高考数学(理科)易错题汇总(含解析)

高考数学(理科)易错题汇总(含解析)
高考数学(理科)易错题汇总(含解析)

2020年高考理科数学模拟试题及答案(解析版) (14)

高三理科数学模拟试卷 一.选择题(每小题5分,满分60分) 1.“4n =”是1n x x ? ?+ ?? ?的二项展开式中存在常数项”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】 【分析】 计算二项展开式中存在常数项的等价条件,根据充分条件和必要条件的定义分别进行判断即可. 【详解】二项式 1n x x +()的通项为2110r r n r r r n r n n T C x C x r n x --+==≤≤()() 1n x x +()的二项展开式中存在常数项2n r n ?=?为正偶数 4n n =?Q 为正偶数, n 为正偶数推不出4n = ∴4n =是 1n x x +()的二项展开式中存在常数项的充分不必要条件. 故选A . 【点睛】以简易逻辑为载体,考查了二项式定理,属基础题. 2.关于函数()23 2 f x x = -的下列判断,其中正确的是( ) A. 函数的图像是轴对称图形 B. 函数的图像是中心对称图形 C. 函数有最大值 D. 当0x >时,()y f x =是减函数 【答案】A 【解析】 【分析】 判断函数为偶函数得到A 正确,B 错误 ,取特殊值,排除C 和D 得到答案. 【详解】()2 32f x x = -定义域为:{x x ,( )23 ()2 f x f x x -==- 函数为偶函数,故A 正确,B 错误

当x 且x 时,( )f x →+∞ ,C 错误 3 (1)3,(2)2 f f =-= ,不满足()y f x =是减函数,D 错误 故选A 【点睛】本题考查了函数的性质,意在考查学生对于函数性质的灵活运用. 3.已知向量a v 和b v 的夹角为3 π,且 2,3a b ==v v ,则(2)(2)aba b -+=v v v v ( ) A. 10- B. 7- C. 4- D. 1- 【答案】D 【解析】 【分析】 根据数量积的运算律直接展开 ()() 22a b a b -?+v v v v ,将向量的夹角与模代入数据,得到结果. 【详解】()() 22a b a b -?+=v v v v 2223?2a a b b +-v v v v =8+3cos 3a b πv v -18=8+3×2×3×12 -18=-1, 故选D. 【点睛】本题考查数量积的运算,属于基础题. 4.魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为π:4.若正方体的棱长为2,则“牟合方盖”的体积为( ) A. 16 B. C. 163 D. 128 3 【答案】C 【解析】 【分析】 由已知求出正方体内切球的体积,再由已知体积比求得“牟合方盖”的体积. 【详解】正方体的棱长为2,则其内切球的半径r 1=, ∴正方体的内切球的体积3 44V π1π33 =?=球 , 又由已知 V πV 4= 球牟合方盖 ,4416V ππ33 ∴=?=牟合方盖 . 故选C . 【点睛】本题考查球的体积的求法,理解题意是关键,是基础题.

高考数学压轴专题(易错题)备战高考《不等式》难题汇编含答案

新高考数学《不等式》练习题 一、选择题 1.设x ,y 满足10 2024x x y x y -≥?? -≤??+≤? ,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m 的最小值为( ) A . 125 B .125 - C . 32 D .32 - 【答案】B 【解析】 【分析】 先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】 解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r , 由a b ⊥r r 得20x m y +-=,∴当直线经过点C 时,m 有最小值, 由242x y x y +=??=?,得85 4 5x y ?=????=?? ,∴84,55C ?? ???, ∴416122555 m y x =-=-=-, 故选:B. 【点睛】 本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解. 2.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足 15150a S +=,则实数d 的取值范围是( )

A .[; B .(,-∞ C .) +∞ D .(,)-∞?+∞ 【答案】D 【解析】 【分析】 由等差数列的前n 项和公式转化条件得1 1322 a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】 Q 数列{}n a 为等差数列, ∴15154 55102 a d d S a ?=+ =+,∴()151********a S a a d +++==, 由10a ≠可得 1 1322 a d a =--, 当10a > 时,1111332222a a d a a ??=--=-+≤-= ??? 1a 时等号成立; 当10a < 时,1 1322a d a =--≥= 1a =立; ∴实数d 的取值范围为(,)-∞?+∞. 故选:D. 【点睛】 本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题. 3.已知关于x 的不等式()()2 22240m x m x -+-+>得解集为R ,则实数m 的取值范 围是( ) A .()2,6 B .()(),26,-∞+∞U C .(](),26,-∞?+∞ D .[)2,6 【答案】D 【解析】 【分析】 分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数 m 的取值范围. 【详解】

