发电机转子匝间短路故障分析及处理方法

合集下载

双馈风力发电机转子匝间短路故障分析

双馈风力发电机转子匝间短路故障分析
收 稿 日期 :2 1 02—0 0 。 5— 3
基金项 目:国家 自然科学基金 资助项 目 ( 100 9I 5 17 3 : 。 作者简介 :李和明 (9 7一 ,男 ,教授 ,博 士生导师 ,主要研究 方 向为 交流 电机及 其系 统分析 与监控 ,电机 节能及 控制技 15 ) 术 ,电气设备状态检测与故障诊断 ,通信作者 :李 爽 ,E m i 7 7 64 @q .cr , - a :62 9 37 q o l n
蛳 群 膨 联脯镪 y 雕 净 l 《 £ : 》 0 Y
第2 8卷第 6期
21 0 2年 6月







Vc . 8. . 1 一 2 No 6

Elc r c Po e c e c e t i w r S i n e and Engi e i ne rng
Jn ,0 2 u .2 1
双 馈 风 力 发 电机 转 子 匝 间 短 路 故 障 分 析
李和 明,李 爽 ,李永 刚,王成 勇
( 华北 电力大学 电气 与电子工程学 院 ,河北 保定 0 10 ) 7 0 3 摘要 :双馈 式风力发电机转子绕组发生轻微 匝间短路后 ,该极磁 动势将发 生 变化 ,气隙磁 密分布不再 对 称 ,不对称的磁 密分布将在 定子绕组 内感应 附加谐波 电动势 ,形成 附加 的谐 波 电流 。因此,可以通过 分
性 有 着 重要 的意 义

文献 [ ]认 为在 多极 水 轮 发 电机 或 4极 汽 轮发 电 7
现 阶段 对 风 力 发 电 系 统 故 障 的 研 究 ,国 内 外 机上 ,定 子 环 流 的 谐 波 成 分 还 与 电机 的 极 对 数 和 的很 多 专家 都 集 中在 对 风 力 发 电 机 传 动 系 统 、液 定 子绕 组 的联 结 方 式 有 关

发电机转子绕组匝间短路的故障分析

发电机转子绕组匝间短路的故障分析
用于发 电机 转 子 绕 组 匝 间 短 路 故 障 的分 析 与 计
算 。 本 文 以文献 [ ] 6 的交 流 电 机 多 回路 理论 为 基
做出预报 , 不仅可 以避免恶性事故带来 的经济损 失 , 有 利 于 机 组 安 排 检 修 , 高 故 障 处 理 效 还 提 率 ¨ 。因此 发 电机 转 子 绕 组 匝 问短 路 故 障 的早
Fa l u tAnay i fI e - r S r r u ti t r W i i fGe r t r l ss o ntr- Tu n ho tCic i n Ro o nd ng o ne a o
JA u - Y N u n n ING Y n e, A GX a g, Z A h o r H NG C a ( o eeo lc i l n fr t nE gneig N vl nvr t o nier g Wu a 3 0 3 hn ) C l g f etc dI o i n ier , aa U ie i f g ei , h n4 0 3 ,C ia l E r a a n ma o n sy E n n
Q =一∑M,・ +∑M} i+ s i Q s d・ Q d
=1 d=l
Mf ・f +Mf ・ f l i c l 【 k il l k
() 1
式 中 :— — 微分算 子 ; p Q砂 、 —— 该 回路 的电压 、 、 Qi Q 磁链 和 电流 ;
m 。

和 FT— S

行 计 算 、 析 , 可 以计 及气 隙磁 场 空 间谐 波 、 分 并 定
旦故 障恶 化 , 导 致 转 子 一 点甚 至两 点 接 地 等 会
恶 性故 障 的发 生 , 得被 迫停 机 检修 , 使 造成 巨大经

