《概率论与数理统计》第二套模拟试题(2)剖析
概率论与数理统计(二)试题及答案.

全国2009年7月自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题小题,,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的在每小题列出的四个备选项中只有一个是符合题目要求的,,请将其代码填写在题后的括号内请将其代码填写在题后的括号内。
错选错选、、多选或未选均无分选均无分。
1.设A 与B 互不相容,且P(A)>0,P(B)>0,则有( )A.P(A)=1-P(B)B.P(AB)=P(A)P(B)C.P(A B )=1D.P(AUB)=P(A)+P(B)2.设A 、B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )A.P(AB)=0B.P(A-B)=P(A)P(B )C.P(A)+P(B)=1D.P(A | B)=03.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A.0.125B.0.25C.0.375D.0.504.设函数f (x)在[a ,b]上等于sin x ,在此区间外等于零,若f (x)可以作为某连续型随机变量的概率密度,则区间[a ,b]应为( ) A.[2π−,0] B.[0,2π] C.[0,π] D.[0,2π3] 5.设随机变量X 的概率密度为≤<−≤<=其它021210)(x x x x x f ,则P(0.2<X<1.2)= ( ) A.0.5B.0.6C.0.66D.0.76.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A.61 B.41 C.31 D.21 7.221 α β 则有( )A.α=91,β=92 B. α=92,β=91 C. α=31,β=32 D. α=32,β=31 8.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( )A.-2B.0C.21D.2 9.设μn 是n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中发生的概率,则对于任意的ε>0,均有}|{|lim n εµ>−∞→p n P n ( )A.=0B.=1C.>0D.不存在 10.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H 0B.可能接受H 0,也可能拒绝H 0C.必拒绝H 0D.不接受,也不拒绝H 0二、填空题(本大题共15小题小题,,每小题2分,共30分)请在每小题的空格中填上正确答案请在每小题的空格中填上正确答案。
概率论与数理统计第二版参考答案

习题2参考答案2.1 X 23456789101112P1/36 1/18 1/12 1/95/36 1/6 5/36 1/91/12 1/18 1/362.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124CC C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628CC C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++=(2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+=2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314kk lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯=1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X CC ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X CC C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5) 01.51.5{0}0!P X e-=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)122222{2}1{0}{1}1130!1!P X P X P X e ee---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
自学考试专题:概率论与数理统计(二)复习思考题含答案

复习思考题一.单选题:1.设A, B, C, 为随机事件, 则事件“A, B, C 都不发生”可表示为( )。
A 、C B A B 、C B A C 、C B AD 、C B A2.设随机事件A 与B 相互独立, 且P (A)=51, P (B)=53, 则P (A ∪B)= ( )。
A 、253B 、2517C 、54 D 、2523 3.设随机变量X~B (3, 0.4), 则P{X≥1}= ( )。
A 、0.352 B 、0.432 C 、0.784 D 、0.9364.已知随机变量X 的分布律为 ,则P{-2<X≤4}= ( )。
