高考数学易错题集锦
高考数学易错易误易忘题分类汇总及解析(61页)

f
1
x
1
1 x 1 2 1
2x 1 x
再求
y f 1 x 1 的反函数得 g x 2 x 。正确答案:B
1 x
【知识点分类点拔】函数 y f 1 x 1 与函数 y f x 1 并不互为反函数,他只是表示
f 1 x 中 x 用 x-1 替代后的反函数值。这是因为由求反函数的过程来看:设 y f x 1 则
答案:B 【易错点 4】求反函数与反函数值错位
例 4、已知函数 f x 1 2x ,函数 y g x的图像与 y f 1 x 1 的图象关于直线
1 x
y x 对称,则 y g x的解析式为()
A、 g x 3 2x B、 g x 2 x C、 g x 1 x D、 g x 3
4
4
28
8
28
+ 因此当 x=-1 时 x2+y2 有最小值 1, 当 x=- 时,x2+y2 有最大值 。故 x2+y2 的取值范围是[1,
3
3
3
28
]
3
【知识点归类点拔】事实上我们可以从解析几何的角度来理解条件 x 2 2 y2 1对 x、y 的限制,
4
显然方程表示以(-2,0)为中心的椭圆,则易知-3≤x≤-1, 2 y 2 。此外本题还可通过三角换元
x 的取值范围为()A、 ( a2 1, ) 2a
(a, )
B、 (, a2 1) 2a
a2 1
C、 (
, a)
D、
2a
答案:A ( a 1 时, f x单调增函数,所以 f 1 x 1 f f 1 x f 1 x f 1 a2 1 .) 2a
【易错点 7】证明或判断函数的单调性要从定义出发,注意步骤的规范性及树立定义域优先的原则。
高考数学压轴专题(易错题)备战高考《平面向量》真题汇编含答案

【最新】数学《平面向量》高考知识点一、选择题1.已知平面向量a v ,b v 的夹角为3π,且||2a =v ,||1b =v ,则2a b -=v v ( )A .4B .2C .1D .16【答案】B 【解析】 【分析】根据向量的数量积和向量的模的运算,即可求解. 【详解】由题意,可得222|2|||4||4444||||cos 43a b a b a b a b π-=+-⋅=+-⋅=r r r r r r r r ,所以|2|2a b -=r r,故选B.【点睛】本题主要考查了平面向量的数量积的运算及应用,其中解答中熟记平面向量的数量积的运算公式,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力,属于基础题.2.已知正ABC ∆的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r=,那么EB EC⋅u u u r u u u r 的值为( ) A .83- B .1- C .1 D .3【答案】B 【解析】 【分析】由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】由已知可得:7 , 又23tan BED 3BD ED ∠===所以221tan1 cos1tan7BEDBECBED-∠∠==-+∠所以1||cos7717EB EC EB EC BEC⎛⎫⋅=∠=⨯⨯-=-⎪⎝⎭u u u r u u u r u u u r u u u r‖故选B.【点睛】本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题.3.已知向量av,bv满足a b a b+=-r rv v,且||3a=v,||1b=r,则向量bv与a b-v v的夹角为()A.3πB.23πC.6πD.56π【答案】B【解析】【分析】对a b a b+=-v vv v两边平方,求得0a b⋅=vv,所以a b⊥vv.画出图像,根据图像确定bv与a b-vv的夹角,并根据它补角的正切值求得对应的角的大小.【详解】因为a b a b+=-v vv v,所以222222a ab b a a b b+⋅+=-⋅+v v v vv v v v,即0a b⋅=vv,所以a b⊥vv.如图,设AB a=u u u v v,AD b=u u u v v,则向量bv与a b-vv的夹角为BDE∠,因为tan3BDA∠=,所以3BDAπ∠=,23BDEπ∠=.故选B.【点睛】本题考查平面向量的模以及夹角问题,考查运算求解能力,考查数形结合的数学思想方法.属于中档题.4.已知菱形ABCD的边长为2,60ABC∠=︒,则BD CD⋅=u u u v u u u v()A.4 B.6 C.23D.43【答案】B【解析】【分析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果.【详解】 如图所示,菱形形ABCD 的边长为2,60ABC ∠=︒,∴120C ∠=︒,∴22222222cos12012BD =+-⨯⨯⨯︒=, ∴23BD =30BDC ∠=︒,∴|||3 302|3262BD CD BD CD cos =⨯⨯︒=⨯=⋅u u u r u u u r u u u r u u u r ,故选B . 【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..5.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r,则PO 的最大值为( )A .7B .6C .5D .4【答案】C 【解析】 【分析】设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r 可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值. 【详解】设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r. 由3PB PA =u u u r u u u r可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=, 故选:C. 【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.6.延长线段AB 到点C ,使得2AB BC =u u u r u u u r ,O AB ∉,2OD OA =u u u v u u u v,则( )A .1263BD OA OC =-u u u v u u u v u u u vB .5263BD OA OC =-u u u v u u u v u u u vC .5163BD OA OC =-u u u v u u u v u u u vD .1163BD OA OC =+u u u v u u u v u u u v【答案】A 【解析】 【分析】利用向量的加法、减法的几何意义,即可得答案;【详解】Q BD OD OB =-u u u v u u u v u u u v ,()22123333OB OA AC OA OC OA OA OC =+=+-=+u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,12OD OA =u u u v u u u v ,∴1263BD OA OC =-u u u v u u u v u u u v ,故选:A. 【点睛】本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力.7.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线【答案】B 【解析】 【分析】利用平面向量共线定理进行判断即可. 【详解】因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r 所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r ,因为5MN a b =+u u u u r rr ,所以MN NQ =u u u u r u u u r由平面向量共线定理可知,MN u u u u r 与NQ uuur 为共线向量,又因为MN u u u u r 与NQ uuur 有公共点N ,所以,,M N Q 三点共线.