汽轮发电机转子匝间短路问题检测处理浅析

汽轮发电机转子匝间短路问题检测处理浅析

汽轮发电机转子匝间短路问题检测处理浅析汽轮发电机转子匝间短路问题是发电机运行过程中常见的故障之一。

转子匝间短路会导致发电机运行不稳定,甚至损坏发电机设备,因此及时检测和处理转子匝间短路问题非常重要。

本文将对汽轮发电机转子匝间短路问题进行浅析,探讨其检测和处理方法。

一、转子匝间短路问题产生的原因汽轮发电机转子匝间短路问题主要是由于以下几个原因导致的:1. 绝缘老化:发电机运行时间长了,绝缘材料会逐渐老化,导致绝缘性能下降,从而引发匝间短路问题。

3. 维护保养不当:发电机的日常维护保养工作不到位,导致发电机内部积灰、积水,加速了绝缘老化,从而引发匝间短路问题。

以上原因都可能导致发电机转子匝间短路问题的产生,因此在日常运行和维护工作中,需要加强对发电机的监测和维护,及时发现并解决潜在的问题。

为了及时检测发电机转子匝间短路问题,可以采用以下几种方法进行检测:1. 绝缘电阻测试:通过测试发电机转子绕组的绝缘电阻来判断绝缘状况。

当绝缘电阻值低于一定数值时,即可判断存在匝间短路问题。

2. 高压测试:利用高压测试仪对发电机绕组进行高压测试,通过观察绝缘是否击穿来判断绝缘状况。

3. 激磁测试:在发电机开机运行时,对发电机进行激磁测试,观察发电机转子匝间是否存在异常放电现象,以判断是否存在匝间短路问题。

以上方法都是常用的发电机转子匝间短路问题的检测方法,可以根据实际情况选择合适的方法进行测试,及时发现问题并进行处理。

一旦发现发电机存在转子匝间短路问题,需要及时进行处理,以避免进一步损坏设备。

处理方法主要包括以下几个方面:1. 绝缘处理:对发电机的绕组进行绝缘处理,修复匝间短路问题。

可以采用涂覆绝缘漆、更换绝缘材料等方法进行绝缘处理。

2. 清洁维护:加强发电机的日常清洁维护工作,避免灰尘、水分等对绝缘材料的影响,减缓绝缘老化速度。

3. 温湿度控制:加强对发电机运行环境的温湿度控制,避免高温、高湿度环境加速绝缘老化。

通过以上处理方法,可以有效解决发电机转子匝间短路问题,保证发电机的正常运行和设备的长期稳定性。

600MW机组发电机转子匝间短路分析与处理

600MW机组发电机转子匝间短路分析与处理

600MW机组发电机转子匝间短路分析与处理摘要:600MW级火力发电机组由于发电机容量大,转速高,如果在设计和制造上存在不足,或者运行检修工艺不当,则转子出现问题几率就比较大。

转子绕组出现的问题主要有接地、开路和匝间短路等故障,其中转子绕组的匝间短路故障占有非常大比例。

轻微的转子匝间短路故障在开始阶段对发电机运行影响不大,但如果发展成严重的匝间短路后,会使励磁电流增大,线棒过热会导致变形,限制发电机无功功率,电压波形畸变,有时还会增加机组的振动幅值,甚至被迫停机,故障的进一步发展会造成短路点局部过热会使绝缘烧毁接地、护环烧坏、大轴磁化,甚至造成转子烧损事故。

因此完善优化设计、改进制造和检修工艺尽可能避免在非正常工况下长期运行,就成为保障大型发电机组安全可靠运行的前提。

近几年国家大力推进风电、光伏等新能源发电,电网对火力发电企业设备的可靠性、灵活性提出更高要求,频繁调频、调峰对大型火力发电机组安全运行的影响愈发明显。

由东方电气制造的QFSN-1000-2-27型发电机目前在我国火力发电机组建设当中得到了广泛的应用,因此通过对QFSN-1000-2-27型发电机的转子匝间短路故障进行总结分析将对同型号发电机在的安全运行具有十分重要的意义。