A 、0.2 B 、0.35 C 、0.55D 、0.8 5.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X), D (X)分别为 ( )。
A 、2,3-B 、-3, 2C 、2,3D 、3, 26.设二维随机变量 (X, Y)的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c=( )。
A 、41B 、21C 、2D 、47.设二维随机变量 (X, Y)~N (-1, -2;22, 32;0), 则X-Y~ ( )。
A 、N (-3, -5) B 、N (-3,13) C 、N (1, 13)D 、N (1,13)8.设X, Y 为随机变量, D (X)=4, D (Y)=16, Cov (X,Y)=2, 则XY ρ=( )。
A 、321 B 、161 C 、81D 、41 9.设随机变量X~2χ(2), Y~2χ(3), 且X 与Y 相互独立, 则3/2/Y X ~ ( )。
A 、2χ (5) B 、t (5) C 、F (2,3)D 、F (3,2)10.在假设检验中, H 0为原假设, 则显著性水平α的意义是 ( )。
A 、P {拒绝H 0|H 0为真} B 、P {接受H 0|H 0为真} C 、P {接受H 0|H 0不真}D 、P {拒绝H 0|H 0不真}11. 设A ,B 为随机事件,且A ⊂B ,则AB 等于( )。
《概率论与数理统计》习题及答案 第二章

《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论及数理统计第二章考试题答案

第二章考试题答案一. 填空(共28分,每题4分)1. 抛掷一枚均匀对称的硬币,以X 表示正面出现的次数,则随机变量在区间2. , 取值的概率为 . 解:随机变量X 的散布律为所以{0.5}{1}0.551.P X P X <===≤3. 设随机变量~(1,6)U ξ, 则方程210x x ξ++=, 有实根的概率为 4/5 . 解:方程210x x ξ++=有实根,则判别式240ξ∆=-≥, 则2ξ≥或2ξ≤-,所以()2{}{40}{2}{2}P P P ξξξ=∆=-≥=≥⋃≤-方程有实根{2}{2}P P ξξ=≥+≤-又因为随机变量ξ服从参数为(1,6)的均匀散布,所以其概率密度函数为11,16,16()6150,0,x x f x ⎧⎧<<<<⎪⎪==-⎨⎨⎪⎪⎩⎩其它其它所以6222214{2}(),55{2}()00.P f t dt dt P f t dt dt ξξ+∞---∞-∞≥===≤-===⎰⎰⎰⎰ 故{}P 方程有实根{2}{2}P P ξξ=≥+≤-45=. 4. 设(2,),(3,)X b p Y b p , 若519{}P X ≥=, 则{1}P Y ≥=19/27. 解:由题意知随机变量X 和Y 别离服从参数为2和p 、3和p 的二项散布.5{1}1{0}9P X P X =≥=-=, 取得4{0}9P X ==, 即00222(1)(1)C p p p -=-49=,1329S2S1所以2(1)3p -=, 从而 300333219{1}1{0}1(1)1(1)1.327P Y P Y C p p p ⎛⎫≥=-==--=--=-= ⎪⎝⎭5. 设X 的概率密度函数为1,[0,1]32(),[3,6]90,x f x x ⎧∈⎪⎪⎪=∈⎨⎪⎪⎪⎩其它,若k 使得2{}3P X k ≥=, 则k 的取值范围是13k ≤≤. 解:此题用画图的方式来解:下图中红线即为()f x 的图像.()f xx0 1 2 3 4 5 6其中S1表示由红线1()3f x =与x 轴所夹部份的面积,即{01}P X ≤≤13=;S2表示红线2()9f x =与x 轴所夹部份面积,即{36}P X ≤≤22393=⨯=. 而{}P X k ≥即表示()f x 图像与x 轴所夹图形在直线x k =右边的面积(绿色虚线所示x=k范围). 因为2{}3P X k ≥={36}P X =≤≤,所以k 的取值范围只能在1和3之间, 即 13k ≤≤. 6. 设随机变量(1,4)XN , 则{12}P X <≤= .(已知(0.5)0.6915Φ=.)解:由(1,4)XN 可知,1,2μσ==. 第一进行正态散布的标准化,在查表计算11211{12}{0}222X X P X P P μμσσ----⎧⎫<≤=<≤=<≤⎨⎬⎩⎭ 1()(0)2=Φ-Φ0.69150.5=-=7. 设硕士研究生入学数学考试合格率为,则15名考生中数学考试合格人数X 的概率散布是二项散布,参数为15和, 解:15名考生参加考试,能够视为15次伯努利实验。
《概率论与数理统计》第02章习题解答.docx

P{ X = 1} = P[人(瓦U瓦)U孔A ] = 0.8(0.2 + 0.2-0.04) + 0.2 x (0.8)2
= 0.416
P{X=2} =P( £%為)=(0.8)3=0.512
3、据信有20%的美国人没有任何健康保险,现任意抽查12个美国人,以X表示15人无 任何健康保险的人数(设各人是否有健康保险是相互独立的),问X服从什么分布,写出X的分布律,并求下列情况下无任何健康保险的概率
解:(1)P{X>1}=f(x)dx=j"-(4-x2)dr = (-X- — X3)
"9927
(2)―叫刃’叩沟心]刃
22
27
10-R
£二0丄2,…,10
27■■
592
(3)P{y=2}=C^(—)2x(—)8=0.2998
s99s9?