故选: B 【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.8.如图,已知1OA OB ==u u u v u u uv ,2OC =u u u v ,4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB u u u v u u u v u u u v =+,则mn等于( )A .57B .75C .37D .73【答案】A 【解析】 【分析】依题意建立直角坐标系,根据已知角,可得点B 、C 的坐标,利用向量相等建立关于m 、n 的方程,求解即可. 【详解】以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立直角坐标系如图所示:因为1OA OB ==u u u r u u u r ,且4tan 3AOB ∠=-,∴34cos sin 55AOB AOB ∠=-∠=,,∴A (1,0),B (3455-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴413tan θ413--=-=7,又如图点C 在∠AOB 内,∴cos θ2,sin θ72,又2OC u u u v =C (1755,),∵OC mOA nOB =+u u u r u u u r u u u r ,(m ,n ∈R ),∴(1755,)=(m,0)+(3455n n -,)=(m 35n -,45n ) 即15= m 35n -,7455n =,解得n=74,m=54,∴57m n =, 故选A . 【点睛】本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.9.设()1,a m =r ,()2,2b =r,若()2a mb b +⊥r r r ,则实数m 的值为( )A .12B .2C .13-D .-3【答案】C 【解析】 【分析】计算()222,4a mb m m +=+r r,根据向量垂直公式计算得到答案.【详解】()222,4a mb m m +=+r r,∵()2a mb b +⊥r r r ,∴()20a mb b +⋅=r r r ,即()22280m m ⋅++=,解得13m =-.故选:C .【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.10.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r,则λμ+=( ) A .13- B .13C .12-D .12【答案】C 【解析】 【分析】由向量的加减法运算,求得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,进而得出()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r,列式分别求出λ和μ,即可求得λμ+.【详解】解:已知D 、P 分别为BC 、AD 的中点, 由向量的加减法运算, 得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r,2AB AD DB BD PD =+=-+u u u r u u u r u u u r u u u r u u u r , 2AC AD DC BD PD =+=+u u u r u u u r u u u r u u u r u u u r ,又()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r Q ,则1221μλλμ-=⎧⎨+=-⎩,则12λμ+=-. 故选:C.【点睛】本题考查平面向量的加减法运算以及向量的基本定理的应用.11.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.12.在平行四边形ABCD 中,4AB =,2AD =,3BAD π∠=,M 为DC 的中点,N为平面ABCD 内一点,若AB NB AM AN -=-u u u v u u u v u u u u v u u u v ,则AM AN ⋅=u u u u v u u u v( )A .16B .12C .8D .6【答案】D 【解析】 【分析】根据条件及向量加减法的几何意义即可得出|AN u u u r |=|MN u u u u r|,再根据向量的数量积公式计算即可 【详解】由|AB NB -u u u r u u u r |=|AM AN -u u u u r u u u r |,可得|AN u u u r|=|NM u u u u r |, 取AM 的中点为O ,连接ON ,则ON ⊥AM , 又12AM AD AB =+u u u u r u u u r u u u r ,所以AM u u u u r •21122AN AM ==u u u r u u u u r (12AD AB +u u u r u u u r )212=(2214AD AB AD ++u u u r u u u r u u u r •AB u u u r )12=(414+⨯16+2×412⨯)=6,故选:D .【点睛】本题主要考查了平面向量的几何表示,数量积的几何意义,运算求解能力,属于中档题13.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE =u u u rA .12AB AD -+u u ur u u u rB .12AB AD -u u ur u u u rC .12AB AD +u u u r u u u rD .12AB AD -u u u r u u u r【答案】A 【解析】 【分析】由平面向量的加法法则运算即可. 【详解】如图,过E 作//,EF BC 由向量加法的平行四边形法则可知1.2BE BF BC AB AD =+=-+u u u v u u u v u u u v u u uv u u u v故选A. 【点睛】本题考查平面向量的加法法则,属基础题.14.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且.2BP PA =,则CP CB ⋅=u u u v u u u v( ) A .13B .12C .23D .1【答案】C 【解析】 【分析】利用向量的加减法及数乘运算用,CA CB u u u r u u u r 表示CP u u u v,再利用数量积的定义得解.【详解】依据已知作出图形如下:()11213333CP CA AP CA AB CA CB CA CA CB =+=+=+-=+u u u v u u v u u u v u u v u u u v u u v u u u v u u v u u v u u u v .所以221213333CP CB CA CB CB CA CB CB ⎛⎫+=+ ⎪⎝⎭⋅=⋅⋅u u u v u u u v u u v u u u v u u u v u u v u u u v u u u v 221211cos 13333π=⨯⨯⨯+⨯= 故选C 【点睛】 本题主要考查了向量的加减法及数乘运算,还考查了数量积的定义,考查转化能力,属于中档题.15.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D 【解析】 【分析】 【详解】因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v ,而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u u v u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D 16.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,则ABC ∆的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【答案】A【解析】【分析】利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r , 所以,CB AB ⊥,即2B π∠=,故ABC ∆为直角三角形.