大一下高等数学知识点
大一下高数下册知识点

高等数学下册知识点第八章 空间解析几何与向量代数(一) 向量线性运算定理1:设向量a ≠0,则向量b 平行于a 的充要条件是存在唯一的实数λ,使 b =λa1、 线性运算:加减法、数乘;2、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;3、 利用坐标做向量的运算:设),,(z y x a a a a =,),,(z y x b b b b =;则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;4、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 5) 投影:ϕcos Pr a a j u=,其中ϕ为向量a 与u的夹角;(二) 数量积,向量积1、 数量积:θcos b a b a=⋅12a a a =⋅2⇔⊥b a 0=⋅b a2、 向量积:b a c⨯=大小:θsin b a ,方向:c b a,,符合右手规则 10 =⨯a a 2b a //⇔0 =⨯b a运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面:yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==0),(z y x F 的柱面4、 二次曲面1) 椭圆锥面:22222z b y a x =+ 2) 椭球面:1222222=++cz b y a x旋转椭球面:1222222=++cz a y a x3) 单叶双曲面:1222222=-+c z b y a x4) 双叶双曲面:1222222=--czb y a x5) 椭圆抛物面:z by a x =+22226) 双曲抛物面马鞍面:z b y a x =-22227) 椭圆柱面:12222=+b ya x8) 双曲柱面:12222=-b y a x9) 抛物柱面:ay x =2 (四) 空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===bt z t a y t a x sin cos3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H (五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n =,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax截距式方程:1=++czb y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n =,4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A2、 对称式点向式方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=pt z z nty y mt x x 0004、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s =,5、 直线与平面的夹角:直线与它在平面上的投影的夹角,第九章 多元函数微分法及其应用(一) 基本概念1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集;2、 多元函数:1定义:设n 维空间内的点集D 是R 2的一个非空子集,称映射f :D →R 为定义在D 上的n 元函数;当n ≥2时,称为多元函数;记为U=fx 1,x 2,…,x n ,x 1,x 2,…,x n ∈D;3、 二次函数的几何意义:由点集D 所形成的一张曲面;如z=ax+by+c 的图形为一张平面,而z=x 2+y 2的图形是旋转抛物线;4、 极限:1定义:设二元函数fp=fx,y 的定义域D,p0x0,y0是D 的聚点D,如果存在函数A 对于任意给定的正数ε,总存在正数δ,使得当点px,y ∈D ∩∪p0,δ时,都有Ⅰfp-A Ⅰ=Ⅰfx,y-A Ⅰ﹤ε成立,那么就称常数A 为函数fx,y 当x,y →x 0,y 0时的极限,记作多元函数的连续性与不连续的定义5、 有界闭合区域上二元连续函数的性质:1在有界闭区域D 上的多元连续函数,必定在D 上有界,且能取得它的最大值和最小值;2在有界区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值; 6、 偏导数:设有二元函数z=fx,y,点x 0,y 0是其定义域D 内一点;把y 固定在y0而让x 在x0有增量△x,相应地函数z=fx,y 有增量称为对x/y 的偏增量如果△z 与△x/△y 之比当△x →0/△y →0时的极限存在,那么此极限值称为函数z=fx,y 在x0,y0处对x/y 的偏导数记作xy x f y x x f y x f x x ∆-∆+=→∆), (), (lim ),(0000000 7、 混合偏导数定理:如果函数的两个二姐混合偏导数f xy x,y 和f yx x,y 在D内连续,那么在该区域内这两个二姐混合偏导数必相等;8、 方向导数: