高中数学易错题精选
高中数学易做易错题

高中数学易做易错题11 , 已知:A=求P 的取值范围。
2 , 已知:3 , 判断函数的奇偶性。
x4 ,已知:5, 求函数 y=的单调递增区间。
6 ,解方程7 , 解不等式8 ,已知: 的变1化范围。
9 ,成立,求的取值范围。
10 ,已知 成在,求实数x 的取值范围。
密 封 线 内 不 得 答 题11 , x=A, 充分条件B,必要条件C,充要条件D,双非高中数学易做易错题212 ,在GP。
13 ,已知:无穷GP14 ,已知数列15 ,求函数16 ,椭圆外角平分线的垂线。
17 ,-4<k,< o, 是函数恒为负值的。
A ,充分不必要条件B ,必要不充分条件C ,充要条件D ,双非18 ,求关于的不等式的解集。
19 ,求‘20 ,求函数位和初相。
21 ,求函数。
22 ,已知二面角为120,CD异面直线CD与EF所成的角。
23求经过点P高中数学易做易错324,棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段分别为的值。
25,设正三棱锥P-ABC底面边长为a,侧棱长为2a,E,F分别为旁边,批才上的点,求的周长的最小值。
26,过圆外一点P作圆的切线,求切线方程。
27,已知P求经过直线的交点且与直线PQ垂直的直线L的方程。
28,设是方程的两实根,求函数的值域29,已知复平面内的动点Z对应复数Z满足求动点Z的关轨迹。
30,计算。
高中数学高频错题总结 (含例题答案)

高一上学期易错陷阱总结1、 对数型函数中,(易忽略真数位置大于0)5.已知y =log a (2-ax )在[0,1]上为减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 2、 集合中,空集的特殊性(易忘记讨论空集)13.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1,或x >16},分别根据下列条件求实数a 的取值范围. (1)A ∩B =∅; (2)A ⊆(A ∩B ). 3、集合中,元素的互异性(易忽略导致取值错误)[例2] 已知集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },求a 2 019+b 2 020的值.跟踪探究 2.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.4、集合中,元素的特殊要求(比如:易忽略x等条件)跟踪探究 1.若集合A ={x |1≤x ≤3,x ∈N },B ={x |x ≤2,x ∈N },则A ∩B =( )A.{x |1≤x ≤2} B .{x |x ≥1} C .{2,3}D .{1,2}5、抽象函数的定义域问题(定义域仅代表x ,括号内取值范围一致)14、函数的定义域为,则的定义域是___;函数的定义域为___.6、 区间中默认a<b14.已知函数f (x )=, x是偶函数,则a+b=7、 换元法求值域类问题(易忽略换元后,t 的取值范围)(1)f (x +1)=x +2x ,求f (x )的值域;8、动轴定区间类问题(分类讨论不重不漏)典型案例:求函数y =x 2-2ax -1在[0,2]上的最值.9同增异减求单调区间问题(对数型时不能忽略真数位置大于0)(多个区间,隔开)跟踪探究 2.求函数y =log 2(x 2-5x +6)的单调区间.10、分段函数单调性问题。
(易忽略结点处)13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax +4,(x ≤1),-ax +3a -4,(x >1)且f (x )在R 上递减,则实数a 的取值范围________.11.解分式不等式。
高中数学平面向量易错题精选

高中数学平面向量易错题精选一、选择题:1.在ABC ∆中,︒===60,8,5C b a ,则⋅的值为 ( )A 20B 20-C 320D 320-错误分析:︒==60C ,从而出错. 答案: B略解: ︒=120,故⋅202185-=⎪⎭⎫⎝⎛-⨯⨯=. 2.关于非零向量a 和b,有下列四个命题:(1)“b a b a +=+”的充要条件是“a 和b的方向相同”;(2)“b a b a -=+” 的充要条件是“a 和b 的方向相反”; (3)“b a b a -=+” 的充要条件是“a 和b 有相等的模”; (4)“b a b a -=-” 的充要条件是“a 和b 的方向相同”;其中真命题的个数是 ( )A 1B 2C 3D 4错误分析:对不等式b a b a b a+≤±≤-的认识不清.答案: B.3.已知O 、A 、B 三点的坐标分别为O(0,0),A(3,0),B(0,3),是P 线段AB 上且 =t(0≤t ≤1)则OA ²OP 的最大值为 ()A .3B .6C .9D .12正确答案:C 错因:学生不能借助数形结合直观得到当|OP |cos α最大时,² 即为最大。
4.若向量 a =(cos α,sin α) , b =()ββsin ,cos , a 与b 不共线,则a 与b 一定满足( )A . 与的夹角等于α-βB .∥C .(a +b )⊥(a -b )D . a ⊥b正确答案:C 错因:学生不能把a 、b 的终点看成是上单位圆上的点,用四边形法则来处理问题。
5.已知向量 =(2cos ϕ,2sin ϕ),ϕ∈(ππ,2), =(0,-1),则 与 的夹角为( )A .π32-ϕB .2π+ϕ C .ϕ-2π D .ϕ正确答案:A 错因:学生忽略考虑与夹角的取值范围在[0,π]。
6.O 为平面上的定点,A 、B 、C 是平面上不共线的三点,若( -)²(+-2)=0,则∆ABC 是( )A .以AB 为底边的等腰三角形 B .以BC 为底边的等腰三角形 C .以AB 为斜边的直角三角形D .以BC 为斜边的直角三角形正确答案:B 错因:学生对题中给出向量关系式不能转化:2不能拆成(+)。
高中数学易错题100道

高中数学易错题100道数学是一门需要逻辑思维和严密推理的学科,对于很多学生来说,高中数学是一门难以逾越的学科。
在学习过程中,我们常常会遇到一些易错题,这些题目看似简单,但却容易让我们犯错。
下面是100道高中数学易错题,希望能帮助大家更好地理解和掌握数学知识。