p{r>2}= 1- p{r=0} - p{y=1}= 1-(—)° x(―)10- ^0(—)J(—)9= 0.5778
J;(0.2 + 1.2y)dy
—oo
y v _1
-1 < y < 0
0<y<\
0
0.2y + 0.2
0.6/+0.2j + 0.2
1
y <-1
0<y<l
沖1
P{0<Y<0.5} = F(0.5)-F(0) = 0.2+0.2x0.5 + 0.6x(0.5)2-0.2 = 0.25
P{y > 0.1} = 1-F(0」)=1一0.2-0.2x0」一0.6x0= 0.774
《概率论与数理统计(二)》复习题

《概率论与数理统计(二)》复习题一、单项选择题1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.A BD.A B2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x ) B.1-Φ(x ) C.Φx μσ-⎛⎫⎪⎝⎭D.1-Φx μσ-⎛⎫ ⎪⎝⎭3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~A.211(,)N μσB.221()N μσC.212(,)N μσD.222(,)N μσ4.设随机事件A 与B 互不相容,且()0P A >,()0P B >,则A. ()1()P A P B =-B. ()()()P AB P A P B =C. ()1P A B =D. ()1P AB =5.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则A. n =4, p =0.6B. n =6, p =0.4C. n =8, p =0.3D. n =24, p =0.16.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1()E X Y μλ+= B.221()D X Y σλ+=+C.1(),()E X E Y μλ==D.221(),()D X D Y σλ==7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x 为来自X 的样本,则下列随机变量中是统计量的为 A. 11ni i x n =∑B. 11ni i x n θ=-∑C. 11()ni i x E X n =-∑D. 2111()n i x D X n =-∑8.设12,,,n x x x 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为 A. 11()1ni i x n μ=--∑2 B. 11()ni i x n μ=-∑2C. 11()1ni i x x n =--∑ 2 D.11()ni i x x n =-∑ 29.设A,B 为B 为随机事件,且A B ⊂,则AB 等于A.ABB.BC.AD.A10.设A ,B 为随机事件,则()P A B -=A.()()P A P B -B.()()P A P AB -C.()()()P A P B P AB -+D.()()()P A P B P AB +-11.设随机变量X 的概率密度为1,3<x<6,()30,f x ⎧⎪=⎨⎪⎩其他,则{}3<4=P X ≤A.{}1<2P X ≤B.{}4<5P X ≤C.{}3<5P X ≤D.{}2<7P X ≤12.已知随机变量X 服从参数为λ的指数分布,则X 的分布函数为A.e ,0,()0, 0.x x F x x λλ-⎧>=⎨≤⎩B.1e ,0,()0, 0.x x F x x λλ-⎧->=⎨≤⎩C.1e ,0,()0, 0.x x F x x λ-⎧->=⎨≤⎩D.1e ,0,()0, 0.x x F x x λ-⎧+>=⎨≤⎩13.设随机变量X 的分布函数为F(x),则A.()1F -∞=B.(0)0F =C.()0F +∞=D.()1F +∞=14.设随机变量X 与Y 相互独立,它们的概率密度分别为(),()X Y f x f y ,则(X ,Y )的概率密度为 A.[]1()()2X Y f x f y + B.()()X Y f x f y +C.1()()2X Y f x f y D.()()X Y f x f y15.设随机变量~(,)X B n p ,且() 2.4,() 1.44E X D X ==,则参数n,p 的值分别为 A.4和0.6 B.6和0.4 C.8和0.3D.3和0.816.设随机变量X 的方差D(X)存在,且D(X)>0,令Y X =-,则X γρ= A.1- B.0 C.1 D.2二、填空题1. 一口袋中装有3只红球,2只黑球,今从中任意取出2只球,则这2只球恰为一红一黑的概率是____________.2. 设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A )=______________.3. 