βαcos cos yfx f l f ∂∂+∂∂=∂∂其中βα,为l的方向角;9、 全微分:如果函数z=fx, y 在x, y 处的全增量△z=fx △x,y △y-fx,y 可以表示为△z=A △x+B △y+o ρ,其中A 、B 不依赖于△x, △y,仅与x,y 有关, 当Ρ→0,此时称函数z=fx, y 在点x,y 处可微分,A △x+ B △y 称为函数z=fx, y 在点x, y 处的全微分,记为 (二) 性质1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:微分法1) 定义: u x 2) 复合函数求导:链式法则 z若(,),(,),(,)zf u v u u x y v v x y ===,则 v yz z u z v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂,z z u z vy u y v y∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 3) 隐函数求导:两边求偏导,然后解方程组 (三) 应用充分条件1、 极值1) 无条件极值:求函数),(y x f z =的极值解方程组 ⎪⎩⎪⎨⎧==00yx f f 求出所有驻点,对于每一个驻点),(00y x ,令),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,① 若02>-B AC ,0>A ,函数有极小值, 若02>-B AC ,0<A ,函数有极大值; ② 若02<-B AC ,函数没有极值; ③ 若02=-B AC ,不定;2) 条件极值:求函数),(y x f z =在条件0),(=y x ϕ下的极值 令:),(),(),(y x y x f y x L λϕ+=——— Lagrange 函数解方程组 ⎪⎪⎩⎪⎪⎨⎧===0),(00y x L L y x ϕ2、 几何应用1) 曲线的切线与法平面曲线⎪⎪⎩⎪⎪⎨⎧===Γ)()()(:t z z t y y t x x ,则Γ上一点),,(000z y x M 对应参数为0t 处的 切线方程为:)()()(00000t z z z t y y y t x x x '-='-='- 法平面方程为:0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x2) 曲面的切平面与法线曲面0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:法线方程为:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-第十章 重积分(一) 二重积分1、 定义:∑⎰⎰=→∆=nk k k kDf y x f 1),(lim d ),(σηξσλ2、 性质:6条3、 几何意义:曲顶柱体的体积;4、 计算: 1) 直角坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=b x a x y x y x D )()(),(21ϕϕ,⎭⎬⎫⎩⎨⎧≤≤≤≤=d y c y x y y x D )()(),(21φφ,2) 极坐标 (二) 三重积分 1、 定义: ∑⎰⎰⎰=→Ω∆=nk k k k kv f v z y x f 1),,(limd ),,(ζηξλ2、 性质:3、 计算:1) 直角坐标⎰⎰⎰⎰⎰⎰=ΩDy x z y x z z z y x f y x v z y x f ),(),(21d ),,(d d d ),,( -------------“先一后二”⎰⎰⎰⎰⎰⎰=ΩZD bay x z y x f z v z y x f d d ),,(d d ),,( -------------“先二后一” 2) 柱面坐标⎪⎪⎩⎪⎪⎨⎧===zz y x θρθρsin cos ,(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰3) 球面坐标 (三) 应用 曲面D y x y x f zS ∈=),(,),(:的面积:第十二章 无穷级数(一) 常数项级数 1、 定义:1无穷级数:+++++=∑∞=n n nu u u u u3211部分和:n n k kn u u u u uS ++++==∑= 3211,正项级数:∑∞=1n n u ,0≥n u交错级数:∑∞=-1)1(n n n u ,0≥n u 2级数收敛:若S S n n =∞→lim 存在,则称级数∑∞=1n n u 收敛,否则称级数∑∞=1n n u 发散 3绝对收敛:∑∞=1n n u 收敛,则∑∞=1n n u 绝对收敛;条件收敛:∑∞=1n n u 收敛,而∑∞=1n n u 发散,则∑∞=1n n u 条件收敛;定理:若级数∑∞=1n n u 绝对收敛,则∑∞=1n n u 必定收敛;2、 性质:1) 级数的每一项同乘一个不为零的常数后,不影响级数的收敛性; 2) 级数∑∞=1n n a 与∑∞=1n n b 分别收敛于和s 与σ,,则∑∞=±1)(n n nb a收敛且,其和为s+σ3) 在级数中任意加上、去掉或改变有限项,级数仍然收敛;4) 级数收敛,任意对它的项加括号后所形成的级数仍收敛且其和不变;5) 必要条件:级数∑∞=1n n u 收敛即0lim =∞→n n u . 