1. 2的平方根是多少?2. 一个等边三角形的内角是多少?3. 一个圆的直径是5cm,那么它的半径是多少?4. 一个矩形的长是3cm,宽是4cm,那么它的面积是多少?5. 一个正方形的边长是2cm,那么它的面积是多少?6. 一个长方体的长是3cm,宽是4cm,高是5cm,那么它的体积是多少?7. 一个圆的半径是3cm,那么它的周长是多少?8. 一个圆的半径是3cm,那么它的面积是多少?9. 一个圆的直径是6cm,那么它的周长是多少?10. 一个圆的直径是6cm,那么它的面积是多少?11. 一个等边三角形的外角是多少?12. 一个正方形的对角线长是多少?13. 一个长方形的对角线长是多少?14. 一个长方体的表面积是多少?15. 一个圆的周长是多少?16. 一个圆的面积是多少?17. 一个圆的直径是4cm,那么它的半径是多少?18. 一个圆的半径是4cm,那么它的直径是多少?19. 一个圆的周长是12cm,那么它的半径是多少?20. 一个圆的面积是12cm²,那么它的半径是多少?21. 一个圆的面积是12cm²,那么它的直径是多少?22. 一个圆的周长是12cm,那么它的直径是多少?23. 一个圆的周长是12cm,那么它的面积是多少?24. 一个圆的半径是12cm,那么它的周长是多少?25. 一个圆的半径是12cm,那么它的面积是多少?26. 一个圆的直径是12cm,那么它的周长是多少?27. 一个圆的直径是12cm,那么它的面积是多少?28. 一个正方形的面积是16cm²,那么它的边长是多少?29. 一个长方形的面积是16cm²,长是4cm,那么它的宽是多少?30. 一个长方形的面积是16cm²,宽是4cm,那么它的长是多少?31. 一个长方体的体积是16cm³,长是2cm,宽是4cm,那么它的高是多少?32. 一个长方体的体积是16cm³,长是2cm,高是4cm,那么它的宽是多少?33. 一个长方体的体积是16cm³,宽是2cm,高是4cm,那么它的长是多少?34. 一个等边三角形的面积是多少?35. 一个等腰三角形的面积是多少?36. 一个直角三角形的斜边长是多少?37. 一个直角三角形的直角边长是多少?38. 一个直角三角形的斜边长是5cm,直角边长是3cm,那么另一直角边长是多少?39. 一个直角三角形的斜边长是5cm,另一直角边长是4cm,那么直角边长是多少?40. 一个直角三角形的直角边长是3cm,另一直角边长是4cm,那么斜边长是多少?41. 一个等边三角形的边长是4cm,那么它的高是多少?42. 一个等边三角形的边长是4cm,那么它的面积是多少?43. 一个等腰三角形的底边长是4cm,高是3cm,那么它的面积是多少?44. 一个等腰三角形的底边长是4cm,面积是6cm²,那么它的高是多少?45. 一个等腰三角形的高是3cm,面积是6cm²,那么它的底边长是多少?46. 一个等腰三角形的高是3cm,底边长是4cm,那么它的面积是多少?47. 一个直角三角形的斜边长是5cm,那么它的面积是多少?48. 一个直角三角形的斜边长是5cm,那么它的高是多少?49. 一个直角三角形的斜边长是5cm,那么它的底边长是多少?50. 一个直角三角形的高是3cm,那么它的面积是多少?51. 一个直角三角形的高是3cm,那么它的斜边长是多少?52. 一个直角三角形的高是3cm,那么它的底边长是多少?53. 一个直角三角形的底边长是4cm,那么它的面积是多少?54. 一个直角三角形的底边长是4cm,那么它的斜边长是多少?55. 一个直角三角形的底边长是4cm,那么它的高是多少?56. 一个等边三角形的高是多少?57. 一个等边三角形的面积是多少?58. 一个等腰三角形的面积是多少?59. 一个直角三角形的面积是多少?60. 一个长方形的周长是16cm,长是4cm,那么它的宽是多少?61. 一个长方形的周长是16cm,宽是4cm,那么它的长是多少?62. 一个长方体的表面积是24cm²,长是2cm,宽是3cm,那么它的高是多少?63. 一个长方体的表面积是24cm²,长是2cm,高是3cm,那么它的宽是多少?64. 一个长方体的表面积是24cm²,宽是2cm,高是3cm,那么它的长是多少?65. 一个长方体的体积是24cm³,长是2cm,宽是3cm,那么它的高是多少?66. 一个长方体的体积是24cm³,长是2cm,高是3cm,那么它的宽是多少?67. 一个长方体的体积是24cm³,宽是2cm,高是3cm,那么它的长是多少?68. 一个等边三角形的边长是6cm,那么它的高是多少?69. 一个等边三角形的边长是6cm,那么它的面积是多少?70. 一个等腰三角形的底边长是6cm,高是4cm,那么它的面积是多少?71. 一个等腰三角形的底边长是6cm,面积是12cm²,那么它的高是多少?72. 一个等腰三角形的高是4cm,面积是12cm²,那么它的底边长是多少?73. 一个等腰三角形的高是4cm,底边长是6cm,那么它的面积是多少?74. 一个直角三角形的斜边长是10cm,那么它的面积是多少?75. 一个直角三角形的斜边长是10cm,那么它的高是多少?76. 一个直角三角形的斜边长是10cm,那么它的底边长是多少?77. 一个直角三角形的高是4cm,那么它的面积是多少?78. 一个直角三角形的高是4cm,那么它的斜边长是多少?79. 一个直角三角形的高是4cm,那么它的底边长是多少?80. 一个直角三角形的底边长是6cm,那么它的面积是多少?81. 一个直角三角形的底边长是6cm,那么它的斜边长是多少?82. 一个直角三角形的底边长是6cm,那么它的高是多少?83. 一个等边三角形的高是多少?84. 一个等边三角形的面积是多少?85. 一个等腰三角形的面积是多少?86. 一个直角三角形的面积是多少?87. 一个长方形的周长是20cm,长是5cm,那么它的宽是多少?88. 一个长方形的周长是20cm,宽是5cm,那么它的长是多少?89. 一个长方体的表面积是30cm²,长是3cm,宽是5cm,那么它的高是多少?90. 一个长方体的表面积是30cm²,长是3cm,高是5cm,那么它的宽是多少?91. 一个长方体的表面积是30cm²,宽是3cm,高是5cm,那么它的长是多少?92. 一个长方体的体积是30cm³,长是3cm,宽是5cm,那么它的高是多少?93. 一个长方体的体积是30cm³,长是3cm,高是5cm,那么它的宽是多少?94. 一个长方体的体积是30cm³,宽是3cm,高是5cm,那么它的长是多少?95. 一个等边三角形的边长是8cm,那么它的高是多少?96. 一个等边三角形的边长是8cm,那么它的面积是多少?97. 一个等腰三角形的底边长是8cm,高是6cm,那么它的面积是多少?98. 一个等腰三角形的底边长是8cm,面积是24cm²,那么它的高是多少?99. 一个等腰三角形的高是6cm,面积是24cm²,那么它的底边长是多少?100. 一个等腰三角形的高是6cm,底边长是8cm,那么它的面积是多少?以上是100道高中数学易错题,希望能帮助大家更好地理解和掌握数学知识。
高一数学易错试题及答案

高一数学易错试题及答案一、选择题1. 已知函数f(x)=2x^2+3x-5,下列说法正确的是()A. 函数在x=-1处有最小值B. 函数在x=-1处有最大值C. 函数在x=-1处无极值D. 函数在x=-1处取得最小值答案:A2. 集合A={1,2,3},集合B={2,3,4},则A∩B等于()A. {1,2,3}B. {2,3}C. {1,4}D. {4}答案:B二、填空题1. 若直线y=2x+1与直线y=-x+4平行,则它们的斜率之比为______。
答案:12. 函数y=x^3-3x^2+4x-5的导数是______。
答案:3x^2-6x+4三、解答题1. 已知等差数列{an}的前三项依次为a1, a2, a3,且a1+a3=10,a2=6,求数列的通项公式。
答案:设等差数列的公差为d,则有a1+a1+2d=10,a1+d=6。
解得a1=4,d=2。
因此,数列的通项公式为an=4+2(n-1)=2n+2。
2. 已知函数f(x)=x^2-4x+3,求函数在区间[1,3]上的最大值和最小值。
答案:函数f(x)=x^2-4x+3的对称轴为x=2,且函数开口向上。
在区间[1,3]上,函数在x=1处取得最小值f(1)=0,在x=3处取得最大值f(3)=2。
四、证明题1. 已知三角形ABC中,角A、B、C的对边分别为a、b、c,且满足a^2+b^2=c^2,求证:三角形ABC是直角三角形。