关键词:600MW机组;发电机转子;匝间短路;判断处理1.发电机概述QFSN-1000-2-27型汽轮发电机为汽轮机直接拖动的隐极式、二机、三相同步发电机。

发电机采用水氢氢冷却方式,配有一套氢油水控制系统,采用静止可控硅,基端变自励方式励磁,并采用端盖式轴承支撑。

转子绕组采用具有良好的导电性能、机械性能和抗蠕变性能的含银铜线制成。

发电机转子绕组共有32槽,分为Ⅰ、Ⅱ两极共计16组绕组,转子每槽线匝数为4x1+7x7。

每匝铜排尺寸为46.4x7.9mm,转子匝间绝缘厚度为0.33mm。

匝与匝之间采用了复合绝缘材料进行隔离。

1.故障发生过程某公司1000MW该型号汽轮发电机在投运一个月后,转子出现动态匝间短路现象,就地匝间短路在线监测装置发出短路报警信号。

汽轮发电机转子匝间短路问题检测处理浅析

汽轮发电机转子匝间短路问题检测处理浅析

汽轮发电机转子匝间短路问题检测处理浅析在汽轮发电机中,转子匝间短路问题是一种常见的故障。

这种故障会导致发电机输出功率下降,甚至会引起发电机的过热和停机。

及时检测和处理转子匝间短路问题至关重要。

转子匝间短路问题通常通过以下几个方面来检测和处理。

可以通过观察发电机的运行状态来初步判断是否存在转子匝间短路问题。

如果发电机的输出功率明显下降,同时伴随着异常的声音、震动和发热等现象,那么很可能存在转子匝间短路问题。

可以通过测量发电机的绕组电阻来确认转子匝间短路问题。

如果发现某些绕组的电阻值明显偏低,或者存在不对称的电阻分布,那么可能存在转子匝间短路问题。

还可以使用绝缘电阻测试仪对发电机的绝缘状况进行检测。

转子匝间短路问题通常会导致绝缘电阻值下降,甚至出现接地现象。

通过绝缘电阻测试仪测量绕组之间及绕组与地之间的电阻值,可以初步判断是否存在转子匝间短路问题。

一旦确认存在转子匝间短路问题,就需要及时处理。

通常采用的方法是对发电机进行清洗和修复。

可以使用专业的清洗剂对发电机进行彻底的清洗,以去除转子匝间短路产生的污垢和积碳。

然后,对发电机的绕组进行修复,包括修复绕组的电气绝缘性能和电阻值。

还可以采取一些预防措施,以避免转子匝间短路问题的发生。

定期对发电机进行检查和维护,及时发现和处理潜在的问题。

保持发电机周围的清洁和干燥环境,避免灰尘和湿气对发电机的影响。

合理使用发电机,避免过载和长时间运行,以减少转子匝间短路的发生概率。

转子匝间短路问题是汽轮发电机常见的故障之一,通过观察运行状态、测量电阻和使用绝缘电阻测试仪等方法可以检测该问题。

对于发现的转子匝间短路问题,需要及时进行清洗和修复。

还应该采取预防措施,以避免该问题的发生。

这样可以保证发电机的正常运行和输出功率的稳定。

汽轮发电机转子匝间短路问题检测处理浅析

汽轮发电机转子匝间短路问题检测处理浅析

汽轮发电机转子匝间短路问题检测处理浅析1. 引言1.1 概述汽轮发电机是一种常见的发电设备,其转子是发电机的关键部件之一。

在汽轮发电机运行过程中,常常会出现转子匝间短路问题,这可能会导致设备损坏和事故发生。

对汽轮发电机转子匝间短路问题的检测和处理显得尤为重要。

本文将从汽轮发电机转子匝间短路问题的检测方法、处理方法、预防措施以及其他相关问题的处理等方面进行探讨。

我们将介绍目前常用的转子匝间短路问题的检测方法,包括传统的检测技术和先进的无损检测技术。

然后,我们将讨论匝间短路问题的处理方法,包括维修和更换转子等方面。