故选:A.【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.17.如图,向量a b -r r 等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r 【答案】D【解析】【分析】【详解】 由向量减法的运算法则可得123a e b e -=-+r r r u u r ,18.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u u r r r ,则x ,y 的值分别为( )A .15,45B .43,13-C .45,15D .13-,43 【答案】C【解析】【分析】 求得向量5(,5)2OP x y =u u u r ,5(,5)2AB b a =-=-u u u r r r ,根据OP AB ⊥u u u r u u u r 和,,A B P 三点共线,列出方程组,即可求解.【详解】 由题意,向量5(,0)2a =r ,(0,5)b =r ,所以5(,5)2OP xa yb x y =+=u u u r r r , 又由5(,5)2AB b a =-=-u u u r r r , 因为OP AB ⊥u u u r u u u r ,所以252504OP AB x y ⋅=-+=u u u r u u u r ,可得4x y =, 又由,,A B P 三点共线,所以1x y +=, 联立方程组41x y x y =⎧⎨+=⎩,解得41,55x y ==.故选:C .【点睛】本题主要考查了向量的坐标运算,以及向量垂直的坐标运算和向量共线定理的应用,着重考查了运算与求解能力.19.已知单位向量,a b r r满足3a b +=r r ,则a r 与b r 的夹角为A .6πB .4πC .3πD .2π 【答案】C【解析】由3a b +=r r 22236913a b a a b b +=+⋅+=r r r r r r ,又因为单位向量,a b r r ,所以1632a b a b ⋅=⇒⋅=r r r r , 所以向量,a b r r 的夹角为1cos ,2a b a b a b ⋅〈〉==⋅r r r r r r ,且,[0,]a b π〈〉∈r r ,所以,3a b π〈〉∈r r ,故选C.20.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r,120BAC ∠=︒,则||EB =u u u r ( ) ABCD【答案】A【解析】【分析】 根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可.【详解】 因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u u r u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯ 1916=,所以||4EBu u u r , 故选:A【点睛】 本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.。
2023届高考复习数学易错题专题(集合)汇编 (附答案)

2023届高考复习数学易错题专题(集合)汇编1.若22{1,1,1}a a ∈++,则a =( )A .2B .1或-1C .1D .-12.若集合{1,1}A =-,{|1}B x mx ==,且A B A ⋃=,则m 的值为( )A .1或0B .1-或0C .1或1-或0D .1或1-或23.(多选题)已知集合{}22,4,A m=,{}2,B m =,A B A ⋃=,则实数m 的值可能为( ) A .0 B .1 C .2 D .44.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为( )A .[]3,3-B .(],2-∞C .(][),33,-∞-+∞D .(],3-∞ 5.下列集合中表示同一集合的是( )A .{(3,2)}M =,{(2,3)}N =B .{2,3}M =,{3,2}N =C .{(,)1}M x y x y =+=∣,{1}N y x y =+=∣ D .{2,3}M =,{(2,3)}N = 6.若集合{}2|1,{|1}A x x B x mx ====且B A ⊆,则实数m 的集合为( ) A .{1,0,1}- B .{1,1}- C .{1,0}- D .{0,1} 7.已知集合A ={x |y =log 2(x 3-1)},B ={y |y =x -2},则A ∩B =( )A .(1,+∞)B .(-1,2]C .[2,+∞)D .∅8.(多选题)已知集合{}23180A x R x x =∈--<,{}22270B x R x ax a =∈++-<,则下列命题中正确的是( )A .若AB =,则3a =-B .若A B ⊆,则3a =-C .若B =∅,则6a ≤-或6a ≥D .若3a =,则{}36A B x x ⋂=-<< 9.用列举法可以将集合{A a a =使方程221=0ax x ++有唯一实数解}表示为( )A .{}1A =B .{}0A =C .{}0,1A =D .{}0A =或{}110.(多选题)已知集合2{|log 0}A x x =≤,集合1{|0}1y B y y +=≥-,集合1{|3}9z D z =≥,则( ) A .A D R ⋃=B .A B =∅C .()R A B ⋃ðD D .R D ð B11.已知{}22,25,12A a a a =-+其3A -∈,则由a 的值构成的集合是( )A .∅B .31,2⎧⎫--⎨⎬⎩⎭ C .{}-1 D .32⎧⎫-⎨⎬⎩⎭12.已知集合A ={x |-1≤x ≤3},集合B ={x |1-m ≤x ≤1+m }.若B ⊆A ,则m 的取值范围是( ) A .(-∞,2]B .[-1,3]C .[-3,1]D .[0,2]13.已知集合{}20,,32A m m m =-+,且2A ∈,则实数m 的值为 ( )A .3B .2C .0或3D .0或2或3 14.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20192020+a b 的值是________.15.已知集合{1A x x =<-或}4x >,{}23B x a x a =≤≤+,若B A ⊆,则实数a 的取值范围是________. 16.设集合A ={x ∣2x −3x +2=0},B ={x ∣2x +2(a +1)x +2a −5=0},若U =R ,A ∩(∁ B )=A ,求实数a 的取值范围.17.已知集合A ={x |0<ax +1≤5},集合B ={x |-12<x ≤2}.若B ⊆A ,求实数a 的取值范围. 18.(1)设集合A ={a 2,a +1,-1},B ={2a -1,|a -2|,3a 2+4},A ∩B ={-1},求实数a 的值.(2)设集合{}2,21,4A x x =--,{}5,1,9B x x =--,若{}9A B ⋂=,求实数x 的值. 19.已知集合{}24A x x =<<,()(){}30B x x a x a =--<.(1)若A B =∅ ,求实数a 的取值范围;(2)若{}34A B x x ⋂=<<,求实数a 的取值范围. 20.设集合{}2|320A x x x =-+=,{}22|2(1)50B x x a x a =+++-=.(1)若{2}A B = ,求实数a 的值;(2)若A B A ⋃=,求实数a 的取值范围;答案解析1.若22{1,1,1}a a ∈++,则a =( )A .2B .1或-1C .1D .-1 【参考答案】D【答案解析】当212a +=时,1a =±,当1a =时,2112a a +=+=,不满足互异性,舍去,当1a =-时,集合为{1,2,0},满足;当12a +=时,1a =,不满足互异性,舍去.综上1a =-. 2.若集合{1,1}A =-,{|1}B x mx ==,且A B A ⋃=,则m 的值为( )A .1或0B .1-或0C .1或1-或0D .1或1-或2 【参考答案】C【答案解析】,A B A B A ⋃=⊆ ∴,B ∴=∅;{1}B =-;{1}B =,当B =∅时,0m =;当{1}B =-时,1m =-,当{1}B =时,1m =,故m 的值是0;1;1-。