答案:由题意知,a^2+b^2=c^2,根据勾股定理的逆定理,若三角形的三边满足a^2+b^2=c^2,则三角形ABC是直角三角形,其中角C为直角。
因此,三角形ABC是直角三角形。
高中数学易错8套卷及答案

一、填空题(共12题,每题5分)1、若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1)上递减,则a 的取值范围是 .2、已知平面向量a ,b ,c 两两所成角相等,且|a |=1,|b |=2,|c |=3,则|a +b +c |的值的集合为 . 3、若函数()f x 是定义在(0,)+∞上的增函数,且对一切0,0x y >>满足()()()f xy f x f y =+,则不等式(6)()2(4)f x f x f ++<的解集为 .4、光线从点A (1,1)出发,经y 轴反射到圆C 4)7()5(22=-+-y x ,上的最短路程为 .5、实系数方程220x ax b ++=的两根为12,x x ,且12012x x <<<<,则21b a --的取值范围是 .6、 已知2()2a i i -=,其中i 是虚数单位,那么实数a = .7、已知椭圆22143x y +=内的一点(1,1)P -,F 为椭圆的右焦点,在椭圆上有一点M ,使 MP MF +取得最小值为 .8、三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,1PA AB ==,BC =,若三棱锥P ABC -的四个顶点在同一球面上,则这个球的表面积为 .9、已知条件{}2:|10p A x x ax =++≤,条件{}2:|320q B x x x =-+≤,若p 是q 的充分不必要条件,则实数a 的取值范围是 .10、若钝角三角形三个内角的度数成等差数列,且最大边与最小边长度的比为m ,则m 的取值范围是 .11、定义一种运算""*对于正整数满足以下运算性质:(1)220061*=(2) (22)20063[(2)2006],n n +*=⋅*则的20082006*值是 .12、函数()f x =的值域为 .班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知表中的对数值有且只有两个是错误的.假设上表中lg3=2a-b与lg5=a+c都是正确的,试判断lg6=1+a-b-c是否正确?给出判断过程.Read xIf x >0 Then1y x ←+Else1y x ←-End If Print y一、填空题(共12题,每题5分)1、已知2lg(2)y x x a =+-的值域为R ,那么a 的取值范围是 .2、方程()0x y y +-=表示的曲线是 . 3、一元二次不等式a 2x +bx+c>0的解集为(α,β))0(>α,则不等式c 2x +bx+a>0的解集为4、已知函数2()f x x kx =-在x N *∈上是单调增函数,则实数k 的取值范围是 . 5、若直线l 经过点P (2,3)且与两坐标轴围成一个等腰三角形,则直线l 的方程为.6、已知动点P (x ,y )满足x 2+y 2-|x |-|y |=0,O 为坐标原点, 则PO 的取值范围是 .7、在平行四边形ABCD 中,,E F 分别是,BC CD 的中点,DE 交AF 于H ,记,AB BC 分别为,a b ,则AH = .(用含,a b的式子表示).8、已知椭圆E 的离心率为e ,两焦点为12,F F ,抛物线C 以1F 为顶点,2F 为焦点,P 为两曲线的一个交点,若12PF e PF =,则e 的值为 . 9、如果直线y =kx +1与圆x 2+y 2+kx +my -4=0交于M ,N 两点,且M ,N 关于直线x -y =0对称,动点P (a ,b )在不等式组20,0,0kx y kx my y -+⎧⎪-⎨⎪⎩≥≤≥表示的平面区域内部及边界上运动,则ω=b -2a -1的取值范围是 .10、右边是根据所输入的x 值计算y 值的一个算法程序, 若x 依次取数列1100n ⎧⎫-⎨⎬⎩⎭()n N +∈中的前200项, 则所得y 值中的最小值为 .11、 在正三棱锥S -ABC 中,SA =1,∠ASB =30°,过点A 作三棱锥的截面AMN ,则截面AMN 的周长的最小值为 .12、 已知函数f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是 .班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列{}n a的前四项,后6组的频数从左到右依次是等差数列{}n b的前六项.(Ⅰ)求等比数列{}n a的通项公式;(Ⅱ)求等差数列{}n b的通项公式;(Ⅲ)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率μ的大小.一、填空题(共12题,每题5分)1、在算式"4130"⨯+⨯= 的两个 中,分别填入两个自然数,使它们的倒数之和最小,则这两个数应分别为 和 .2、平面区域22:12()P x y x y ++≤+的面积为 .3、已知223sin 2sin 2sin 0αβα+-=,则22cos cos αβ+的取值范围是 .4、有两个等差数列{}{},n n a b ,若1212723n n a a a n b b b n ++++=++++ ,则77ab = . 5、(08山东高考)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为________.6、在ABC ∆中,角A 、B 、C 所对的边分别为a,b,c 且43b a ==cosA cosB ,则ABC ∆的形状.二进制即是“逢二进一”,如2(1101)表示二进制数,将它转换成十进制形式是3211212021213⨯+⨯+⨯+⨯=,那么将二进制数()2161111转换成十进制形式是 .8、已知函数()22x x f x -=-,若函数()y h x =与函数(2)y f x =-的图像关于直线1y =对称,则函数()y h x =的解析式为 .9、设,m n 是两条不同的直线,,αβ是两个不同的平面,下面给出四个命题: ⑴若//,//m n αβ且//αβ,则//m n ⑵若,m n αβ⊥⊥且αβ⊥,则m n ⊥ ⑶若,//m n αβ⊥且//αβ,则m n ⊥ ⑷若,m βααβ⊥= 且m n ⊥,则n β⊥ 其中真命题的序号是 .10、从直线30x y -+=上的点向圆22(2)(2)1x y +++=引切线,则切线长的最小值是 . 11、 若数列{}na 的通项公式为2()156n na n N n *=∈+,则{}na 的最大项为第 .项.12、 A 、B 是双曲线x 24-y 25=1右支上的两点,若弦AB 的中点到y 轴距离为4,则AB 的最大值是 .班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、如图,已知圆心坐标为)1,3(M 的圆M 与x 轴及直线x y 3=均相切,切点分别 为A 、B ,另一圆N 与圆M 、x 轴及直线x y 3=均相切,切点分别为C 、D .求圆M 和圆N 的方程..一、填空题(共12题,每题5分)1、已知椭圆221102x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 . 