接着,我们将探讨一些可行的预防措施,以减少匝间短路问题的发生。

我们还将讨论一些与匝间短路问题相关的其他问题的处理方法,以提高设备运行的安全性和可靠性。

通过对汽轮发电机转子匝间短路问题的检测、处理、预防和其他问题的分析,可以更好地了解该问题的本质,并提出有效的解决方案。

我们也将通过案例分析的方式来深入探讨实际问题的解决过程,为今后类似问题的处理提供借鉴。

2. 正文2.1 汽轮发电机转子匝间短路问题的检测方法1. 绝缘测试:使用绝缘电阻测试仪对转子的匝间绝缘进行检测,确保绝缘电阻符合要求。

2. 高频电压法:通过向匝间施加高频电压,检测匝间是否存在短路问题。

3. 热敏电阻法:利用热敏电阻在电热作用下的电阻变化特性,检测匝间是否存在热点问题。

4. 视觉检查:通过目视检查转子的表面,查找是否有烧焦、变色等异常情况,以判断是否存在匝间短路问题。

5. 开路测试:通过在匝间施加开路信号,观察匝间的响应情况,以判断是否存在短路问题。

以上是常见的汽轮发电机转子匝间短路问题的检测方法,结合多种方法可以更全面地检测转子的匝间状况,确保设备的正常运行和安全性。

2.2 匝间短路问题的处理方法1. 检修法:当发现汽轮发电机转子匝间短路问题时,首先需要进行检修。

检修包括对发电机的内部结构进行检查,确保匝间短路问题的具体位置和程度。

发电机转子匝间短路故障分析与诊断

发电机转子匝间短路故障分析与诊断

发电机转子匝间短路故障分析与诊断发布时间:2021-06-25T02:55:40.638Z 来源:《中国电业》(发电)》2021年第6期作者:徐东东[导读] 发电机是电能生产的重要设备,它为整个电力系统提供电能,是整个电网的心脏,因此如果发电机发生故障,可能会导致局部停电甚至整个电网的崩溃,发电机转子作为发电机的重要组成部分,主要由励磁绕组线圈,线圈引线以及阻尼绕组等部分组成,发电机运行时,由于转子处于高速旋转状态,这些部件将受到很大的机械应力和热负荷,若超过其极限值时将导致部件的损坏。

淮南电力检修有限责任公司风台项目部安徽省淮南市 232100摘要:随着我国国民经济的迅速发展,电力工业正处于大电机和大电网的发展阶段。

人们的生活和生产水平迅速提高,使得电能需求量日益增长,进而对电力系统的供电质量、可靠性及经济性等指标的要求也不断提高。

关键词:发电机;转子;绕组1.1引言发电机是电能生产的重要设备,它为整个电力系统提供电能,是整个电网的心脏,因此如果发电机发生故障,可能会导致局部停电甚至整个电网的崩溃,发电机转子作为发电机的重要组成部分,主要由励磁绕组线圈,线圈引线以及阻尼绕组等部分组成,发电机运行时,由于转子处于高速旋转状态,这些部件将受到很大的机械应力和热负荷,若超过其极限值时将导致部件的损坏。

转子绕组是发电机经常出现故障的部位,除本体故障外,主要是转子绕组的短路故障如匝间短路,一点接地短路,两点接地短路等,发电机正常运行时,转子绕组对地之间会有一定的分布电容和绝缘电阻,绝缘电阻值通常大于1兆欧,但是因某种原因导致对地绝缘损坏或绝缘电阻严重下降时,就会发生转子绕组接地事故,当发电机转子发生一点接地故障时,因为励磁电源的泄露电阻很大,一般不会造成多大的伤害,限制了接地泄露电流的数值,但是当发电机转子发生两点接地故障时将会产生很大的电流,经故障点处流过的故障电流会烧坏转子本体,而部分转子绕组的短接,历次绕组中增加的电流可能会导致转子因过热而烧坏气隙磁通也会失去平衡,从而引起发电机的震动。