设A,B,C 为三个随机事件,P(A)=P(B)=P(C)=41,P(AB)=P(AC)=P(BC)=61,P(ABC)=0,则P(A B C)=___________. 4. 设X 为连续随机变量,c 为一个常数,则P {X =c }=_____________.5. 已知连续型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<=.2,1;20),1(31;0,31)(≥≤x x x x e x F x设X 的概率密度为f(x),则当x<0,f(x)= _______________.6. 已知随机变量X 的分布函数为F X (x),则随机变量Y=3X+2的分布函F Y (y)=_________.7. 设随机变量X ~N (2,4),则P {X≤2}=____________.8. 设随机变量X 的概率密度为f(x)=+∞<<-∞-x ex ,2122π,则E(X+1)=___________.9. 设随机变量X 与Y 相互独立,且X ~N (0,5),Y ~X 2(5),则随机变量YX Z =服从自由度为5的_______________分布。
概率论与数理统计(茆诗松)第二版课后第二章习题参考答案_百度讲解

(2)正态分布N (µ, σ 2 ;(3)对数正态分布LN (µ, σ 2 .解:(1)因 X 服从区间 (a, b上的均匀分布,则0.5 = P{ X ≤ x0.5 } = P{a < X ≤ x0.5 } = 故中位数x0.5 = a + 0.5(b − a = (2)因 X 服从正态分布N (µ, σ 2 ,x0.5 − a ,b−a a+b ; 2 x −µ⎛x −µ⎞ =0,则 0.5 = P{ X ≤ x0.5 } = F ( x0.5 = Φ⎜ 0.5 ⎟,即0.5 σ ⎝ σ ⎠故中位数 x0.5 = µ;(3)因 X 服从对数正态分布LN (µ, σ 2 ,有 ln X 服从正态分布 N (µ, σ 2 ,ln x0.5 − µ ⎛ ln x0.5 − µ ⎞ =0,则0.5 = P{ X ≤ x0.5 } = P{ln X ≤ ln x0.5 } = F (ln x0.5 = Φ⎜⎟,即σ σ ⎝⎠故中位数 x0.5 = e µ. 4.设 X ~ Ga (α , λ ,对 k = 1, 2, 3,求µ k = E (X k 与ν k = E [X − E (X ] k.解:因Ga (α , λ 的密度函数为⎧λα α −1 − λ x ⎪ x e , x ≥ 0, p X ( x = ⎨ Γ(α ⎪ x < 0. ⎩0, 由正则性知∫ +∞ +∞ +∞ Γ(α λα α −1 − λ x x e dx = 1 ,可得∫ x α −1 e −λ x dx = α ,0 Γ(α λ 0 故µ1 = ∫ 0 x⋅ λα α −1 − λ x λα+ ∞ α −λ x λα Γ(α + 1 α x e dx = x e dx = ⋅ = ;λ Γ(α Γ(α ∫0 Γ(α λα +1 λα α −1 −λ x λα + ∞ α +1 − λ x λα Γ(α + 2 α (α + 1 e = ⋅ = x e dx = x dx ;Γ(α Γ(α ∫0 Γ(α λα + 2 λ2 λα α −1 − λ x λα + ∞ α + 2 −λ x λα Γ(α + 3 α (α + 1(α + 2 e = ⋅ = x e dx = x dx ;Γ(α Γ(α ∫0 Γ(α λα + 3 λ3 µ2 = ∫ µ3 = ∫ +∞ 0 x2 ⋅ +∞ 0 x3 ⋅ ν 1 = E [X − E (X ] = 0;α (α + 1 α 2 α − 2 = 2 ;λ2 λ λ α (α + 1(α + 2 α (α + 1 α α 3 2α .3 2 − ⋅ + = ν 3 =E[ X − E ( X ]3 = µ 3 − 3µ 2 µ1 + 2µ13 = λ λ3 λ2 λ3 λ3 5.设X ~ Exp(λ,对 k = 1, 2, 3, 4,求µ k = E (X k 与ν k = E [X − E (X ] k ,进一步求此分布的变异系数、偏ν 2 = E[ X − E ( X ] 2 = µ 2 − µ12 = 度系数和峰度系数.解:因 X 的密度函数为⎧λ e − λ x , x ≥ 0, p X ( x = ⎨ x < 0. ⎩0, 41且 k 为正整数时,∫ 故µ1 = ∫ +∞ 0 +∞ 0 x k −1 e − λ x dx = +∞ Γ(k λ k = (k − 1! λk 1 ,; x ⋅ λ e −λ x dx = λ ∫ 0 x e −λ x dx = λ ⋅ λ 2 = 2! 1 λ = = = µ 2 = ∫ x 2 ⋅ λ e −λ x dx = λ ∫ x 2 e −λ x dx = λ ⋅ 0 0 +∞ +∞ 2 λ λ 3 λ2 6 ;;;µ 3 = ∫ x 3 ⋅ λ e − λ x dx = λ ∫ x 3 e − λ x dx = λ ⋅ 0 0 +∞ +∞ 3! 