2、定义在R 上的函数f(x),给出下列四个命题:(1)若f(x)是偶函数,则f(x+3)的图像关于直线x=-3对称; (2)若f(x+3)=-f(3-x),则f(x)的图像关于点(3,0)对称; (3)若f(x+3) 是偶函数,则f(x)的图像关于直线x=3对称; (4)函数y=f(x+3)与y= f(3-x)的图像关于直线x=3对称. 其中正确命题的序号为 .(填写正确的序号即可)3、已知a 是实数,函数223f x x x a =+--(),如果函数y f x =()在区间[]1,1- 上有零点,则a 的取值范围是 .4、设2()2f x x =-,若a<b<0,且f a f b =()(),则ab 的取值范围是 .5、方程1sin 4x x π=的解的个数是 . 6、在ABC ∆中,若45sin cos 513A B ==,,则cos C = . 7、锐角三角形ABC 中,a,b,c 分别为A ,B ,C 的对边,设B=2A ,则ba的取值范围为 .8、已知集合{}20A x x a =-≤,{}40B x x b =->,N b a ∈,,且{}()2,3A B N ⋂⋂=,由整数对()b a ,组成的集合记为M,则集合M 中元素的个数为________.9、已知函数2f x x =(),[]22x ∈-,和函数1f x a x =-(),[]22x ∈-,,若对于任意[]122x ∈-,,总存在[]022x ∈-,,使得01g x f x =()()成立 ,则实数a 的取值范围为 .10、在下表中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a b c ++的值为 .11、已知关于x 的方程2(1lg )10(0,1)x xa m a a a +++=>≠有解,则m 的取值范围是 .12、在圆225x y x +=内,过点53,22⎛⎫ ⎪⎝⎭有n 条弦的长度成等差数列,最小弦长1a 为数列的首项,最大弦长为n a ,若公差11,63d ⎡⎤∈⎢⎥⎣⎦,那么n 的取值集合为 .班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13 、设函数()11sin 24f x x x x =--. (1)试判定函数()f x 的单调性,并说明理由.(2)已知函数()f x 的图象在点()()00,A x f x 处的切线斜率为12,求20002sin sin 21tan x x x ++的值.一、填空题(共12题,每题5分)1、设集合{}{}2/60,/10A x x x B x mx =+-==+=,若B A ⊆,则实数m 的取值集合为 . 2、正方体1111ABCD A BC D -中,M,N 分别是11AA BB ,的中点,G 为BC 上一点,若1C N MG ⊥,则1D NG ∠= .3、 已知直线y=ax+1与双曲线2231x y -=相交M ,N 与两点,若以MN 为直径的圆恰好过原点,则实数a 的值等干 .4、设函数f (x )=sin θ+)(0θπ<<),如果f (x )+1()f x 为偶函数,则θ= .5、若函数f (x )=241xx +在区间(m ,2m+1)上是单调增函数,则实数m 的取值范围是 . 6、已知拋物线的焦点在x 上,直线y=2x+1,则此拋物线的标准方程为 .7、(08浙江高考)已知t 为常数,函数t x x y --=22在区间[0,3]上的最大值为2,则t=__________.8、已知集合{(,)1}A x y x y =+=,映射f:A →B 在作用下,点(x,y)的象为(2,2)x y ,则集合B 为 .9、将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行.第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 110、已知函数2sin f x x =(),若对任意x R ∈,都有1f x f x ≤≤2()(x )f (),则12x x -的最小值为 .11、一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为 . 12、若数列{}n a 的通项公式为221225()4()()55n n n a n N --+=⨯-∈,的最大值为M ,最小值为N ,则M N += .班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、如图,以长方体ABCD-A 1B 1C 1D 1的顶点A 、C 及另两个顶点为顶点构造四面体. (1)若该四面体的四个面都是直角三角形,试写出一个这样的四面体(不要求证明). (2)我们将四面体中两条无公共端点的棱叫做对棱,若该四面体的任一对对棱垂直,试写出一个这样的四面体(不要求证明).(3)若该四面体的任一对对棱相等,试写出一个这样的四面体(不要求证明),并计算它的体积与长方体的体积的比.A B CD D 1A 1C 1B 1高中数学 易错题6一、填空题(共12题,每题5分)1、(08湖北高考)过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 .2、有一个公用电话亭,在某一时刻t ,有n 个人正使用电话或等待使用电话的概率为()P n ,且()P n 与时刻t 无关,统计得到1()(0),15,()20,6.nP n P n n ⎧⋅≤≤⎪=⎨⎪≥⎩那么在某一时刻,这个公用电话亭里一个人也没有正使用电话或等待使用电话的概率为(0)P 的值是 . 3、以椭圆22221(0)x y a b a b+=>>的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是 .4、双曲线22221(0,0)x y a b a b-=>>的焦距为c ,直线与双曲线的一个交点的横坐标恰为c ,则该双曲线的离心率为 .5、数列{}n a 的构成法则如下:11a =,如果2n a -为自然数且之前未出现过,则用递推公式12n n a a +=-.否则用递推公式13n n a a +=,则6a = .6、已知函数()f x =*()2()n n nf x a n N x -=∈,若12310x x x -≤<<<,则将123,,a a a 从小到大排列为 .7、函数()y f x =是圆心在原点的单位圆的两段圆弧,则不等式 函数()()f x f x x <-+的解集为 .8、设1,2,3x x x 依次是方程log 12x +2=x, log 22x+x=2的实根,则1,2,3x x x 的大小关系是 .9、 从盛满20升纯酒精的容器中倒出1升,然后用水填满,再倒1升混合溶液,又用水填满,这样继续进行,如果倒第k 次(k ≥1)时共倒出纯酒精x 升,倒第k +1次时共倒出纯酒精f (x ),则函数f (x )的表达式是 .10、已知函数y =log 12(235x ax -+)在)1,-+∞⎡⎣上是减函数,则实数a 的取值范围为.11、cos400)= .12、关于x 的不等式kx x x x ≥-++3922在]5,1[上恒成立,则实数a 的范围为 .