汽轮发电机转子匝间短路问题检测处理浅析

汽轮发电机转子匝间短路问题检测处理浅析

汽轮发电机转子匝间短路问题检测处理浅析汽轮发电机转子匝间短路问题是发电机运行过程中比较常见的故障之一,如果不及时检测和处理,可能会导致发电机失效甚至事故发生。

因此,在发电机的运行维护中,对于转子匝间短路问题,需要及时进行检测和处理。

本文就针对这个问题,对其进行浅析。

一、转子匝间短路的成因转子匝间短路是指发电机转子上的同一段导体之间出现短路现象,它可能源于铜导条表面氧化、锈蚀、损坏、接触不良等问题,也可能是因为杂质进入导槽或者槽间绝缘不良导致。

除此之外,转子匝间短路的成因还可能与以下因素有关:1. 转子转速过高或运行时间过长,导致铜的疲劳损伤及热应力引起。

2. 转子因机械失衡或振动过度,导致铜板受到剪切力,从而引起匝间短路。

3. 发电机运行时,负荷变化、电压过高或过低等因素,也都可能造成转子匝间短路故障。

对于转子匝间短路问题的检测,首先需要采取非接触式检测手段,利用变压器缺陷诊断仪或高频信号发生器等工具,进行感应磁场测量,以检测是否有异物进入转子内部,导致匝间短路和绝缘损坏等情况。

具体实施时,可先将发电机转速提高到一定数值,然后使用非接触式检测仪器在转子表面扫描,检测转子上是否有异物或匝间短路等存在。

若存在匝间短路,利用高速相依波分析仪、一次流波分析仪等工具进一步加以确认,以便进行有效处理。

如果已经检测到转子匝间短路的存在,那么需要及时进行处理,以免扩大故障。

具体处理措施如下:1. 对于铜导条表面氧化、锈蚀、损坏的问题,应及时进行清洗、修复或更换。

2. 对于杂质进入导槽或槽间绝缘不良的问题,应及时清理和维修。

3. 对于转子因机械失衡或振动过度造成的匝间短路问题,应加强机械维护和动平衡控制。

总之,要想有效地解决转子匝间短路问题,需要采取综合措施,包括增强维护意识、加强设备检测和维修工作、加强机械维护等方面。

只有这样,才能保证发电机的正常运行和使用寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发电机转子匝间短路故障分析及处理方法【摘要】转子绕组发生匝间短路,严重者将影响发电机的安全运行。

因此,必须通过试验找出短路点,并予以消除,使发电机恢复正常运行。

本文以我厂的#2发电机匝间短路故障为例,综合应用多种方法,分析和判定了绕组存在的匝间短路故障。

【关键词】发电机;转子;匝间短路;分析;处理
一、发电机转子匝间短路的危害﹑原因及分类
当转子绕组发生匝间短路时,严重者将使转子电流增大﹑绕组温度升高﹑限制发电机的无功功率;有时还会引起机组的震动值增加,甚至被迫停机。