3、 审敛法正项级数:∑∞=1n n u ,0≥n u1) 定义:S S n n =∞→lim 存在; 2)∑∞=1n nu收敛⇔{}nS 有界;3) 比较审敛法:∑∞=1n n u ,∑∞=1n n v 为正项级数,且),3,2,1( =≤n v u n n若∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若∑∞=1n n u 发散,则∑∞=1n n v 发散.4) 比较法的推论:∑∞=1n n u ,∑∞=1n n v 为正项级数,若存在正整数m ,当mn>时,n n kv u ≤,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若存在正整数m,当mn >时,n n kv u ≥,而∑∞=1n n v 发散,则∑∞=1n n u 发散.做题步骤:①找比较级数等比数列,调和数列,p 级数1/n p ;②比较大小;③是否收敛;5) 比较法的极限形式:设∑∞=1n n u ,∑∞=1n n v 为正项级数,1若)0( lim +∞<≤=∞→l l v u n nn ,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛; 2若0lim >∞→n n n v u 或+∞=∞→nnn v u lim ,而∑∞=1n n v 发散,则∑∞=1n n u 发散. 6) 比值法:∑∞=1n n u 为正项级数,设l u u nn n =+∞→1lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.7) 根值法:∑∞=1n n u 为正项级数,设l u n nn =∞→lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.8) 极限审敛法:∑∞=1n n u 为正项级数,若0lim >⋅∞→n n u n 或+∞=⋅∞→n n u n lim ,则级数∑∞=1n n u 发散;若存在1>p ,使得)0( lim +∞<≤=⋅∞→l l u n n pn ,则级数∑∞=1n n u 收敛.交错级数:莱布尼茨审敛法:交错级数:∑∞=-1)1(n n nu ,0≥n u 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞→n n u ,则级数∑∞=-1)1(n n n u 收敛;任意项级数:∑∞=1n nu绝对收敛,则∑∞=1n nu收敛;常见典型级数:几何级数:⎪⎩⎪⎨⎧≥<∑∞=1 1 0q q aq n n发散,收敛, p -级数:⎪⎩⎪⎨⎧≤>∑∞=1p 1 11发散,收敛,p n n p(二) 函数项级数1、 定义:函数项级数∑∞=1)(n n x u ,收敛域,收敛半径,和函数;2、 幂级数:∑∞=0n nnx a收敛半径的求法:ρ=+∞→nn n a a 1lim ,则收敛半径 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=∞++∞=+∞<<=0 , ,00 ,1ρρρρR。
高等数学知识点大一详细

高等数学知识点大一详细高等数学是大学中一门重要的数学课程,它主要包括微积分、线性代数和概率统计等内容。
作为大一学生,了解高等数学的基本知识点是非常重要的。
本文将详细介绍大一学生需要了解的高等数学知识点。
一、微积分1.1 极限与连续在微积分中,极限与连续是最基础的概念之一。
学生需要掌握极限的定义、运算法则以及应用。
同时,连续函数的定义及其性质也是需要掌握的内容。
1.2 导数与微分导数是微积分的重要概念,它表示函数在某一点的变化率。
学生需要学习导数的定义、求导法则以及应用。
微分是导数的一种应用,它用来描述函数在某一点的局部线性近似。
1.3 积分与定积分积分是导数的逆运算,它表示函数在给定区间上的累积量。
学生需要学习积分的定义、求积法则、换元积分法等内容。
定积分是积分的一种具体形式,它表示函数在给定区间上的面积或曲线长度。
二、线性代数2.1 矩阵与行列式矩阵是线性代数中的基本概念,它由数个数按照特定规律排列而成。
学生需要学习矩阵的基本运算法则,包括矩阵的加法、减法、乘法等。
行列式是矩阵的一种特殊表示形式,它用来描述矩阵的性质。
2.2 向量与向量空间向量是线性代数中的重要概念,它表示具有大小和方向的量。
学生需要掌握向量的基本运算法则,包括向量的加法、减法、数量乘法等。
向量空间是向量的一种抽象概念,它描述了一组向量的性质。
2.3 线性方程组与特征值特征向量线性方程组是线性代数中的一类方程组,它可以用矩阵和向量的形式表示。
学生需要学习线性方程组的求解方法,包括高斯消元法、矩阵求逆等。
特征值和特征向量是矩阵的重要性质,它们用来描述矩阵的特征和变换。
三、概率统计3.1 随机变量与概率分布随机变量是概率统计中的一种随机量,它表示具有概率分布的变量。
学生需要学习随机变量的概念、概率分布函数、概率密度函数等内容。
3.2 期望与方差期望是随机变量的平均值,它表示随机变量在一次试验中的平均表现。