高考冲刺数学易错题汇集

高考冲刺数学易错题汇集高考冲刺数学易错题汇集在高考冲刺阶段,数学作为我们的必修科目,是我们最需要练习的科目之一。
但是数学难度较大,题目要求较高,加上高考的紧张压力,我们很容易犯错。
因此,我整理了一些高考义务教育阶段数学中易错题型,希望能够帮助大家提前做好复习准备,避免在考试中出现这些常见的错题。
一、三角函数1.【易错题型】如图,在△ABC中,角A的对边BC长度为4,角B的对边AC长度为3,角C的对边AB长度为2.则cotB+2sinA=【做题思路】cotB+2sinA=cotB+2sin(B+C)=cotB+2[sinBcosC+sinCcosB]=cot B+6cotB+8=7cotB+8。
【易错点评】易错的关键在于这道题要使用三角恒等式和三角函数的性质,将其有效的运用在计算中。
同时,需要注意在运算中的细节,例如将sinB和cosB分别算出来,最后再来进行加减运算。
2.【易错题型】正弦函数与余弦函数的值域是:( )A. [ -1 , 1 ]B. [ 1 , +∞ )C. [ -∞ , -1 ] ∪ [ 1 , +∞ )D. [ 0 , 1 ]【做题思路】根据三角函数的定义,易知y=sin(x)、y=cos(x)的解析式都在[-1,1]之间,因此该题的选项为A。
【易错点评】该题中易错的关键在于忽略了正弦函数与余弦函数的定义和解析式,只看到选项就随便选择,导致最后结果与实际情况不符。
二、解析几何1.【易错题型】若四边形ABCD 的边长分别为a、b、c、d,而且AB=BC,AD=CD,则它是一个矩形的充要条件是:A. a=c,b=dB. a=d,b=cC. a=b,c=dD. a=d,c=b【做题思路】在解析几何的学习中,我们应掌握矩形的定义及其相关性质,并根据题目中所给出的线段长度,确定此四边形是否为矩形。
根据题干所述,相邻两条边长度相等,即AB=BC,AD=CD,则该四边形为矩形的条件为AC垂直BD,即(a2-b2)+(c2-d2)=0。
高考数学压轴专题(易错题)备战高考《不等式》易错题汇编及解析

【高中数学】《不等式》考试知识点一、选择题1.已知ABC V 外接圆的半径2R =,且2sin 2AA =.则ABC V 周长的取值范围为( ) A. B.(4, C.4+D.(4+【答案】C 【解析】 【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】由题意,22cos 1123A A -=-,即cos 13A A -=-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 3A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=, 即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.2.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3 B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.3.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤()2n m n m -; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3 C .4 D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得22m n m n+-=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.4.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.5.已知实数x ,y满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C.D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2d ==,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.6.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式2313233tan tan ββ≤=+,当且仅当3tan 3β=时等号成立, 因为,22ππαβ⎛⎫-∈- ⎪⎝⎭,且函数tan y x =在区间,22ππ⎛⎫-⎪⎝⎭上单调递增, 则αβ-的最大值为6π. 故选:B . 【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.7.若,x y 满足4,20,24,x y x y x y +≤⎧⎪-≥⎨⎪+≥⎩则4y x -的最大值为( )A .72-B .52-C .32-D .1-【答案】D 【解析】 【分析】画出平面区域,结合目标函数的几何意义,求解即可. 【详解】该不等式组表示的平面区域,如下图所示4y x-表示该平面区域中的点(),x y 与(0,4)A 确定直线的斜率 由斜率的性质得出,当区域内的点为线段AB 上任意一点时,取得最大值.不妨取84(,)33B 时,4y x -取最大值443183-=- 故选:D 【点睛】本题主要考查了求分式型目标函数的最值,属于中档题.8.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A .,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .3⎛⎫+∞ ⎪ ⎪⎝⎭D .⎫+∞⎪⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得3t <-或3t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.9.某企业生产甲、乙两种产品需用到A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )A .12万元B .16万元C .17万元D .18万元【答案】D 【解析】 【分析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果. 【详解】设每天甲、乙产品的产量分别为x 吨、y 吨由已知可得3212,28,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y =+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P 处取得最大值,由28,3212,x y x y +=⎧⎨+=⎩得()2,3P ,则max 324318z =⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.10.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >,则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.11.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32B .53 C .74D .95【答案】D 【解析】 【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案; 【详解】 当2m n +=时,Q131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭,当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D 【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.12.