因此当发生上述现象时,必须通过试验找出匝间的短路点,并予以消除,使发电机恢复正常运行。

发电机转子绕组产生匝间短路故障的原因很多,归纳起来大致有:
1.结构设计不合理。

如匝间采用衬垫绝缘时,端部铜线侧面裸露,当运行中积灰和着落油垢后,会造成匝间短路。

2.制造工艺不良,如在转子绕组下线、整形等工艺过程中,损伤了匝间绝缘;或绝缘材料中存在有金属性硬粒,刺穿了匝间绝缘造成匝间短路。

(如铜线有硬块,毛刺都会损伤匝间绝缘。


3.运行中在电、热和机械等综合应力作用下,绕组产生残余变形﹑位移,致使匝间绝缘断裂﹑磨损﹑脱落或由于赃污等,造成匝间短路。

4.运行年久,绝缘老化,也会造成匝间短路。

转子绕组的匝间短路,按其短路的稳定性,可分为稳定和不稳定两种。

所谓稳定的匝间短路是指这种短路与转子的转速和温度等均无关。

而不稳定的匝间短路,则与转子的转速和温度等有关,也即在高转速、低转速、高温或低温时才发生短路,或者在转速和温度同时作用下,才能出现短路。

二、匝间短路故障的最初发现
在1997年,我厂#2发电机大修时,按规程规定,进行了转子规定项目的试验。

1.现行试验标准和规程规定,发电机在交接或大修时都应对转子绕组的直流电阻进进行测量。

用双桥法测得转子直流电阻 rdc= 0.3408ω(注:已换算到20°c,以后的数值无特殊说明,均为已换算后的),和历史数据相比,降低了0.23% 。

转子绕组存在匝间短路时其直流电阻会减小。

测量结果与基值或历次测量值比较有较大的变化时,应查明原因。

2.测量交流阻抗和功率损耗:发现所测结果和历史数据比较,交流阻抗和功率损耗也发生了变化。

而“测量转子绕组的交流阻抗和功率损耗,与原始或前次的测量值比较,是判断转子绕组有无匝间短路比较灵敏的方法之一。

这是因为当绕组中发生匝间短路时,在交流电压下,流经短路线匝中的短路电流,约比正常线匝中的电流大n(n为一槽线圈总匝数)倍,其方向与正常匝的电流方向相反,它有着强烈的去磁作用,并导致交流阻抗大大下降,功率损耗却明显增加。

”(见《高压电气设备试验方法》296页)本次测量的交
流阻抗比1991、1994年的值均下降8.7%,功率损耗增加了10.7%,变化明显。

3.分析:测量直流电阻,当转子绕组只有1-2匝短路时,其电阻变化很小,一般均小于1%,仅通过直流电阻的变化,不能确定是否有匝间短路。

故此方法只有在短路匝数较多时方能奏效。

交流阻抗和功率损耗法因接线简便,测试的灵敏度较高等优点,而为现场广泛采用。

但此方法因受多种因素影响,常常降低其试验结果的准确度,如试验时施加电压的大小,转子所处位置﹑电源频率﹑短路点接触电阻及短路线匝在槽内所处位置等。

虽然我们已经在试验中将这些因素的影响缩减到最小程度,但此法也不足以最后判定是否存在着匝间短路。

为了进一步确认是否有匝间短路,使用了功率表向量投影法和相位法,结合这两种方法进一步综合判断。

4.功率表向量投影法:单开口变压器原理是,对转子绕组施加交流电压,则形成转子绕组相当于原绕组,开口变压器的绕组相当于副绕组的感应系统。

如被测转子线槽无匝间短路,则同一极面下各槽测得的感应电势和相位应基本相同。

试验时,对转子绕组滑环施加电压后,将单开口变压器bsbs在转子本体槽齿上逐槽移动,在每一槽齿上将bs所测得的电流通入功率表w,并用开关k切换三次不同的线电压至功率表,测得三个功率值,然后将其投影在对称平衡的三相线电压相量图上,分别在各电压向量上取值,并做出垂直于相应电压向量的垂线,三垂线相
交得p点,op即为所求的该槽线圈的综合向量, 绘出转子绕组各槽线圈的综合向量。