高中数学 易错题6答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、△ABC中,2C π∠=,1,2AC BC ==,求()|2(1)|f CA CB λλλ=⋅+-⋅的最小值.DA /BAC高中数学 易错题7一、填空题(共12题,每题5分)1、设集合{|1M x =-≤x ≤7},{|1N x k =+≤x ≤21}k -,若M N =∅ ,则实数k的的取值范围是 . 2、若点P (m ,n )在直线2a cy x b b=--上移动,其中a ,b ,c 为某一直角三角形的三条边长,c 为斜边,则m 2+n 2的最小值为 .3、已知20a b =≠ ,且关于x 的方程20x a x a b ++⋅= 有相异实根,则a 与b 的夹角的取值范围是 .4、若圆222x y k +=至少覆盖函数()xf x kπ=的图像的一个最大值点与一个最小值点,则k 的取值范围是 .5、在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,其面积介于236cm 和281cm 之间的概率是 .6、.(08四川高考)已知正四棱柱的对角线的长为,则该正四棱柱的体积等于 . 7、设命题p :不等式1()43x +>m >22x x -对一切实数x 恒成立,命题q :函数()(72)x f x m =--是R 上的减函数.若p ,q 都是真命题,则实数m 的取值范围是 . 8、已知ABC ∆的外接圆圆心为O ,且3450OA OB OC ++=,则C ∠的度数为.9、【08山东理13】执行右边的程序框图, 若p =0.8,则输出的n = .10、已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()(1)g x f x =-,则(2006)(2008)f f +的值为 .11、已知双曲线22221x y a b-=(a >0,b >0)离心率e ∈,令双曲线两条渐近线构成的角中,以虚轴..为角平分线的角为θ,则θ的取值范围是 . 12、若不等式(1)na -<1(1)2n n+-+对于任意的正整数n 恒成立,则实数a 的取值范围是 .高中数学 易错题7 答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)1. 13、已知F 1、F 2为椭圆的焦点,P 为椭圆上的任意一点,椭圆的离心率为31.以P 为圆心PF 2长为半径作圆P ,当圆P 与x 轴相切时,截y 轴所得弦长为95512. (Ⅰ)求圆P 方程和椭圆方程. (Ⅱ)求证:无论点P 在椭圆上如何运动,一定存在一个定圆与圆P 相切,试求出这个定圆方程.x高中数学 易错题8一、填空题(共12题,每题5分)1、 函数2()ln(1)f x x x=+-的零点所在的大致区间是(,1)k k +,k= . 2、化简:=---)()( .3、若双曲线22221x y a b-=-的离心率为54,则两条渐近线的方程为 .4、 △ABC 中,︒=∠==30,1,3B AC AB ,则△ABC 的面积等于_____ __.5、数列}{n a 满足121,12210,2{1<≤-<≤=+n n n n n a a a a a ,若761=a ,则2004a 的值为 __. 6、 (08上海高考)已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是 . 7、已知数列{}n a 为等差数列,且17134a a a π++=,则212tan()a a +=________. 8、二次函数()x f 满足()()22+-=+x f x f ,又()30=f ,()12=f ,若在[0,m ]上有最大值3,最小值1,则m 的取值范围是 .9、(08江西高考)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是 .10、函数)(x f 是定义在R 上的偶函数,当x <0时,0)(')(<+x xf x f ,且0)4(=-f ,则不等式0)(>x xf 的解集为 .11、一只蚂蚁在边长分别为都大于1的地方的概率为 . .12、 定义在),0(+∞上的函数)(x f 的导函数0)('<x f 恒成立,且1)4(=f ,若()1f x y +≤,则y x y x 2222+++的最小值是 . .0.01频率组距高中数学 易错题8 答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后(Ⅰ)求第四小组的频率,并补全这个画出如下部分频率分布直方图. (Ⅱ)频率分布直方图观察图形的信息,回答下列问题:. 估计这次考试的及格率(60分及以上为及格)和平均分.答案 易错题11.1≤a <2;2.{6,3};3.(0,2);4. 226-;5.1,14⎛⎫⎪⎝⎭;6.-1;7. 4-提示:1224MP MF MP a MF a +=+-≥= 8. 4π提示:P ABC -视作一个长方体中的部分. 9. [2,2)-提示:A 是B 的真子集,但仅有A 是空集或单元素集符合条,.10.2提示:最小角0(,),6πθ∈sin()132;sin 2m πθθ+==+>11. 10033提示:22006n a n =*是首项为1,公比为3的等比数列,10031004200820063;a *==12.[1,2]m n ==22312,0,0,m n m n +=≥≥2cos ,,0,,()2cos 4sin()26m n f x ππθθθθθθ⎡⎤==∈=+=+⎢⎥⎣⎦, 值域[1,2].13,解:由lg5=a +c ,得lg2=1-a -c . ∴lg6=lg2+lg3=1-a -c +2a -b =1+a -b -c , 满足表中数值,也就是lg6在假设下是正确的.易错题2答案:1.[1,)-+∞ 2.一条线段和一半圆 3. )1,1(αβ; 4. 3k < 5. x-y+1=0,x+y-5=06. 提示:图形关于x,y 轴对称,另有原点,[1,2]∪{0};7.提示可将问题特殊化,把,a b视作互相垂直的单位向量,易求出 2455a b + ;8. 提示:抛物线的准线与椭圆左准线重合,椭圆左焦点平分右焦点与左准线间线段; 9. (][),22,-∞-+∞ 提示:k=m=-1,作可行域,目标函数为斜率;10.1提示:100,12,100nn y x ≤=-=-时最小值为1;100,1,100n n y x >=+=时最小值为101,100因此最小值为1.11. 2提示:将侧面展开,利用AMN 三点共线时周长最小,.12.13提示:目标函数定义域是 [1,3],令log 3x=t ∈[0,1],换元后配方可得13.13.解:(I )由题意知:10.10.11001a =⨯⨯=,20.30.1100 3.a =⨯⨯= ∵数列{}n a 是等比数列,∴公比213,a q a ==∴1113n n n a a q --== . (II) ∵123a a a ++=13,∴126123100()87b b b a a a +++=-++= , ∵数列{}n b 是等差数列,∴设数列{}n b 公差为d ,则得1261615b b b b d +++=+ ,∴1615b d +=87, 2741==a b ,∴5-=d ,∴n b n 532-= (III)μ=12312340.91100a a ab b b b ++++++=, 答:估计该校新生近视率为91%.