小学三年级数学易错题.较难题汇总

人教版三年级下 数学易错题、较难题汇总 复习建议: 1)看本学期我们完成的练习纸和作业本,原来的错题现在弄懂了吗? 2)根据查漏补缺的情况,说一说在答题时,要提醒自己注意什么? 3)再根据查漏补缺的情况,找相应的练习进行自主练习 4)最后,说一说你准备怎样做完成“卷子”后的检查? 实战演练: 一、填空 1、一个长方形的长是8厘米,宽是5厘米,它的面积是( 40)平方厘米;在这个长方形上剪下一个最大的正方形,正方形的面积是(25)平方厘米,剩下的长方形的面积是(15)平方厘米。 2、今年全年有(366)天,第一季度是(91)天。从今往后,第一个闰年是( 2016)年。 3、□73÷5,要使商是三位数,□里最小填(5),要使商是两位数,□里最大填(4)。 4、有两个完全相同的正方形,长10厘米,宽5厘米,如果拼成一个正方形,这个正方形的面积是(100)平方厘米,周长是(40)厘米。如果拼成一个长方形,这个长方形的面积是(100)平方厘米,周长是(50)厘米。(像类似这样的拼一拼、剪一剪等题目,要记得动手按要求画一画。) 二、选择

1、小明家的客厅和小芳家的客厅一样大,小明家客厅用了126块地砖,小芳家则铺了140块地砖,那么(A) A、小明家用的地砖大 B、小芳家用的地砖大 C、一样大 D、说不清 2、小明家客厅用了126块地砖,小芳家则铺了140块地砖,那么(D) A、小明家的客厅大 B、小芳的客厅大 C、一样大 D、说不清(说明:因为两家用的地砖每块大小不知道是不是一样大的,所以不能判断。)3、第一小组的学生称体重,最重的45千克,最轻的23千克,下面哪个数量有可能是这组学生的平均体重?(B)(说明:平均体重在45和23之间。) A、45千克 B、32千克 C、23千克 4、25×40积的末尾有(A)个0 。 A、3 B、2 C、1 (说明:25×4=100,别忘了原来因数末尾的0。) 5、周长是80米的正方形花坛,它的面积是(C)平方米 A、320 B、6400 C、400 (说明:要注意审题,这里的80是周长,所以要先求出边长:80÷4=20,再用边长×边长=面积,算出。) 6、两个数相除,余数是8,除数最小是(C) A、7 B、8 C、9 (余数比除数小,即除数要比余数大。) 7、852÷8的商(A)(中间有没有0,要看每个数位上的数够不够商1决定。) A、中间有0 B、中间没有0 C、末尾有0 8、704被7除,结果是(B)(通过判断商的位数即可判断。) A、10......4 B、100......4 C、1000 (4) 9、当A÷B=13……9时,B最小,A=(C) A、117 B、130 C、139 (说明:先判断B最小应该是10,再根据:商×除数+余数=被除数算出。)10、学校开设两个兴趣小组,三(1)班42人报名参加了活动,其中27人参加书画小组,24人参加棋艺小组,两个小组都参加的有( C )人。

2020年高考理科数学易错题《排列组合》题型归纳与训练

2020年高考理科数学《排列组合》题型归纳与训练 【题型归纳】 题型一 计数原理的基本应用 例1 某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有 A .3种 B .6种 C .9种 D .18种 【答案】 C . 【解析】 可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有 62312=?C C 种不同的选法;②A 类选修课选2门,B 类选修课选1门,有31322=?C C 种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C 【易错点】注意先分类再分步 【思维点拨】两类课程中各至少选一门,包含两种情况:A 类选修课选1门,B 类选修课选2门;A 类选修课选2门,B 类选修课选1门,写出组合数,根据分类计数原理得到结果. 题型二 特殊元素以及特殊位置 例 1 将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法有( )种.(用数字作答) 【答案】 480 【解析】考虑到C B A ,,要求有顺序地排列,所以将这三个字母当作特殊元素对待。先排F E D ,,三个字母,有12036 =A 种排法;再考虑C B A ,,的情况:C 在最左端有2种排法,最右端也是2种排法,所以答案是4804120=?种. 【易错点】注意特殊元素的考虑 【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,可以考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高. 题型三 捆绑型问题以及不相邻问题 例1 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是( )个.