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C【解析】 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥Q 且224x y+≤ ,422x y ∴≤≤⇒+≤ , 等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ , 等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.13.已知变量,x y 满足约束条件121x y x +⎧⎨-⎩剟…,则x y y +的取值范围是( )A .12,23⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .11,3⎛⎤-- ⎥⎝⎦D .3,22⎡⎤⎢⎥⎣⎦【答案】B 【解析】 【分析】作出不等式121x y x +⎧⎨-⎩剟…表示的平面区域,整理得:x y y +1x y =+,利用yx 表示点(),x y 与原点的连线斜率,即可求得113x y -<-…,问题得解. 【详解】将题中可行域表示如下图,整理得:x y y +1x y =+ 易知y k x=表示点(),x y 与原点的连线斜率, 当点(),x y 在()1.3A -处时,y k x =取得最小值-3. 且斜率k 小于直线1x y +=的斜率-1,故31k -≤<-,则113x y -<-…, 故203x y y +<…. 故选B【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.14.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( ) A .22⎫+∞⎪⎪⎣⎭B .[)1,+∞C .)2,⎡+∞⎣D .[)2,+∞【答案】C【解析】【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果.【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OM y k k k x k k +∴===+≥=k =时取等号), 即直线OM斜率的取值范围为)+∞.故选:C .【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.15.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( ) AB .5C .3D .52【答案】D【解析】【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可.【详解】 解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩………平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方,解得,2252d ⎛⎫==; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.16.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ). A 5B .3C .23 D .22【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---2()22a b a b ≥-⨯=- 当且仅当2a b a b-=-,即2a b -=时等号成立 所以22a b a b+-的最下值为2故答案选D考点:基本不等式.17.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( ) A .4 B .3 C .232 D .2【答案】D【解析】【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值. 【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2. 故选:D .【点睛】 本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.18.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是A .3B .4C .92D .112 【答案】B【解析】【详解】 解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥19.若x 、y 满足约束条件4200x y x y y +≤⎧⎪-+≥⎨⎪≥⎩,目标函数z ax y =+取得最大值时的最优解仅为(1,3),则a 的取值范围为( )A .(1,1)-B .(0,1)C .(,1)(1,)-∞⋃+∞D .(1,0]-【答案】A【解析】【分析】结合不等式组,绘制可行域,判定目标函数可能的位置,计算参数范围,即可.【详解】结合不等式组,绘制可行域,得到:目标函数转化为y ax z =-+,当0a -≥时,则<1a -,此时a 的范围为(]1,0-当0a -<时,则1a ->-,此时a 的范围为()0,1,综上所述,a 的范围为()1,1-,故选A .【点睛】本道题考查了线性规划问题,根据最值计算参数,关键明白目标函数在坐标轴上可能的位置,难度偏难.20.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( ) A .512B .8C .256D .64【答案】C【解析】【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m取到最大值即可,根据图像平移得到答案.【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x y y +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.。
2023届高考复习数学易错题专题(数列)汇编(附答案)

2023届高考复习数学易错题专题(数列)汇编1.已知数列{a n }是等比数列,a 5=4,a 9=16,则a 7=( )A .8B .±8C .-8D .12. 已知数列{}n a 的前n 项和为n S ,若11a =,1n n a a n ++=,则( )A. 22S =B. 24144S =C. 31243S =D. 60660S =3.已知在等比数列{a n }中,a 3=7,前三项之和S 3=21,则公比q 的值是( )A .1B .-12C .1或-12D .-1或124. 设数列{}n a 满足12321111222n n a a a a n -+++⋅⋅⋅+=,求{}n na 的前n 项和( ) A. ()121n n -- B. ()121n n -+ C. ()1121n n ++- D. ()1121n n +++ 5. 1232482n n n S =++++= ( ) A. 22n n n - B. 1222n n n +-- C. 1212n n n +-+ D. 1222n n n +-+ 6. 已知数列{}n a 满足112a =,213a =,()1223111n n n a a a a a a n a a n N ++++++=⋅⋅∈L ,记数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2021S =( ) A. 202120212⋅ B. 202220212⋅ C. 202120222⋅ D. 202220222⋅7.