4 λ3 24 µ 4 = ∫ x 4 ⋅ λ e −λ x dx = λ ∫ x 4 e −λ x dx = λ ⋅ 0 0 +∞ +∞ 4! λ 1 5 λ4 ν 1 = E [X − E (X ] = 0;ν 2 = E[ X − E ( X ] 2 = µ 2 −µ12 = 2 λ 2 − 1 λ 2 = λ2 6 3 ;ν 3 = E[ X − E ( X ]3 = µ 3 − 3µ 2 µ1 + 2µ13 = λ −3 2 λ 2 ⋅ 1 λ 4 +2 −4 1 λ 6 3 = ⋅ 1 2 λ3 ;ν 4 = E[ X − E ( X ] 4 = µ 4 − 4 µ 3 µ1 + 6µ 2µ12 − 3µ14 = 变异系数C v ( X = 24 λ λ 3 λ +6 2 λ 2 ⋅ 1 λ 2 −3 1 λ 4 = 9 λ3 ; Var( X E( X =2;= ν2 =1; µ1 偏度系数β 1 = ν3 (ν 2 3 / 2 峰度系数β 2 = ν4 −3=9−3=6.(ν 2 2 6.设随机变量 X 服从正态分布 N (10, 9,试求 x0.1 和 x0.9.x − 10 ⎛ x − 10 ⎞解:因F ( x 0.1 = Φ⎜ 0.1 = 1.2816 ,故 x0.1 = 6.1552;⎟ = 0.1 ,得− 0.1 3 3 ⎝⎠ x − 10 ⎛ x − 10 ⎞又因F ( x 0.9 = Φ⎜ 0.9 = 1.2816 ,故 x0.9 = 13.8448.⎟ = 0.9 ,得0.9 3 3 ⎝⎠ x − 10 x 0.1 − 10 = 1.28 ,故 x0.1 = 6.16; 0.9 = 1.28 ,故 x0.9 = 13.84)3 3 7.设随机变量 X 服从双参数韦布尔分布,其分布函数为(或查表可得− m ⎧⎪⎪⎛ x⎞⎫⎟⎜ F ( x = 1 − exp ⎨− ⎜⎟⎬, η ⎭⎪⎩⎝⎠⎪ x>0,其中η > 0, m > 0.试写出该分布的 p 分位数 xp 的表达式,且求出当m = 1.5, η = 1000 时的 x0.1 , x0.5 , x0.8 的值.⎧⎪⎛ xp 解:因F ( x p = 1 − exp⎨− ⎜⎜η ⎪⎩⎝故x p = η[−ln(1 − p ] m ; 1 ⎞⎟⎟⎠ m ⎫⎪⎬= p,⎪⎭ 42当m = 1.5, η = 1000 时, x 0.1 = 1000(− ln 0.9 1 1.5 1 = 223.0755 ; x 0.5 = 1000(− ln 0.5 1 1.5 = 783.2198 ;x 0.8 = 1000(− ln 0.2 1.5 = 1373.3550 . 8.自由度为 2 的χ 2 分布的密度函数为p ( x = 1 −2 e , 2 x x>0,试求出其分布函数及分位数x0.1 , x0.5 , x0.8 .解:设 X 服从自由度为 2 的χ 2 分布,当 x < 0 时,F (x = P{X ≤ x} = P (∅ = 0,当x ≥ 0 时,F ( x = P{ X ≤ x} = ∫ 故 X 的分布函数为 x ⎧ − ⎪1 − e2 , x ≥ 0, F ( x = ⎨⎪ x < 0. ⎩0, x − − 1 −2 e du = (− e 2 = 1 − e 2 ; 2 0 u u x x 0 因 F (x p = 1 − e − xp 2 = p ,有xp = −2 ln (1 − p,故x0.1 = −2 ln 0.9 = 0.2107;x0.5 = −2 ln 0.5 = 1.3863;x0.8 = −2 ln 0.2 = 3.2189. 9.设随机变量 X 的分布密度函数 p(x 关于 c 点是对称的,且 E (X 存在,试证(1)这个对称点 c 既是均值又是中位数,即 E (X = x0..5 = c;(2)如果 c = 0,则xp = −x1 − p .证:设 f (x = p (x + c,因 p (x 关于 c 点对称,有 f (x 为偶函数,(1)E ( X = ∫ xp( xdx = ∫ ( x − c p ( xdx + ∫ cp( xdx = ∫ up (u + cdu + c = ∫ uf (u du + c −∞ −∞ −∞ −∞ −∞ +∞ +∞ +∞ +∞ +∞ = 0 + c = c;因 f (x 为偶函数,有∫ 则F (c = ∫ c −∞ 0 −∞ 0 f ( xdx = 1 +∞ f ( xdx = 0.5 ,2 ∫− ∞ 0 p( x dx = ∫ p (u + cdu = ∫ −∞ −∞ f (u du = 0.5 ,可得 x0..5 = c;故 E (X = x0..5 = c;(2)如果 c = 0,有 p (x 为偶函数,则 F (x p = ∫ xp −∞ p ( xdx = ∫ −xp +∞ p(−u ⋅ (−du = ∫ +∞ −xp p(u du = 1 − ∫ −xp −∞ p(u du = 1 − F (− x p = p ,可得 F (−xp = 1 − p,故−xp = x1 − p ,即xp = −x1 − p . 