四年级数学下册易错题阶段汇总合集

[易错题1] 王叔叔家养了350只鸡,每个笼子里装30只,需要准备多少个这样的笼子? 【错误解答】350÷30=11(个)……20(只) 答:需要准备11个这样的笼子。 【“病因”分析】这里出错的原因是把余下的20只鸡忽略了,余下的20只鸡需要再装一个笼子,这里应该准备12个笼子。 【正确解答】350÷30=11(个)……20(只) 11+1=12(个) 答:需要准备12个这样的笼子。 [易错题2] 小红、小林和小刚,一个星期一共练了630个大字,平均每人每天练多少个大字? 【错误解答】630÷3=210(个) 答:平均每人每天练210个大字。 【“病因”分析】这里出错是把一个星期是7天这个隐含的条件忽略了。 【正确解答】630÷3÷7=210÷7=30(个) 答:平均每人每天练30个大字。 [易错题3] 计算(842+421+421)×25,下面最简便的方法是()。 A.421×(4×25 ) B.842×(2×25 ) C.842×25+421×25+421×25 【错因分析】首先要明白(842+421+421)×25有多种简便计算方法,一个可以把421合并成842,另一个也可以把842拆分成421,而此题要求是最简便的方法,那么有的同学只想到简便没看清“最”简便就想当然选择B了。 【思路点睛】正确答案选择A,因为此题要求最简便。通过把842拆分成2个421,和题中已有的2个421合并成4个421,再根据乘法结合律把4和25先乘起来得100,这样就是最简便的方法了。B比起原题死算确实简便,但比起A来没有A更好算最简便。 [易错题4]

简便计算(100+2) ×45。 【错因分析】典型错误(100+2) ×45 =100×45+2 =4500+2 =4502 × 出现这种错误是由于学生对什么是乘法分配律本质内涵认识和理解不够。什么是乘法分配律?书上结论是这样陈述的:两个数的和与其中一个数相乘,可以先把这两个数分别与这个数相乘,再相加。也就是说不能只乘其中一个加数。上述案例中就只乘其中100这个加数,而另一个加数2就漏乘45了,导致出错。 【思路点睛】我们依据乘法分配律,把100和2这两个加数分别与45相乘,最后再把两个乘得的数相加。正确过程如下: (100+2) ×45 =100×45+45×2 =4500+90 =4590 [易错题5] 简便计算68×99。 【错因分析】 68×99 =68×(100+1) =68×100+68 =6800+68 =6868 × 该同学看到99想到100,把99先看作最接近的100这很好,但是忽略了简便计算的前提是等量代换,一个量须用与它相等的量去代替,才可以依次继续递等下去。把99替换成(100+1)这本身就建立在不公平基础上,所以不能向下递等,结果也不对等。 【思路点睛】两个数相乘,如果有一个数接近整百数,可以先将这个数转化成整百数加或减一个数的形式,再应用乘法分配律进行计算。正确过程如下: 68×99 =68×(100-1) =68×100-68 =6800-68 =6732

高三数学模考易错题汇总

高三数学模考易错题汇总 1、已知函数2()1f x ax x =-+,1,1(),111,1x g x x x x -≤-?? =-<

七年级上学期数学期中考试试卷 (典型易错题)