当转子绕组无匝间短路时,各槽线圈的综合向量的幅值和相角基本一致,若某槽线圈有匝间短路时,则该线圈的幅值和相角将发生变化。

据此,分析各槽线圈的综合相量,即可判断转子绕组有无匝间短路。

转子绕组第10槽和第23槽属同一匝,所做的向量与其他槽相位比较发生了较明显的变化,说明第10、23槽存在匝间短路。

5.相位法:开口变压器感应电势的数值和相角,在线圈有匝间短路的对应槽会有变化。

相位角的获得采用了双踪示波器,转子加压为100v,为消除干扰,使用了保护隔离变压器(220v/
6.3v)。

由实验数据分析,转子绕组第10槽和第23槽属同一匝,所测数据及幅角与其它槽正好相反,说明存在匝间短路。

6.综合分析:综合以上测试结果,确实存在匝间短路。

“转子绕组匝间短路对发电机来讲是一种常发性的缺陷,对有些机组来讲,存在轻微性的匝间短路故障,并不影响机组正常运行。

”通过对直流电阻、交流阻抗、功率损耗测试结果的定量分析,并考虑未影响发电机的出力的实际情况。

分析认为,匝间短路并不严重,可以继续使用,但在运行中应加强监视。

经请示领导同意,决定继续运行。

三、匝间短路故障的最终处理
到了2002年,发电机经过了5年的正常运行,未发现重要数据的明显变化,说明最初的分析基本正确。

2002年5月, #2发电机组要进行大修。

利用此次大修,找到
并根除#2机转子绕组的匝间短路故障。

大修前,我们继续分别测量了直流电阻﹑交流阻抗﹑功率向量投影﹑和相位角,从所测得的具体数值发现,匝间短路有进一步恶化的迹象。

在厂家(哈尔滨汽轮机厂)来人的指导和配合下,取下了转子两端的护环,想先通过测量交流分包压降,再一次确定匝间短路的具体匝数。

测分包压降前,测量外环对极中间连线整体电压降为103v,内环对极中间连线整体电压降为109v。

我们发现,本应基本相等的数据出现了6v的差值,匝间短路很可能出现在外环对极中间部分。

分析数据可以看出,因长度的不同,从小包到大包,电压呈现均匀增大的趋势,但对应的23-10槽,电压数却出现了异常减小,这和我们在1997年所做出的结论完全一致。

最后,采用直流压降计算法,找到了准确的匝间短路位置。

直流压降计算法,是应用欧姆定律的基本原理导出的计算短路点的公式。

取下转子一端的护环,给转子绕组通入恒定的直流i ,然后在有匝间短路的线圈上,测得每匝的电压u11﹑u22﹑u23 值等,并测量无匝间短路的线圈电压u。

根据《高压电气设备试验方法》第316页文章所述,“(1)短路点在测量的另一端的端部线圈上时,则测量的电压中有两个接近的较小值,其他的电压值基本相等;若短路点在端部线圈的弧线中点时,则两个较小的电压值趋于相等。

(2)当短路点在槽部时,测量的电压值中有两个低于正常电压值的大小值。

大小值相差的程度与短路点在槽部的位置有关,若短路点越靠近测量端,则两者的差值
越大;越靠近另一端则两者的差值越小。


根据计算结果,在第10槽中的第18﹑19匝之间(每包共19匝)的汽侧槽口处存在着匝间短路。

按计算结果,检修人员在第10槽离槽口8cm处找到了故障点。

四、匝间短路的消除﹑结论
在厂家的配合下,对所判定的位置进行了重包绝缘。

重包绝缘后又重新测量了交流分包压降,各包的变化趋势正常,说明匝间短路已消除。

检修人员回装了护环。

回装护环后,转子回装前,再一次测量了各项数据:
1.用双桥法测得直流电阻 r20= 0.3412ω,比1997年增大0.4%,和1994年数据基本吻合。

2.从新测得的交流阻抗看,数值和1997年比有了明显增大,和故障前的1994年数据基本吻合。

3.重新使用功率表向量投影法﹑相位法进行了回检,从数据结果上看,原有缺陷已不复存在,数据就不再这里赘述了。

综合分析各试验数据,可以判定,匝间短路已经消除,此次匝间短路消除工作作取得了圆满成功。

参考文献:
[1]《电气设备交接和预防性试验规程》华北电力集团公司.
[2]《高压电气设备试验方法》西南电业管理局试验研究所.
[3]《高压试验培训技术与考工试题》水利电力出版社.
[4]《高压电气设备试验方法及诊断技术》电力工业部。

相关文档
最新文档