已知数列{a n }是等比数列,数列{b n }是等差数列,若a 2ꞏa 6ꞏa 10=33,b 1+b 6+b 11=7π,则tan b 2+b 101-a 3ꞏa 9的值是( ) A .1 B .2 C .-2 D .- 38.一弹球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程之和是(结果保留到个位)( )A .300米B .299米C .199米D .166米9. 已知数列{}n a ,{}n b ,{}n c 满足:1*112233(1)22()n n n a b a b a b a b n n N ++++⋯+=-⋅+∈,若{}n b 是首项为2,公比为2的等比数列,11()3n n c -=-,则数列n n a c ⎧⎫⎨⎬⎩⎭的前n 项的和是( )A. 1(41)(3)16nn -+- B. 13(41)16n n ++ C. 1(32)(3)16n n -+- D. 13(32)16n n ++ 10.数列{a n }的通项公式为a n =n 2+tn (n ≤2 020),若数列{a n }为递减数列,则t 的取值范围是________.11.已知数列{a n }的前n 项和S n =n 2-16n ,则|a 1|+|a 2|+|a 3|+…+|a 11|=________.12.设S n ,T n 分别是等差数列{a n },{b n }的前n 项和,已知S n T n=2n +14n -2(n ∈N *),则a 10b 3+b 17=______. 13.数列{a n }满足1a n +2=2a n +1-1a n ,a 1=1,a 5=19,b n =2na n ,则数列{b n }的前n 项和为S n =________. 14. 已知数列{}n a 满足11a =,()*13n n a a n n ++=-∈N ,记数列{}n a 的前n 项和为n S ,若192n S =-,则n =__________.15.已知数列{a n }的前n 项和为S n ,S n =4n -3,则数列{a n }的通项公式为________. 16. 若数列{}n a 的前n 项和1n n S n-=,则其通项公式为_______. 17. 已知数列{}n a 的前n 项和为21n S n n =++,求这个数列的通项公式.18. 已知数列{}n a 的前n 项和为n S ,若13a =,15n n a S +=+,则5S =______. 19. 已知等比数列{}n a 中,12a =,36S =,求3a 和q .20. 数列{}n a 是首项14a =的等比数列,且324,,S S S 成等差数列,求数列{}n a 的通项公式. 21. 已知数列{}n a 的前n 项和n S ,满足关系()lg 1n S n -=(n ∈N ,1n ≥),求{}n a 的通项公式.22. 已知数列{}n a 中,满足()1212,,n n n a a a b a k a a ++===+对任意*n ∈N 都成立,数列{}n a 的前n 项和为n S .若1a b ==,且{}1n n a a ++是等比数列,求k 的值,并求n S .。
平面向量(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错(原卷版)

专题07平面向量易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB的长度,记作||AB .(3)特殊向量:①零向量:长度为0的向量,其方向是任意的.②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.④相等向量:长度相等且方向相同的向量.⑤相反向量:长度相等且方向相反的向量.2.向量的线性运算和向量共线定理(1)向量的线性运算运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则①交换律a b b a +=+ ②结合律()a b c ++ =()a b c ++减法求a 与b 的相反向量b -的和的运算叫做a与b的差三角形法则()a b a b -=+-数乘求实数λ与向量a的积的运算(1)||||||a a λλ=(2)当0λ>时,a λ 与a的方向相同;当0λ<时,a λ 与a的方向相同;当0λ=时,0a λ=()()a a λμλμ= ()a a aλμλμ+=+()a b a bλλλ+=+共线向量定理向量()0a a ≠ 与b 共线,当且仅当有唯一的一个实数λ,使得b a λ=.共线向量定理的主要应用:(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a b λ=,则a 与b 共线.(2)证明三点共线:若存在实数λ,使AB AC λ=,则A ,B ,C 三点共线.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.解决向量的概念问题应关注以下七点:(1)正确理解向量的相关概念及其含义是解题的关键.(2)相等向量具有传递性,非零向量的平行也具有传递性.(3)共线向量即平行向量,它们均与起点无关.(4)相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(5)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(6)非零向量a 与||a a 的关系:||a a是a方向上的单位向量.(7)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小易错提醒:(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -= ,AM AN NM -= ,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.A .AB AD AC+= C .AB AD CD AD++=uu u r uuu r uu u r uuu r 变式1:给出下列命题,其中正确的命题为(A .若AB CD = ,则必有B .若1233AD AC AB =+ C .若Q 为ABC 的重心,则D .非零向量a ,b ,c 变式2:如图所示,在平行四边形(1)试用向量,a b来表示DN (2)AM 交DN 于O 点,求AO 变式3:如图所示,在矩形1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则()A .ABC ,,三点共线C .A BD ,,三点共线2.如图,在平行四边形ABCD A .1233AB AD-+C .1536AB AD - 3.在四边形ABCD 中,若AC AB = A .四边形ABCD 是平行四边形C .四边形ABCD 是菱形4.已知,AD BE 分别为ABC 的边A .43a +23bC .23a 43-b 5.如果21,e e是平面α内两个不共线的向量,那么下列说法中不正确的是(①(12,R a e e λμλμ=+∈②对于平面α内任一向量③若向量1112e e λμ+ 与λ④若实数λ、μ使得1e λ+ A .①②B 6.给出下列各式:①AB 对这些式子进行化简,则其化简结果为A .4B 7.已知平面向量a ,bA .若a b ∥,则a = C .若a b ∥,b c ∥,则8.设1e 与2e 是两个不共线的向量,k 的值为()41.平面向量基本定理和性质(1)共线向量基本定理如果()a b R λλ=∈ ,则//a b ;反之,如果//a b 且0b ≠ ,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).(2)平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e e λλ+ 叫做向量a关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+ 叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==.推论2:若11220a e e λλ=+=,则120λλ==.