七年级上学期数学期中考试试卷 一、 选择题(每小题3分,共36分) 1、下列各组数中相等的是 ( )A 、-2与)2(-- B 、-2与2- C 、2-与2-- D 、2-与 2 2. 解方程63 x -=,正确的是( ) A .解:3x -= 6,得2x = B .解:6,3x -=得18x = C .解:3x -= 6,解2x =- D .解:6,3 x -=得18x =- 3、已知a 、b 都是有理数,且021=++-b a ,则a+b =( )A 、-1 B 、1 C 、3 D 、5 4、单项式22b a x 与y b a 3-是同类项,则y x 等于( )A 、-8 B 、8 C 、-9 D 、9 5. 小明和小刚从相距25.2千米的两地同时相向而行,小明每小时走4千米,3小时后两人相遇,设小刚的速度为x 千米/时,列方程得( ) A .4325.2x += B .3425.2x ?+= C .3(4)25.2x += D .3(4)25.2x -= 6、去括号后等于a-b+c 的是( )A 、 a-(b+c) B 、a+(b-c) C 、a-(b-c) D 、a+(b+c) 7、已知0122=--b a ,则多项式2422+-b a 的值等于( )A 、1 B 、4 C 、-1 D 、-4 8.已知a 是有理数,且|a|=﹣a ,则有理数a 在数轴上的对应点在( ) A .原点的左边 B .原点的右边 C .原点或原点的左边 D .原点或原点的右边 9、(2009?绍兴)将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”和“15cm” 分别对应数轴上的﹣3.6和x ,则( ) A .9<x <10 B .10<x <11 C .11<x <12 D .12<x <13 10、计算3)2(232-+-?的结果是( )A 、—21 B 、35 C 、—35 D 、—29 11、下列方程中,是一元一次方程的是 ( ) A .012=+-y x B .12 2=+y C .0122=-+x x D .42=y 12、某班分两组去两处植树,第一组22人,第二组26人。现第一组在植树中遇到困难,需第二组支援.问 第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人则可列方程 ( )A.26222?=+x B.()x x -=+26222 C.()x x -=+26222 D.()x -=26222 二、填空题(每小题3分,共24分) 13、太阳光的速度是300000000米/秒,用科学记数法表示为 米/秒,数字7.3482精确到0.01 是 。 14、已知a ,b ,c 的位置如图,化简:|a ﹣b|+|b+c|+|c ﹣a|= . 15.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB ,则线段AB 盖住的整点的个数是( ) A .2002或2003 B .2003或2004 C .2004或2005 D .2005或2006 16、规定一种关于a 、b 的运算:a*b=22b a -,那么3 *(-2)= 。 17、一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑 台 18、化简(x+y )- (x-y)的结果是 。 19、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。 20、根据题意列出方程:设某数为x ,某数的3倍与4的差等于10:__________ 。

2020-2021人教版数学五年级下册 易错题

一、选择 1.从正面看 ,看到的图形是( )。 A. B. C. D. 2.下面( )组图形通过旋转可以得到图形A 。 A .①② B .②③ C .③④ D .②④ 3.要使15x 是假分数,16 x 是真分数,x 是( )。 A .1 B .15 C .16 D .17 4.把3个相同的小长方体拼成1个15 cm 高的大长方体,表面积减少了48cm 2,那么原来1个小长方体的体积是( )cm 3。 A .180 B .120 C .60 D .36 5.分数单位是a 1(a 是大于或等于2的自然数)的最小假分数与最大真分数的差是 ( )。

A.0 B.1 C. a 1 D.a 2 6.一个正方体的木块,每个面上分别写着A 、B 、C 、D 、E 、F ,从不同方向观察如下,以下结论正确的是( )。 A. C 与D 相对 B .A 与E 相对 C .B 与F 相对 D .以上说法都对 7.暑假期间,芳芳和明明去图书馆,芳芳每4天去一次,明明每5天去一次,8月2日两人在图书馆相遇, ( )他们再次相遇。 A.8月18日 B.8月20日 C.8月22日 D.8月24日 8.一杯纯苹果汁,林老师喝了2 1杯后,觉得有些浓,然后加满水,又喝了半杯,再兑满水直至全部喝完。林老师一共喝了( )杯纯苹果汁。 A . 41 B .21 C .4 3 D .1 9.五(1)班共有45位学生。暑假期间有一个紧急通知,王老师需要尽快通知到每一位学生。如果用打电话的方式,每分钟通知1人,那么至少要花( )分钟才能全部通知到。 A .6 B .7 C .8 D .9 10.下面有( )道算式的结果一定不是奇数。 ①a+4 ②6a ③3a ④a 2 ⑤a+a A .2 B .3 C .4 D .5