10.试证随机变量 X 的偏度系数与峰度系数对位移和改变比例尺是不变的,即对任意的实数a, b (b ≠ 0, Y = a + b X 与 X 有相同的偏度系数与峰度系数.证:因 Y = a + bX,有 E (Y = E (a + bX = a + bE (X ,可得Y − E (Y = a + b X − a − bE (X = b[X − E (X ],则ν 2 (Y = E [Y − E (Y ]2 = E{b2[X − E (X ]2} = b2 E [X − E (X ]2 = b2ν 2 (X ,ν 3 (Y = E [Y − E (Y ]3 = E{b3[X − E (X ]3} = b3 E [X − E (X ]3 = b3ν 3 (X ,ν 4 (Y = E [Y − E (Y ]4 =E{b4[X − E (X ]4} = b4 E [X − E (X ]4 = b4ν 4 (X ,故偏度系数β 1 (Y = ν 3 (Y [ν 2 (Y ] 3/ 2 = b 3ν 3 ( X [b ν 2 ( X ] 2 3/ 2 = b 3ν 3 ( X b [ν 2 ( X ] 3 3/ 2 = ν 3 (X [ν 2 ( X ]3 / 2 = β1 ( X ; 43峰度系数β 2 (Y = b 4ν 4 ( X b 4ν 4 ( X ν 4 (Y ν (X−3 = − 3 = −3= 4 − 3 = β2(X .2 2 2 4 2 [ν 2 (Y ] [b ν 2 ( X ] b [ν 2 ( X ] [ν 2 ( X ] 2 11.设某项维修时间 T(单位:分)服从对数正态分布LN (µ, σ 2 .(1)求 p 分位数 tp;(2)若µ =4.127,求该分布的中位数;(3)若µ = 4.127,σ = 1.0364,求完成 95%维修任务的时间.解:(1)因 T 服从对数正态分布LN (µ, σ 2 ,有 ln T 服从正态分布 N (µ, σ 2 ,ln t p − µ ⎛ ln t p − µ ⎞⎟则p = P{T ≤ t p } = P{ln T ≤ ln t p } = Φ⎜ = up ,ln tp = µ + σ ⋅ up,⎜σ ⎟,即σ ⎝⎠故tp = e µ +σ ⋅u p ;(2)中位数 t0.5 = e µ +σ ⋅u0.5 = e 4.1271+0 = 61.9979 ;(3)t0.95 = e µ +σ ⋅u0.95 = e4.1271+1.0364×1.6449 = 340.9972 . 12.某种绝缘材料的使用寿命 T(单位:小时)服从对数正态分布LN (µ, σ 2 .若已知分位数 t0.2 = 5000 小时,t0.8 = 65000 小时,求µ和σ.解:因 T 服从对数正态分布LN (µ, σ 2 ,有 ln T 服从正态分布N (µ, σ 2 ,由第 11 题可知t p = e µ +σ ⋅u p ,则t0.2 = e µ +σ ⋅u0.2 = e µ−0.8416σ = 5000 ,t0.8 = e µ +σ ⋅u0.8 = e µ +0.8416σ = 65000 ,可得µ − 0.8416σ = ln 5000 = 8.5172,µ + 0.8416σ = ln 65000 = 11.0821,故µ = 9.7997,σ =1.5239. 13.某厂决定按过去生产状况对月生产额最高的 5%的工人发放高产奖.已知过去每人每月生产额 X(单位:千克)服从正态分布 N (4000, 602 ,试问高产奖发放标准应把生产额定为多少?解:因 X 服从正态分布 N (4000, 602 ,x − 4000 ⎛ x − 4000 ⎞ = u0.95 = 1.6449 ,则0.95 = P{ X ≤ x0.95 } = F ( x0.95 = Φ⎜0.95 ⎟,即 0.95 60 60 ⎝⎠故高产奖发放标准应把生产额定为 x0.95 = 4000 + 60 ×1.6449 = 498.6940 千克. 44。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》第二套模拟试题一、单项选择题(每小题3分,共15分) 1. 设事件A 和B 相互独立,则 (B )A .)()()(B P A P B A P -=- B . )()()(B P A P B A P =C .0)(=AB PD . 1)(=+B A P2. 设随机变量X 的全部可能值为1,3,4,且2.0)1(==X P ,5.0)3(==X P ,则==)4(X P ( A )A .3.0B . 2.0C .7.0D . 5.0 3. 离散型随机变量X 的分布列为)(x F ,则=)23(F (C)其分布函数为A .4.0B .2.0C .6.0D .14. 