(3)线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB AC AD λλ+=+ .在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.DACB(4)三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=;⇔存在唯一的实数λ,使得OC OA AB λ=+;⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+;⇔存在1λμ+=,使得OC OA OB λμ=+.(5)中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+ )AC,反之亦正确.DACB2.平面向量的坐标表示及坐标运算(1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a,有且只有一对实数,x y 使a xi yj =+ ,我们把有序实数对(,)x y 叫做向量a的坐标,记作(,)a x y = .(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有向量(,)x y 一一对应向量OA 一一对应点(,)A x y .(3)设11(,)a x y = ,22(,)b x y = ,则1212(,)a b x x y y +=++ ,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y = ,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.3.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,||AB ②已知11(,)a x y = ,22(,)b x y = ,则a b ±1212()x x y y =±±,,11(,)a x y λλλ= ,∥12211212向量共线(平行)的坐标表示1.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a共线的向量时,可设所求向量为a λ (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入a λ 即可得到所求的向量.2.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若11(),a x y =,22(),b x y = ,则a b∥的充要条件是1221x y x y =”解题比较方便.3.三点共线问题.A ,B ,C 三点共线等价于AB与AC 共线.4.利用向量共线的坐标运算求三角函数值:利用向量共线的坐标运算转化为三角方程,再利用三角恒等变换求解.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.易错提醒:(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相。
高考数学压轴专题(易错题)备战高考《不等式》真题汇编含答案

数学《不等式》复习资料一、选择题1.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( ) A .[5,)+∞ B .[2,)+∞C .[1,)+∞D .[0,)+∞【答案】A 【解析】 【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫⎪⎝⎭,所以2Z x y =+的最大值为5,因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a的取值范围是5a ≤, 故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.2.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( )A .3B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.3.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.4.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5B 45C 5D 25【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.6.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.7.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C 【解析】 【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值.【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示:当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C. 【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.8.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( )A .{}13x x -≤<B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<<【答案】C 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð. 【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤.{}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C. 【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.9.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A B .1)C .D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案.【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-,当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.10.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >,则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.11.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项. 【详解】充分性:由余弦定理,2222cos c a b ab C =+-, 所以2ab c >,即222cos ab a b ab C >+-,整理得,2212cos a b C ab++>,由基本不等式,222a b ab ab+≥=,当且仅当a b =时等号成立, 此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯,故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立; 故p 是q 的充分不必要条件. 故选:A 【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.12.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.13.