四年级数学下册易错题汇总

一、填空 1、连接梯形各边的中点围成新的图形是() 2、一个三角形两条边是5厘米和三厘米,第三条边的长度可能是() 3、电动伸缩门是利用平行四边形的()性设计的。 4、等边三角形是特殊的()。 5、44×25=(11×4)×25=11×(4×25),这是根据()。 6、1100÷125÷8=11000÷(125×8)运用了() 7、一个立体图形,从正面看是)个小正方体。 8、用一根铁丝围成一个边长18厘米的正方形,那么用这个铁丝围成一个正三角形,边长是()厘米。 9、王大伯家的三角形菜地的两条边分别是5米和8米这个三角形菜地的第三条边可能是()米 10、有三种长度的小棒(长度分别是3cm、5cm、8cm)若干根,可以摆成()种不同的三角形 11、十分位上的“3”与十位上的“3”相差() 12、在0.08、0.080、0.008这三个小数中,计数单位相同,但大小不相等的两个数是()、() 13、把6改成以百分之一为计数单位的数是() 14、将一根15厘米的木棒截成三根整厘米的小棒来围成三角形,最长的一根小棒不能超过()

厘米 15、5吨50千克=()吨 1.2平方厘米=()平方分米 4.1公顷=()平方米 16、直角三角形的三条边分别是6厘米、8厘米、10厘米,这个直角三角形相互垂直的两条边分别是()() 17、观察1、2、3、6、12、23、44、X、164的规律,可知X= () 18、如果12=1×1,22=2×2,32=3×3.....252=25×25,且12+22+....252=5525,那么32+62+...+752=9×5525= 19、近似数是1.0,这个两位小数最小是(),最大是()。 20、甲、乙两数的和是264,把甲数的小数点向左移动一位,则两数相等。甲数()乙数()。 21、两个一样的三角形可以拼成()。两个一样的直角三角形可以拼成()()()。两个一样的等腰直角三角形可以拼成()()()。 22、等腰三角形的底角是顶角的2倍,顶角是()。 23、有3厘米、4厘米、5厘米、7厘米四根小棒,从中选3根搭成一个三角形,有()种不同的选法。 24、在一条长90米的小路两旁种树,如果两端都种,每相邻两棵树之间的距离是10米,可以种()棵。 25、要在五边形的水池边上摆上花盆,使每一边都有4盆,最少需要()盆。

高考数学压轴专题(易错题)备战高考《平面向量》全集汇编附解析

新数学《平面向量》试卷含答案 一、选择题 1.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r ( ) A .2133BA AC +u u u r u u u r B .2133BA A C -u u u r u u u r C .1233BA AC +u u u r u u u r D .4233BA AC +u u u r u u u r 【答案】A 【解析】 【分析】 连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】 解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E , 则()() 221121332333 OD BO BE BA BC BA BA AC BA AC ===?+= ++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A. 【点睛】 本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题. 2.已知正ABC ?的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ?u u u r u u u r 的值为( ) A .8 3 - B .1- C .1 D .3 【答案】B 【解析】 【分析】 由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】

由已知可得:7 , 又23 tan BED 3 BD ED ∠= == 所以22 1tan 1 cos 1tan 7 BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ?? ?=∠=-=- ??? u u u r u u u r u u u r u u u r ‖ 故选B . 【点睛】 本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题. 3.若向量a b r r ,的夹角为3 π ,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( ) A .1 2 - B . 12 C 3 D .3 【答案】A 【解析】 【分析】 由|2|||a b a b -=+r r r r 两边平方得22b a b =?r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ?+?=r r r ,即可得出答案. 【详解】 由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -?+=+?+r r r r r r r r . 即22b a b =?r r r ,也即22cos 3 b a b π =r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ?+=r r r ,即20t a a b ?+?=r r r . 所以222 1122b a b t a b ?=-=-=-r r r r r 故选:A

七年级上册数学 期末试卷易错题(Word版 含答案)