设总体X ~),(2σμN ,μ为已知,σ未知,),,2,1(n i X i =为来自X 的样本,、2S 分别为样本均值和样本方差,则是统计量的是(C )A.nX σμ- B.22)1(σS n - C. ∑=-n i i X n 12)(1μ D. σS5. 设总体X ~)1,(μN ,21,X X 是X 的样本,则下列各式中不是总体参数μ的无偏估计量的是(D) A.213132X X + B. 212121X X + C. 214341X X + D. 2110151X X + 二、填空题(每小题3分,共15分)1、设3.0)(=A P ,P (B |A )=0.6,则P (AB )=____0.42____。
2、设随机变量X 服从参数为5.1的泊松分布,]4,0[~U Y ,则=-+)13(Y X E ______5.5_____。
3、设随机变量X 与Y 的方差分别为25和16,4.0=XY ρ,则)2(Y X Var +=148 。
4、设随机变量X 具有期望2)(=X E ,方差1)(=X Va r ,则由切比雪夫不等式,有≤≥-}32{X P _______1/9____。
5、为了解灯泡使用时数的方差2σ,测量9个灯泡,得样本方差202=S 平方小时。
如果已知灯泡的使用时数服从正态分布,则2σ的置信系数为95%的置信区间为[9.125,73.394]。
三、计算题(一)(共56分)1. (12分)一批同一规格的产品由甲厂和乙厂生产,甲厂和乙厂生产的产品分别占70%和30%,甲乙两厂的合格率分别为95%和90%,现从中任取一只,则(1)它是次品的概率为多少?(2)若为次品,它是甲厂生产的概率为多少?解:设A =‘任取一产品是次品’,B =‘任取一产品是甲厂生产’依题意有:%70)(=B P ,%30)(=B P ,%5)|(=B A P ,%10)|(=B A P ,则(1)()()(|)()(|)P A P B P A B P B P A B =+=065.0%1030%5%70=⨯+⨯(2)5385.03.01.07.005.07.005.0)()|()()|()()|()|(≈⨯+⨯⨯=⨯+⨯⨯=B P B A P B P B A P B P B A P A B P 2.(12分)设随机变量X 的概率密度函数为 ⎩⎨⎧≤≤=其他,010,)(x Ax x f ,(1)求常数A ;(2)求概率⎭⎬⎫⎩⎨⎧<<2131X P -;(3)求X 的分布函数)(x F 。
(1)⎰∞∞-=1)(dx x f 即⎰=101Axdx2=⇒A (2)⎭⎬⎫⎩⎨⎧<<2131X P -⎰==210412xdx (3)⎰∞-=xdt t f x F )()(⎪⎩⎪⎨⎧>≤≤<=1,110,0,02x x x x3.(10分)设随机变量)1,0(~N X ,求随机变量12-=X Y 的概率密度函数。
解:随机变量X 的密度函数为:()2221x X e x f -=π,∞<<∞-x()()()⎪⎭⎫ ⎝⎛+≤=≤-=≤=2112y X P y X P y Y P y F Y ⎰+∞--=212221y x dx e π由()()y F y f Y Y '= 得()8)1(2221+-=y Y e y f π,∞<<∞-y4.(10分)盒子中有同型号小球5只,编号分别为1、2、3、4、5,今从盒子中任取小球3只,以X 表示取出的3只中的最小号码,求: (1)X 的分布律;(2)X 的期望与方差。
解:(1)X 的取值为1,2,3分布律为53)1(3524===C C X P ,103)2(3523===C C X P ,1011)3(35===C X P(2)5.110131032531)(=⨯+⨯+⨯=X E 7.210131032531)(2222=⨯+⨯+⨯=X E 45.0))(()()(22=-=X E X E X D5.(12分)已知二维随机向量),(Y X 的分布律为求常数;(2)求、的边缘分布律;(3)判断随机变量与是否相互独立。
解:(1)有分布律的性质,有1185926118191=+++++a ,可以求得61=a(2)X 和Y 的边缘分布为1856191)1(=+==X P ,18592181)3(=+==X P , 9418561)5(=+==X P 316118191)2(=++==Y P ,321859261)3(=++==Y P ,(3)因为)2,1(==Y X P ≠P(X=1)P(Y=2) 所以X 与Y 不相互独立. 四、计算题(二)(14分)设总体X 服从参数为θ的指数分布,其概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x θθ n X X X ,,,21 是来自X 的样本,求未知参数θ的矩估计∧θ和极大似然估计*θ。