易错题31、5,102、4π3、14,29⎡⎤⎢⎥⎣⎦4、93165、提示:-4444,01,34,573333b b b b x b -+-+<<≤<<≤<<则; 6、直角 ;7.提示:21516122221+++⋅⋅⋅+=-;8. 提示:先求(2)f x -,然后将(x,2-y)代入即得22222x x a y -+=-+;9. (2),(3); 10.2提示:过圆心向直线作垂线,垂足为A,过A 作切线长最小2.11. 12,13提示:21156n n a n n n==≤++,1213a a =最大.12.8提示: A.B 到右准线距离分别为12128162433d d d d +=⨯-=、,,设右焦点F,由第二定义,12316()23AF BF e d d +=+=⨯=8,在△ABF 中AB AF BF ≤+=8,当AB 过焦点F 时取最大值8.13.由于⊙M 与∠BOA 的两边均相切,故M 到OA 及OB 的距离均为⊙M 的半径,则M 在∠BOA 的平分线上, 同理,N 也在∠BOA 的平分线上,即O ,M ,N 三点共线,且OMN 为∠BOA 的平分线,∵M 的坐标为)1,3(,∴M 到x 轴的距离为1,即⊙M 的半径为1,则⊙M 的方程为1)1()3(22=-+-y x , 设⊙N 的半径为r ,其与x 轴的的切点为C ,连接MA 、MC , 由Rt △OAM ∽Rt △OCN 可知,OM :ON=MA :NC , 即313=⇒=+r rr r ,则OC=33,则⊙N 的方程为9)3()33(22=-+-y x易错题41. 8.2.(1)(2)(3) 3. []4,0- 4. (0,2) 5. 7 6.33657. 8. 8对提示:20x a -≤2a x ⇒≤.40x b ->4b x ⇒>.要使{}2,3A B N ⋂⋂=,则124342b a ⎧≤<⎪⎪⎨⎪≤<⎪⎩,即4868b a ≤<⎧⎨≤<⎩.所以数对()b a ,共有248⨯=. 9. 5522a a ≥≤-,或提示:[][]1122,(),x f x ∈-∈,0,4,使[]0,g x ∃∈()0,4 0,21,210,a a ⎧⎪-⎨⎪--⎩a >≥4≤0,210,21,a a ⎧⎪-⎨⎪--⎩a <≤≥4成立.10.1提示:153,,21616a b c === . 11. 3010m -<≤提示:2(1lg )40,1lg 0m m ∆=+-≥+> 12. {}4,5,6,7提示:11114,5,(1)1,613na a n d==-=≤≤. 13解:(1)()1111cos sin 024262f x x x x π⎛⎫'=-=-+≥ ⎪⎝⎭,∴()f x 定义域内单调递增. (2)由()00111sin 2622f x x π⎛⎫'=-+= ⎪⎝⎭,得:0sin 06x π⎛⎫-= ⎪⎝⎭.()06x k k Z ππ∴-=∈,得()06x k k Z ππ=+∈,()20000000002sin cos sin cos 2sin sin 21tan cos sin x x x x x x x x x ++∴=++0sin 2sin 23x k ππ⎛⎫==+= ⎪⎝⎭.易错题51. 110,,23⎧⎫-⎨⎬⎩⎭. 2.2π.3. ±1 . 4. 6π. 5. [-1,0] . 6. 2y =12x 或2y =-4x .7. 1提示:由f (1)=f(3)=2,得t 取-3,1,2,5, 再验证知t 取 1 . 8. B=}{(,)2,0,0x y xy x y =>> 或22{(,)log log 1}B x y x y =+=,9.提示:逐个列举后进行归纳,21n -,32 . 10.π 提示:1f x f 2()、(x )分别为最小、最大值,因此12x x -的最小值为半周期π.11.提示:设直角边长x,由224),x +=(斜边;.12. 15提示: ]2212424545(),()(0,1,1,,5555n n a t t t t M N -=⨯-=--=∈==-M+N=15 .13、(1)如四面体A 1-ABC 或四面体C 1-ABC 或四面体A 1-ACD 或四面体C 1-ACD. (2)如四面体B 1-ABC 或四面体D 1-ACD. (3)如四面体A-B 1CD 1,设长方体的长、宽、高分别为,,a b c ,则14163abc abcabc -⨯= .易错题6:1.5 2.3263 3.⎫⎪⎪⎝⎭41 5.15 6.231,,a a a 7.|0,1x x x ⎧⎫⎪⎪<<<≤⎨⎬⎪⎪⎩⎭8.231x x x 9.f (x )=19120x +10.86a -≤- 11.1 12. 6k ≤.提示: 两边同除以x ,则39-++≤x x x k ,69≥+x x ,03≥-x ,当且仅当3=x ,两等式同时成立,所以3=x 时,右边取最小值6.解析二:可分3x 1≤≤和5x 3≤<讨论.求分段函数的最小值.13.解法一:延长CA至'A,使/2CA CA=,则//2(1)(1)CA CB CA CB CB BA λλλλλ⋅+-⋅=⋅+-⋅=+⋅ ,令/BA BD λ⋅= ,则()||f CD λ= ,当λ变化时,点D 在直线AB 上移动,可见,当/CD A B ⊥时,()||f CD λ=解法二:因为CA CB ⊥,所以2222222()4||(1)||44(1)f CA CB λλλλλ=⋅+-⋅=+-2218848()22λλλ=-+=-+,当12λ=时,()f λ易错题7:1.k <2或k >6 2.4 3.(,]3ππ 4.K ≤-2或k ≥2 5.146.2; 7.1<m <3提示:p:1<m ≤4,q:m<3,则1<m <3 ; 8.45提示:345,OA OB OC +=- 两边平方得0OA OB = 借图判定出. 9. 4提示: 10.0提示:()(1)()(1),(1)(1),(20071)(20071)0;g x f x g x f x f x f x f f -=--=-=--∴+=--∴++-=11.提示:11cos(),[,];22232e πθππθ⎡-=∈∈⎢⎣⎦ 12.3[2,)2-提示:n 分奇偶数分别讨论,然后取交集;13.解:(Ⅰ)∵31=e ,∴a =3c ,b =c 22,椭圆方程设为1892222=+cy c x ,当圆P 与x 轴相切时,PF 2⊥x 轴,故求得P (c ,c 38±),圆半径r =c 38,由295512222=-c r 得,c =2,∴椭圆方程设为1323622=+y x ,此时圆P 方程为9256)316()2(22=±+-y x . (Ⅱ)以F 1为圆心,作圆M ,使得圆P 内切于圆M ,公切点设为Q ,则点F 1、P 、Q 在一直线上,从而F 1Q =F 1P +PQ =F 1P +PF 2=2a =6,∴存在圆M :36)2(22=++y x 满足题设要求.易错题81. 1;2.;3.034=±y x ;4. 4323或;5.73;6. 10.5和10.5;7.提示2121137823a a a a a π+=+==;8. [2,4] 提示:画图象分析,对称轴x=2;9. 提示:垂足的轨迹为以焦距为直径的圆,则2222212c b c b a c e <⇒<=-⇒<;10. )4,0()4,(⋃--∞提示: ()0)(')()(<+='x xf x f x xf ,即),在(0)(∞-x xf 上是减函数,结合偶函数对称可得.;11提示:画示意图,在ABC ∆中用余弦定理得4cos 5B =, 则3sin 5B =,1356925ABC S ∆=⋅⋅⋅=,图中阴影部分的 面积为三角形ABC 的面积减去半径为1的半圆的面积即为92π-,则本题中蚂蚁恰在离三个顶点距离都大于1的地方的概率为921918P ππ-==-. 