七年级上册数学 期末试卷易错题(Word 版 含答案) 一、选择题 1.下列说法错误的是( ) A .2的相反数是2- B .3的倒数是 13 C .3-的绝对值是3 D .11-,0,4这三个数中最小的数是0 2.已知23a +与5互为相反数,那么a 的值是( ) A .1 B .-3 C .-4 D .-1 3.在55?方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平 移方法是( ) (1)(2) A .先向下移动1格,再向左移动1格; B .先向下移动1格,再向左移动2格 C .先向下移动2格,再向左移动1格: D .先向下移动2格,再向左移动2格 4.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则 'DGC ∠的度数为( ) A .20° B .30° C .40° D .50° 5.如图所示的几何体的左视图是( ) A . B . C . D . 6.某数x 的43%比它的一半还少7,则列出的方程是( )

A .143%72x ??-= ??? B . 1 743%2 x x -= C .1 43%72 x x - = D .143%72 x - = 7.下列算式中,运算结果为负数的是( ) A .()3-- B .()3 3-- C .()2 3- D .3-- 8.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为 ( ) A .10 B .11 C .12 D .13 9.如图所示的几何体的左视图是( ) A . B . C . D . 10.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且a +b +c +d =6,则点D 表示的数为( ) A .﹣2 B .0 C .3 D .5 11.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300人次,数字48300用科学计数法表示为( ) A .44.8310? B .54.8310? C .348.310? D .50.48310? 12.2020的相反数是( ) A .2020 B .﹣2020 C . 1 2020 D .﹣ 1 2020 13.下列说法正确的是( ) A .如果ab ac =,那么b c = B .如果22x a b =-,那么x a b =- C .如果a b = 那么23a b +=+ D .如果 b c a a =,那么b c = 14.下列说法正确的是( ) A .两点之间的距离是两点间的线段 B .与同一条直线垂直的两条直线也垂直 C .同一平面内,过一点有且只有一条直线与已知直线平行

高考数学压轴专题(易错题)备战高考《计数原理与概率统计》难题汇编附答案解析

新数学《计数原理与概率统计》复习知识点 一、选择题 1.如图所示,线段BD 是正方形ABCD 的一条对角线,现以BD 为一条边,作正方形 BEFD ,记正方形ABCD 与BEFD 的公共部分为Ω(如图中阴影部分所示),则往五边形ABEFD 中投掷一点,该点落在Ω内的概率为( ) A . 16 B . 15 C . 14 D . 13 【答案】B 【解析】 【分析】 五边形ABEFD 的面积5 2S =,阴影Ω的面积为12 ,得到概率. 【详解】 不妨设1AB =,故五边形ABEFD 的面积15222 S = +=,阴影Ω的面积为1 2, 故所求概率为112 1 5 22 P = = +, 故选:B . 【点睛】 本题考查了几何概型,意在考查学生的计算能力和应用能力. 2.下列四个结论中正确的个数是 (1)对于命题0:p x R ?∈使得2 010x -≤,则:p x R ??∈都有210x ->; (2)已知2 (2,)X N σ:,则 (2)0.5P X >= (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为 ?23y x =-; (4)“1x ≥”是“1 2x x +≥”的充分不必要条件. A .1 B .2 C .3 D .4 【答案】C 【解析】

【分析】 由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】 由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ?∈使得 2010x -≤,则:p x R ??∈都有210x ->,是错误的; (2)中,已知( )2 2,X N σ ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所 以 (2)0.5P X >=是正确的; (3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质 和直线的点斜式方程,可得回归直线方程为?23y x =-是正确; (4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >, 所以“1x ≥”是“1 2x x +≥”成立的充分不必要条件. 【点睛】 本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 3.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A . 85 B . 65 C . 45 D . 25 【答案】B 【解析】 【分析】 由题意知,3~(5, )3X B m +,由3 533EX m =? =+,知3~(5,)5 X B ,由此能求出()D X . 【详解】 由题意知,3 ~(5, )3 X B m +, 3 533 EX m ∴=? =+,解得2m =, 3 ~(5,)5 X B ∴,