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -, 目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.14.已知x ,y 满足约束条件02340x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A .2B .12C .-2D .12-【答案】A 【解析】 【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A ,代入可构造方程求得结果. 【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z =-+经AOB V 区域时,当l 过点()2,0A 时,在y 轴上的截距最大, 即()2,0A 为最优解,42a ∴=,解得:2a =. 故选:A . 【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.15.已知正数x ,y 满足144x y+=,则x y +的最小值是( ) A .9 B .6C .94D .52【答案】C 【解析】 【分析】 先把x y +转化成114()4x y x y ⎛⎫+⋅+ ⎪⎝⎭,展开后利用均值不等式即可求解. 【详解】Q 正数x ,y 满足144x y+=, 11414149()14524444y x y x x y x y x y x y x y ⎛⎛⎫⎛⎫∴+=+⋅+=++++⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝…, 当且仅当4144y x x yx y⎧=⎪⎪⎨⎪+=⎪⎩,即34x =,32y =时,取等号.故选:C 【点睛】本题主要考查了基本不等式在最值问题中的应用,基本不等式一定要把握好“一正,二定,三相等”的原则,属于基础题.16.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤< B .{}01x x <<C .{}02x x ≤<D .{}02x x <<【答案】B 【解析】 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.17.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是 A .3 B .4 C .92D .112【答案】B 【解析】 【详解】解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥18.设x ,y 满足约束条件则的最大值与最小值的比值为( )A .B .C .D .【答案】A 【解析】 【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页/共4页
2019高考数学易错题集锦
同学们在高考数学复习时有一些低级错误一个不注意
就非常容易出现,下文高考数学易错题,希望考生们都能掌
握。
2019高考数学易错题集锦:
1.集合中元素的特征认识不明。
元素具有确定性,无序性,互异性三种性质。
2.遗忘空集。
A含于B时求集合A,容易遗漏A可以为空集的情况。比如
A为(x-1)的平方>0,x=1时A为空集,也属于B.求子集或真
子集个数时容易漏掉空集。
3.忽视集合中元素的互异性。
4.充分必要条件颠倒致误。
必要不充分和充分不必要的区别——:比如p可以推出q,
而q推不出p,就是充分不必要条件,p不可以推出q,而q
却可以推出p,就是必要不充分。
5.对含有量词的命题否定不当。
含有量词的命题的否定,先否定量词,再否定结论。
6.求函数定义域忽视细节致误。
根号内的值必须不能等于0,对数的真数大于等于零,等等。
7.函数单调性的判断错误。
这个就得注意函数的符号,比如f(-x)的单调性与原函数相
第2页/共4页
反。
8.函数奇偶性判定中常见的两种错误。
判定主要注意1,定义域必须关于原点对称,2,注意奇偶函
数的判断定理,化简要小心负号。
9.求解函数值域时忽视自变量的取值范围。
总之有关函数的题,不管是要你求什么,第一步先看定义域,
这个是关键。
10.抽象函数中推理不严谨致误。
11.不能实现二次函数,一元二次方程和一元二次不等式的相
互转换。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有
注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事
教育工作或是传授知识技术也或是某方面有特长值得学习
者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中
也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初
见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也
不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”
当然不是今日意义上的“教师”,其只是“老”和“师”的复合构
词,所表达的含义多指对知识渊博者的一种尊称,虽能从其
身上学以“道”,但其不一定是知识的传播者。今天看来,“教
师”的必要条件不光是拥有知识,更重于传播知识。
第3页/共4页
二次函数令y为0→方程→看题目要求是什么→要么方程大
于小于0,要么刁塔(那个小三角形)b的平方-4ac大于等于小
于0种种。
一般说来,“教师”概念之形成经历了十分漫长的历史。杨士
勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人
以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而
后历代对教师的别称之一。《韩非子》也有云:“今有不才之
子……师长教之弗为变”其“师长”当然也指教师。这儿的“师
资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其
实的“教师”,因为“教师”必须要有明确的传授知识的对象和
本身明确的职责。
12.比较大小时,对指数函数,对数函数,和幂函数的性质记
忆模糊导致失误。
13.忽略对数函数单调性的限制条件导致失误。
14.函数零点定理使用不当致误。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几
年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也
是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现
代化教学的今天,我们念了十几年书的高中毕业生甚至大学
生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早
在1978年就尖锐地提出:“中小学语文教学效果差,中学语文
毕业生语文水平低,……十几年上课总时数是9160课时,
第4页/共4页
语文是2749课时,恰好是30%,十年的时间,二千七百多
课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”
寻根究底,其主要原因就是腹中无物。特别是写议论文,初
中水平以上的学生都知道议论文的“三要素”是论点、论据、
论证,也通晓议论文的基本结构:提出问题――分析问题――
解决问题,但真正动起笔来就犯难了。知道“是这样”,就是
讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开
作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家
的事例,不参考作文书就很难写出像样的文章。所以,词汇
贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解
决这个问题,不能单在布局谋篇等写作技方面下功夫,必须
认识到“死记硬背”的重要性,让学生积累足够的“米”。
f(a)xf(b)