12.16提示:由)(x f 在),0(+∞0)('<x f 恒成立,得到)(x f 在),0(+∞单调递减,因为1)(≤+y x f ,1)4(=f ,则),4()(f y x f ≤+所以y x ,满足x+y ≥4且 x+y >0,又因为2)1()1(222222-+++=+++y x y x y x ,22)1()1(+++y x 可以看作是),(y x 到)1,1(--的距离的平方,所以由线性规划知识可得y x y x 2222+++的最小值是16.13解:(Ⅰ)因为各组的频率和等于1,故第四组的频率:41(0.0250.01520.010.005)100.3f =-+*++*= 直方图如右所示…(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为 (0.0150.030.0250.005)100.75+++*=所以,抽样学生成绩的合格率是75%.. --利用组中值估算抽样学生的平均分 123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅=450.1550.15650.15750.3850.25950.05⨯+⨯+⨯+⨯+⨯+⨯=71估计这次考试的平均分是71分 .。
高中数学易错题整理

高中数学错题集1、“直线ax+y +1=0和直线4x+ay -2=0”平行的充要条件为”a = “.22、.已知函数f(x)是R 上的减函数,A(0,-2),B(-3,2)是其图像上的两点,那么不等式|f(x -2)|>2的解集为 .请将错误的一个改正为 .3、已知正数x,y 满足x+ty =1,其中t 是给定的正实数,若1/x +1/y 的最小值为16,则实数t 的值为 .4、已知,,x y z R +∈,230x y z -+=,则2y xz的最小值 .34、若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围 。
(5,7).5、已知正数x,y 满足4x-y=xy 则,x-y 的做小值为 .6、偶函数f(x)在[0,+∞]上是增函数,若f(ax+1)>f(x-3)在[1,2]上恒成立,则实数的取值范围为 .(a>1ora<-3)7、若数列{a n }的通项公式⋅⋅2n-2n-1n 22a =5()-4()55,数列{a n }的最大项为第x 项,最小项为第y 项,则x+y=_______________. 12. 38、已知a ,b 是两个互相垂直的单位向量, 且1=⋅=⋅b c a c 2=,则对0>t a t ++的最小值是 。
9、定义:区间)](,[2121x x x x <的长度为12x x -.已知函数|log |5.0x y =定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值为 10.154函数f(x)=sin(ωx+π/3)(ω>0)在[0,2]上恰有一个最大值和最小值,则ω的取值范围是 .10.设D 、P 为△ABC 内的两点,且满足,51),(41+=+=则ABCAPDS S ∆∆= .0.1 11、设D 为ABC ∆的边AB 上的点,P 为ABC ∆内一点,且满足52,43+==,则=∆∆ABCAPD S S .10312、若函数2()x f x x a =+(0a >)在[)1,+∞上的最大值为3,则a 的值为113、 已知函数M,最小值为m,则mM的值为 ___________。
(完整版)高中数学易错题

高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学错题精选一:三角部分1.△ABC 中,已知cosA=135,sinB=53,则cosC 的值为( ) A 、6516 B 、6556 C 、6516或6556 D 、6516-2.为了得到函数⎪⎭⎫ ⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( )A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π3.若sin cos θθ+=1,则对任意实数n nn,sin cos θθ+的取值为( ) A. 1B. 区间(0,1)C.121n -D. 不能确定4.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是…………………( )A. ]3,0[πB. ]127,12[ππC. ]65,3[ππD. ],65[ππ5.在锐角⊿ABC 中,若1tan +=t A ,1tan -=t B ,则t 的取值范围为( )A 、),2(+∞B 、),1(+∞C 、)2,1(D 、)1,1(- 6.已知53sin +-=m m θ,524cos +-=m m θ(πθπ<<2),则=θtan (C ) A 、324--m m B 、m m 243--± C 、125- D 、12543--或7.曲线y=2sin(x+)4πcos(x-4π)和直线y=21在y 轴右侧的交点按横坐标从小到大依次记为P 1、P 2、P 3……,则|P 2P 4|等于 ( )A .πB .2πC .3πD .4π8.函数的图象的一条对称轴的方程是()9.先将函数y=sin2x 的图象向右平移π3个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 ( )A .y=sin(-2x+π3) B . y=sin(-2x -π3) C .y=sin(-2x+ 2π3 ) D . y=sin(-2x -2π3) 10.函数x x y cos sin =的单调减区间是( )A 、]4,4[ππππ+-k k (z k ∈) B 、)](43,4[z k k k ∈++ππππ C 、)](22,42[z k k k ∈++ππππ D 、)](2,4[z k k k ∈++ππππ11.已知奇函数()[]上为,在01-x f 单调减函数,又α,β为锐角三角形内角,则( ) A 、f(cos α)> f(cos β) B 、f(sin α)> f(sin β)C 、f(sin α)<f(cos β)D 、f(sin α)> f(cos β)高中数学错题精选二:不等式部分1、若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( )A a ≤-21或a ≥21 B a <21 C -21≤a ≤21 D a ≥ 21 正确答案:D 错因:学生对一元二次不等式与二次函数的图象之间的关系还不能掌握。
2、已知函数y =㏒21(3x )52+-ax 在[-1,+∞)上是减函数,则实数a 的取值范围( )A a ≤-6B -60<a <-6C -8<a ≤-6 D-8≤a ≤-6正确答案:C 错因:学生忘记考虑定义域真数大于0这一隐含条件。
3、f(x)=︱2x—1|,当a <b <c 时有f(a)>f(c)>f(b)则( ) A a <0,b <0,c <0 B a <0,b >0,c >0 C 2a-<2c D 22+ac <2正确答案:D 错因:学生不能应用数形结合的思想方法解题。