四年级下数学易错题整理

四年级下数学易错题整理(一) (加减法的意义和各部分间的关系;乘、除法的意义和各部分间的关系;加法 运算定律;乘法运算定律;简便计算) 一、填空。 1.___________________________的运算叫做加法。相加的两位数叫做_______,加 得的得数叫做________。 2.____________________________________________的运算叫做减法。 3._______+_______=和加数=_______-_______ 4.在减法中,已知的和叫做__________,_________是加法的逆运算。 5.减法各部分间的关系:被减数=_________+ __________,______=被减数-差,差 =________+________。 6.一箱可乐12瓶,军军买了4箱用了144元,每瓶可乐_________元。 7.李奶奶家养了96只白兔,养灰兔的只数是白兔的一半,李奶奶家一共养了______ 只白兔和灰兔。 8.甲数比乙数多15,乙数比丙数多12,甲数比丙数多______。 9.由2、3、6组成的最大三位数加上最小的三位数减去60的差,结果为_____。 10.求几个_____________________的和的简便运算叫做乘法。

11.相乘的两个数叫做_________,乘得的数叫做________。 12.在除法中,已知的积叫做__________,除法是___________的逆运算。 13.乘除法之间的关系:因数×因数=_______,因数=_________÷另一个因数,被除 数÷_______=商,除数=________÷_______,被除数=________×_______。 14.我们学过的加、减、乘、除四种预算统称_____________。 15.一个数加上0等于___________,一个数和0相乘仍得_______,0除以一个 _____________,还得0。 16.123-[(18+36)÷9]计算时,先算_____法,再算______法,最后算_______法。 17.减法是_______的逆运算,除法是________的逆运算。 18.把850÷5=170,170×10=1700,3580-1700=1880,列成综合算式是 _______________________。 19.一种羽毛球拍48元,比一副乒乓球拍贵28元,如果各买一副,一共需要_______ 元。 20.把65-62=3,15×3=45,112+45=157列成一道综合算式是 __________________________。 21.两个数_________,交换_______的位置,_______不变,这叫做加法的交换律。 可以表示为_______+________=________+_________。

高考数学易错题举例解析

咼考数学易错题举例解析 高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。也就是在转化过程中,没有注意转化的等价性,会经常出现错误。本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。加强思维的严密性训练。 ?忽视等价性变形,导致错误。 x>0 y>0x + y>0 xy>0 , 但 x>1 y>2 与 x + y>3 xy >2 不等价。 【例1】已知f(x)x =ax + -b,若3f(1) 0, 3 f (2) 6,求f (3)的范围。 3 a b0① 错误解法由条件得b 32a 26② ②X 2 —① 6 a15③ ①X 2—②得8 b2④ 3 33 ③+④得10 3a b43 J 即 10 —f(3) 43 33333 错误分析采用这种解法,忽视了这样一个事实:作为满足条件的函数f(x) ax -,其值是同时 b 受a和b制约的。当a取最大(小)值时,b不一定取最大(小)值,因而整个解题思路是错误的。 f⑴ a b 正确解法由题意有 b 、解得: f(2)2a - 2 1 a §[2f(2)f (1)],b j[2f(1) f(2)], f (3) 3a b 16 f(2) 5 -f (1). 16 37 把f (1)和f (2)的范围代入得一f (3) 3 99 3 3 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。只有牢固地掌握基础知识,才能反思性地看问题。 ?忽视隐含条件,导致结果错误。 【例2】 2 2 2