解:X的概率密度函数为⎩⎨⎧≤>=-0,00,),(x x e x f x θθθ ⎰⎰∞-∞∞-===1)()(θθθdx e x dx x xf X E x样本的一阶原点矩为nnX X X =+++ 21 替换,θ1=X ,得矩估计∧θ=X 1 似然函数为⎪⎩⎪⎨⎧≤>=-=∏000,),,,(11i i x n i n x x e x x L i,θθθ ∑=-=ni i x n LnL 1ln θθ 0ln 1=-=∑=ni i x n d L d θθ 解似然方程得θ的极大似然估计XXni i11*==∑=θ 《概率论与数理统计》第一套模拟试题一、单项选择题(每小题3分,共15分)1. 事件A 、B 互斥,则下列哪个是正确的 ( A ) A .1)(=+B A P B .1)(=B A P C .)()()(B P A P AB P = D .)(1)(AB P A P -=2. 下列函数中可作为某随机变量的概率密度的是( C )A .⎩⎨⎧≤≤-=其他,0,20,1)(x x fB .⎪⎩⎪⎨⎧≤>=0,0,0,10)(x x x x fC .⎪⎩⎪⎨⎧≤>=100,0,100,100)(2x x xx fD .⎪⎩⎪⎨⎧≤≤=其他,0,232121)(x ,x f3.设总体),1(~p B X ,其中p 未知,n X X X ,,,21 是来自总体的样本,则下列哪个不是统计量( D )A .∑=n i i X n 11B . )(31421X X X ++C . ∑=n i i X n 121 D .p X n n i i +∑=114. 设总体X ~),(2σμN ,),,2,1(n i X i =为来自X 的样本,、2S 分别为样本均值和样本方差,则( B ) A.122~)1(--n t S n σ B. ),(~2nN X σμC. X ~)1,0(ND.222~)1(n S n χσ-5. 设n X X X ,,,21 为来自总体X 的随机样本,X ~),(2σμN ,μ未知,则下列哪个不是μ的无偏估计( B )A. ∑=ni i X n 11 B. 212131X X +C.313132X X + D. 321414121X X X ++ 二、填空题(每小题3分,共15分)1、设事件A 与B 相互独立,且P (A ∪B )=0.6,P (A )=0.2,则P (B )=____0.5____。
2、设随机变量)3.0,6(~B X ,)2(~P Y ,则=+-)12(Y X E _____2.6______。
3、设随机变量X 与Y 的方差分别为9和25,6.0=XY ρ,则)12(+-Y X Var = 73 。
4、若随机变量X 满足:3)(=X E ,21)(=X Var ,利用切比雪夫不等式可估计≥<<}51{X P ___7/8_____。
5、设1621,,,X X X 来抽自总体)25,(μN 的样本,其样本均值68.14=X ;则μ的置信系数为95%的置信区间为_[12.23,17.13]. 三、计算题(一)(共56分)1.(12分) 一批同一规格的零件由甲乙两台车床加工,甲和乙加工的零件分别占60%和40%,甲出现不合格品的概率为0.03,乙出现不合格品的概率为0.06, (1)求任取一个零件是合格品的概率为多少?(2)如果取出的零件是合格品,求它是乙车床加工的概率为多少?解:设A =‘任取一零件是合格品’,B =‘任取一零件是甲车床加工的’, 依题意有:%60)(=B P ,%40)(=B P ,%97)|(=B A P ,%94)|(=B A P ,则(1) ()()(|)()(|)P A P B P A B P B P A B =+=⨯+⨯=94.04.097.06.00.958 (2) 3925.0958.04.094.0)()()|()|(≈⨯=⨯=A PB P B A P A B P2.(12分)设随机变量X 的分布函数为 ⎪⎩⎪⎨⎧>≤<≤=2,120,0,)(2x x Axx x F , 求(1)常数A ;(2)X 的概率密度函数)(x f ;(3)概率⎭⎬⎫⎩⎨⎧<<321X P 。
解:(1)由右连续性)2()(lim 2F x F x =+→,即1=22A ,得41=A (2)由⎪⎩⎪⎨⎧≤<='=其他,020,21)()(x x x F x f (3)1615)21(411)21()3(3212=-=-=⎭⎬⎫⎩⎨⎧<<F F X P3.(10分)设随机变量)1,0(~N X ,求随机变量Xe Y -=的概率密度函数。
解:随机变量X 的密度函数为:()2221x X e x f -=π,∞<<∞-x当0≤y 时,()()()()0==≤=≤=-φP y e P y Y P y F X Y 当0>y 时,()()()()⎰∞---=-≥=≤=≤=yx X Y dx e y X P y e P y Y P y F ln 2221ln π由()()y F y f Y Y '= 得: ()⎪⎩⎪⎨⎧≤>=-0,00,212)(l n 2y y e y y f y Y π4.(10分)一海运船的甲板上放着10桶装有化学原料的圆桶,现已知其中有3桶被海水污染了。