4、已知实数x 、y 满足x 2+y 2=1,则(1-xy)(1+xy)( )A.有最小值21,也有最大值1 B.有最小值43,也有最大值1 C.有最小值43,但无最大值D.有最大值1,但无最小值正确答案:B 。
错误原因:容易忽视x 、y 本身的范围。
5、已知21,x x 是方程)(0)53()2(22R k k k x k x ∈=+++--的两个实根,则2221x x +的最大值为( )A 、18B 、19C 、955 D 、不存在 答案:A 错选:B错因:2221x x +化简后是关于k 的二次函数,它的最值依赖于0>∆所得的k 的范围。
6、如果方程(x-1)(x 2-2x +m)=0的三个根可以作为一个三角形的三条边长,那么实数m 的取值范围是 ( ) A 、0≤m ≤1 B 、43<m ≤1 C 、43≤m ≤1 D 、m ≥43 正确答案:(B ) 错误原因:不能充分挖掘题中隐含条件。
7、设220,0,12b a b a ≥≥+=,则的最大值为 错解:有消元意识,但没注意到元的范围。
正解:由220,0,12b a b a ≥≥+=得:2212b a =-,且201b ≤≤,原式=1。
8、若对于任意x ∈R ,都有(m -2)x 2-2(m -2)x -4<0恒成立,则实数m 的取值范围是 。
正确答案:(-2,2) 。
错误原因:容易忽视m =2。
高中数学错题精选三:数列部分一、选择题:1.x ab =是a x b ,,成等比数列的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 解:x ab a x b =,、、不一定等比, 如a b x ===0若a x b 、、成等比数列,则x ab =± ∴选D说明:此题易错选为A 或B 或C ,原因是等比数列{}a n 中要求每一项及公比q 都不为零。
2.已知S k 表示{a n }的前K 项和,S n —S n+1=a n (n ∈N +),则{a n }一定是_______。
A 、等差数列B 、等比数列C 、常数列D 、以上都不正确 正确答案:D 错误原因:忽略a n =0这一特殊性3.已知数列—1,a 1,a 2,—4成等差数列,—1,b 1,b 2,b 3,—4成等比数列,则212b a a -的值为___________。
A 、21 B 、—21 C 、21或—21 D 、41 正确答案:A 错误原因:忽略b 2为等比数列的第三项,b 2符号与—1、—4同号 4.数列{}n a 的前n 项和为s n =n 2+2n-1,则a 1+a 3+a 5+……+a 25=( )A 350B 351C 337D 338正确答案:A 错因:不理解该数列从第二项起向后成等差数列。
5.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列个数为( )A .3B .4C .6D .8正确答案:D 错因:误认为公比一定为整数。
6.数列}{n a 满足121,12210,2{1<≤-<≤=+n n n n n a a a a a ,若761=a ,则2004a 的值为( ) A.76 B. 75 C. 73 D.71 正确答案:C 错因:缺研究性学习能力7.若d c b a ,,,成等比数列,则下列三个数:①d c c b b a +++,, ②cd bc ab ,, ③d c c b b a ---,,,必成等比数列的个数为( )A 、3B 、2C 、1D 、0错解: A. 错因:没有考虑公比1=q 和1-=q 的情形,将①③也错认为是正确的. 正解: C. 8.等比数列{}821,2,1a a q a a n 和则公比中,已知==的等比中项为( )A 、16B 、±16C 、32D 、±32正确答案:(B ) 错误原因:审题不清易选(A ),误认为是5a ,实质为±5a 。
9.已知}{na 的前n 项之和+++-=212,14a a n n S n 则…n a 的值为 ( )A、67 B、65 C、61 D、55 正确答案:A 错误原因:认为}{na 为等差数列,实质为⎩⎨⎧≥-=-=)2(52)1(2n n n a n二填空题:1.若数列{}n a 是等差数列,其前n 项的和为n S ,则{},,nn n S b n N b n*=∈也是等差数列,类比以上性质,等比数列{},0,n n c c n N *>∈,则n d =__________,{}n d 也是等比数列[错解]n S n [错解分析] 没有对n Sn仔细分析,其为算术平均数, [正解2.一种产品的年产量第一年为a 件,第二年比第一年增长1p ﹪,第三年比第二年增长2p ﹪,且0,0,2p >>+=1212p p p p ,若年平均增长x ﹪,则有x ___p (填≤≥或或=)[错解]≥[错解分析]实际问题的处理较生疏,基本不等式的使用不娴熟 [正解]≤ 3.关于数列有下列四个判断:(1)若d c b a ,,,成等比数列,则d c c b b a +++,,也成等比数列;(2)若数列{n a }既是等差数列也是等比数列,则{n a }为常数列;(3)数列{n a }的前n 项和为n S ,且)(1R a a S nn ∈-=,则{n a }为等差或等比数列;(4)数列{n a }为等差数列,且公差不为零,则数列{n a }中不会有)(n m a a n m ≠=,其中正确判断的序号是______(注:把你认为正确判断的序号都填上) 正解:(2)(4).误解:(1)(3)。
对于(1)a 、b 、c 、d成等比数列。
ac b =∴2bd c =2()())(2d c b a c b ad bc ++=+⇒=d c c b b a +++∴,,也成等比数列,这时误解。
因为特列:1,1,1,1=-==-=d c b a 时,d c b a ,,,成等比数列,但0=+b a ,0=+c b ,0=+d c ,即0,0,0不成等比。
对于(3)可证当1=a 时,为等差数列,1≠a 时为等比数列。
0=a 时既不是等差也不是等比数列,故(3)是错的。
5.已知数列}{n a 是非零等差数列,又a 1,a 3,a 9组成一个等比数列的前三项,则1042931a a a a a a ++++的值是 。
答案:1或1613 错解:1613错因:忘考虑公差为零的情况。
6.若数列}{n a 为等差数列且na a ab nn+⋅⋅⋅++=21,则数列{}也是等差数列n b ,类比上述性质,相应地若数列{}n n c c 是等比数列,且>0,=n d ,则有{})也是等比数列(以上N n d n ∈正确答案:n n n c c c d ⋅⋅⋅=21 错误原因:类比意识不强高中数学错题精选四:函数与导数部分1. 如果函数f (x ) = ax 3-x 2 + x -5在(-∞, + ∞)上单调递增,则实数a 的取值范围是(A) (0,+ ∞) (B) [0,+ ∞)(C) (13,+ ∞)(D) [13,+ ∞)错解:选C 原因:令0'f (x )>解得,漏0'f (x )=,所以选(D )2. 已知f (x ) = x 3-ax 2 +(a +6)x +5有极大值和极小值,则a 的取值范围是(A) -1<a <2 (B) -3<a <6(C) a <-3或a >6 (D) a <-1或a >2C错解原因分析:不会转化为0,f (x )=有两个不相同的实根,求出范围。