⑴设、是方程x 2kx k 6 0的两个实根,则(1) ( 1)的最小值是 49 十亠亠 (A) (B) 8 (C) 18 (D)不存在 4

中考数学专题汇总试卷易错题

中考专题 错题集 一、选择题: 1.下列说法正确的个数是( ) ①一个数的绝对值的相反数一定是负数;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④互为相反数的两个数的绝对值一定相等;⑤任何一个有理数一定不大于它的绝对值。 A.5个 B.4个 C.3个 D.2个 2.如果│a+b │=│a │+│b │成立,那么( ) A.a,b 同号 B.a,b 为一切有理数 C.a,b 异号 D.a,b 同号或a ,b 中至少有一个为零 3.数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长2013cm 的线段AB,则线段AB 盖住的整点共有的个数为( ) A.2011或2012 B.2012或2013 C.2013或2014 D.2014或2015 4.用四舍五入法把0.06097精确到千分位的近似值的有效数字是( ) A.0,6,0 B.0,6,1,0 C.0,6,1 D.6,1 5.已知abc >0,a >c,ac <0,下列结论正确的是( ) A.a<0,b<0,c>0 B.a>0,b>0,c<0 C.a>0,b<0,c<0 D.a<0,b>0,c>0 6.如果a,b 互为相反数,那么下面结论中不一定正确的是( ) A.0=+b a B.1-=b a C.2 a a b -= D.b a = 7.若a a -=-22,则数a 在数轴上的对应点在( ) A.表示数2的点的左侧 B.表示数2的点的右侧 C.表示数2的点或表示数2的点的左侧 D.表示数2的点或表示数2的点的右侧 8.一个有理数的平方是正数,则这个数的立方是( ) A.正数 B.负数 C.正数或负数 D.奇数 9.若A 与B 都是二次多项式,则A-B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有( )个. A.5 B.4 C.3 D.2 10.已知a+b+c=0,则代数式(a+b )(b+c )(c+a )+abc 的值为( ) A.-1 B.1 C.0 D.2 11.任选一个大于-4的负整数填在□里,任选一个小于3的正整数填在◇里,对于“□+◇”运算结果为负数的情况有( )种. A.2种 B.3种 C.4种 D.5 12.若|m|=3,|n|=7,且m-n >0,则m+n 的值是( ) A.10 B.4 C.-10或-4 D.4或-4 12.若M=3 -5x+2,N=2 -4x+1,则M,N 的大小关系( ) A.M >N B.M=N C.M <N D.以上都有可能 13.设a 是最小的自然数,b 是最大的负整数,c,d 分别是单项式-xy 2 的系数和次数,则a,b,c,d 四个数的和是( ) A.-1 B.0 C.1 D.3 14.对任意实数y ,多项式2 -10y+15的值是一个( ) A.负数 B.非负数 C.正数 D.无法确定正负 15.若多项式y 2 +(m-3)xy+2 是三次三项式,则m 的值 为( ) A.-3 B.3 C.3或-3 D.2 16.当k 取( )时,多项式x k x y y x y 223313 8 --+-中不含xy 项( ) A. 0 B. 13 C. 19 D. - 19 17.若a 、b 、c 是三角形三边长,则代数式ab c b a 2222--+的值( ). A.>0 B.<0 C.0≥ D.0≤

高考数学压轴专题(易错题)备战高考《计数原理与概率统计》真题汇编

【最新】《计数原理与概率统计》专题解析 一、选择题 1.某产品的广告费用x 与销售额y 的统计数据如下表: 根据上表可得回归方程???y bx a =+中的?b 约等于9,据此模型预报广告费用为6 万元时,销售额为( ) A .54万元 B .55万元 C .56万元 D .57万元 【答案】D 【解析】 试题分析:由表格可算出1(1245)34x = +++=,1 (10263549)304y =+++=,根据点(),x y 在回归直线???y bx a =+上,?9b =,代入算出?3a =,所以?93y x =+,当6x =时,?57y =,故选D. 考点:回归直线恒过样本点的中心(),x y . 2.设某中学的女生体重y (kg )与身高x (cm )具有线性相关关系,根据一组样本数 (),i i x y ()1,2,3,,i n =L L ,用最小二乘法建立的线性回归直线方程为 ?0.8585.71y x =-,给出下列结论,则错误的是( ) A .y 与x 具有正的线性相关关系 B .若该中学某女生身高增加1cm ,则其体重约增加0.85kg C .回归直线至少经过样本数据(),i i x y ()1,2,3,,i n =L L 中的一个 D .回归直线一定过样本点的中心点(),x y 【答案】C 【解析】 【分析】 根据回归直线方程的性质和相关概念,对选项进行逐一分析即可. 【详解】 因为0.850k =>,所以y 与x 具有正的线性相关关系,故A 正确; 该中学某女生身高增加1cm ,则其体重约增加0.85kg ,故B 正确; 回归直线一定过样本点的中心点(),x y ,回归直线有可能不经过样本数据,

相关文档
最新文档