反映不同性质的各种事物的总体变化。
❑平均性;统计指数所表示的综合变动是多种事物的平均变动,其数值是各个个体事物数量变化的代表值。
❑相对性;统计指数是同类现象不同时间、不同空间的数值之比,一般用相对数或比率形式表示。
❑代表性。
统计指数的编制一般以若干重要项目为代表,反映总体变化程度和变动趋势。
十七、总指数按其采用的指标形式不同分为:综合指数:复杂总体的两个相应的指标对比,采用综合公式计算。
平均指数:复杂总体中个体指数的平均数,一般采用算术平均数和加权平均数的方法计算。
⑴ 加权算术平均指数⑵ 加权调和平均指数【例1】计算甲、乙两种商品的价格总指数【例2】计算甲、乙两种商品的销售量总指数∑∑∑∑==0001010P Q P Q Q Q PQ P Q K Q 110111111/1P Q P P PQ PQ PQ K P ∑==∑∑∑()元﹪解:216082401040012.12682401040067.140025.11000010400111111111=-=-==+==∑∑∑∑P Q k P Q P Q kP Q K ppP )(850580%1163020302.1201.100001000101万元=-=-∑=+⨯+⨯=∑==∑∑∑∑P Q P Q Q Q P Q P Q Q Q PQ P Q K Q合计 — 50 70 ——如何根据上述资料计算两种商品的价格总指数?解:十八、平均指数与综合指数的区别十九、可变构成指数(平均指标指数)——将两个不同时期或不同单位的同一经济内容的平均指标对比,所计算的动态对比关系的相对数,称为平均指标指数,亦称为可变构成指数。
)(125870%1212.1301.12045250001110001110111万元=-=∑-=⨯+⨯+=∑==∑∑∑∑P Q Q Q P Q P Q Q Q PQ PQ P Q K P 1111f f x x ∑∑=00f f x x ∑∑=11100011101f f x f fx f f x f f x x x ∑∑∑∑=∑∑∑∑= 可变构成指数 =【例】已知某公司下属三个商场的职工人数和工资资料如下,分析该公司总平均工资水平的变动情况,并分析各商场工资水平及人数结构因素对其影响的程度和绝对数额。
解:三个商场职工的平均工资:报告期平均工资:基期平均工资:职工平均工资变动额为:计算表明,三个商场职工的平均工资指数为109.84%,即平均工资上升了9.84%,平均工资上升额为40.48元。
()元28.4114701000033.19000=⨯==∑∑ffX X ()元71.4045101000064.201101=⨯==∑∑ff X X ﹪:则总平均工资的变动为可变84.10928.41176.45101===X X K ()元48.4028.41176.45101=-=-X X二十、指数体系——指经济上具有一定联系,并且具有一定的数量对等关系的三个或三个以上的指数所构成的整体。
※简单现象总体总量指标变动的两因素分析※复杂现象总体总量指标变动的两因素分析※复杂现象总体总量指标变动的多因素分析二十一、函数关系——指变量之间存在着确定性依存关系。
即当一个或一组变量每取一个值时,相应的另一个变量必然有一个确定值与之对应。
二十二、相关关系——指变量之间存在着非确定性依存关系。
即当一个或一组变量每取一个值时,相应的另一个变量可能有多个不同值与之对应。
二十三、相关关系的测定定性分析:是依据研究者的理论知识和实践经验,对客观现象之间是否存在相关关系,以及何种关系作出判断定量分析:在定性分析的基础上,通过编制相关表、绘制相关图、计算相关系数与判定系数等方法,来判断现象之间相关的方向、形态及密切程度二十四、相关系数——在直线相关的条件下,用以反映两变量间线性相关密切程度的统计指标,用r 表示()()()()()2222222)(∑∑∑∑∑∑∑∑∑∑---=-⋅---==y y n x x n yx xy n ny y n x x n y y x x S S S r yx xy相关系数r的取值范围:-1≤r≤1※0<|r|<1表示存在不同程度线性相关:|r| < 0.4 为低度线性相关;0.4≤|r| <0.7为显著性线性相关;0.7≤|r| <1.0为高度显著性线性相关。