方差是随机变量离散程度的度量,它表示随机变量与其期望值之间的差异程度。
高数大一最全知识点

高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
大一高数知识点总结详细

大一高数知识点总结详细高等数学作为大一学生必修的一门重要课程,是培养学生抽象思维和数学分析能力的基础。
下面将对大一高数课程的知识点进行详细总结。
希望这个总结能够帮助同学们更好地理解和掌握高等数学的内容。
一、数列与数列极限1. 数列的定义和表示2. 数列的极限概念3. 数列的收敛与发散4. 数列极限的性质与运算5. Cauchy准则6. 单调数列的极限二、函数与连续性1. 实函数和复函数的定义2. 基本初等函数的定义和性质3. 函数的极限概念4. 无穷小量与无穷大量5. 函数的连续性与间断点6. 初等函数的连续性三、导数与微分1. 函数的导数概念2. 导函数的计算方法3. 高阶导数与导数的应用4. 隐函数与参数方程的导数5. 函数的微分与微分近似四、定积分与不定积分1. 定积分的概念和性质2. 可积性与计算方法3. 定积分的应用4. 不定积分的概念和性质5. 基本积分表与换元积分法6. 不定积分的应用五、微分方程1. 微分方程的基本概念2. 高阶线性微分方程和常系数齐次线性微分方程3. 高阶常系数非齐次线性微分方程4. 变量可分离方程与一阶线性微分方程5. 微分方程的应用六、多元函数微积分1. 二元函数和二元函数极限2. 多元函数的连续性和偏导数3. 隐函数与参数方程的偏导数4. 多元函数的极值与条件极值5. 多元函数的微分与全微分七、多重积分1. 二重积分的概念和性质2. 可积性与计算方法3. 极坐标系下的二重积分4. 三重积分的概念和性质5. 球坐标系下的三重积分八、曲线与曲面积分1. 曲线积分的概念和性质2. 线段参数表示和第一类曲线积分3. 第二类曲线积分和格林公式4. 曲面积分的概念和性质5. 参数化表示和曲面积分的计算以上是大一高数课程中的主要知识点总结,希望能给同学们提供一个全面的回顾与复习参考。
在学习过程中,要注重理论与实践相结合,多进行练习和应用,才能真正掌握高等数学的思想和方法。
大一高数下册知识点汇总

大一高数下册知识点汇总在大一高等数学下学期的学习中,我们将继续学习和探索更深入的数学知识。
下面是对本学期知识点的汇总和总结。
一、向量代数1. 向量的基本概念和表示法:向量的定义,零向量,单位向量,向量的数量表示法。
2. 向量的加法和减法:向量之间的加法和减法运算,平行四边形法则,共线向量和共面向量。
3. 数乘和数量积:向量与实数的数乘运算,向量的数量积的定义和性质,向量的模长和方向余弦。
4. 向量的叉乘和向量积:向量的叉乘定义和性质,向量积的模长和方向。
二、空间解析几何1. 空间直线及其方程:空间直线的定义,向量方程和参数方程的转换,直线的方向向量和点向式方程。
2. 平面及其方程:平面的定义,平面的一般方程,点法式方程和一般法式方程。
3. 空间曲线及其方程:空间曲线的定义,参数方程,齐次方程和标准方程。
4. 空间曲面及其方程:二次曲面的方程和图像,球面和圆锥曲线的方程。
三、多元函数及其极限1. 多元函数的概念与性质:多元函数的定义,自变量和因变量的关系,函数的定义域和值域。
2. 多元函数的极限:二重极限和多重极限的概念,函数极限的性质与判定方法。
3. 偏导数:多元函数的偏导数定义,偏导数的计算方法,高阶偏导数,混合偏导数。
4. 微分:多元函数的微分及其几何意义,微分的计算方法。
四、多元函数的微分学1. 隐函数及其求导:隐函数的概念和性质,隐函数求导的方法。
2. 方向导数与梯度:方向导数的定义和计算,梯度的概念和性质。
3. 多元函数极值与条件极值:多元函数的极值判定,约束条件下的极值求解。
五、多元函数的积分学1. 重积分:二重积分的概念和性质,二重积分的计算,极坐标下的二重积分。
2. 三重积分:三重积分的概念和性质,三重积分的计算,柱面坐标和球面坐标下的三重积分。
3. 曲线与曲面积分:曲线积分的概念和计算,曲面积分的概念和计算。
六、无穷级数1. 数列极限与无穷级数:数列的极限概念和性质,常见数列的收敛与发散,无穷级数的概念和性质。
高等数学大一下学期知识点

高等数学大一下学期知识点在高等数学大一下学期中,我们将深入学习一些更加复杂和具体的数学知识点。
这些知识将为我们打下坚实的数学基础,为将来的学习和研究打下基础。
本文将重点介绍几个重要的高等数学知识点。
一、微分方程微分方程是数学中的重要分支,它描述了自然界中许多现象的变化规律。
在大一下学期中,我们将深入学习一阶和二阶微分方程的理论和应用。
一阶微分方程的求解方法有很多,比如分离变量法、恰当方程法和线性微分方程法等。
对于二阶微分方程,我们将学会使用特征根法和常数变易法等方法来求解。
二、概率论和数理统计概率论和数理统计是应用广泛的数学领域,它们研究了概率、随机变量和统计推断等内容。
在大一下学期,我们将学习概率论的基本概念,如事件、概率、条件概率以及贝叶斯定理等。
同时,我们会学习数理统计的基本概念,如样本、参数估计和假设检验等。
三、多元函数微分学多元函数微分学是微积分的重要分支,它研究了多元函数的极限、连续性和可微性等性质。
在大一下学期,我们将深入学习二元函数和三元函数的偏导数、全微分和多元函数的极值等内容。
这些知识将为我们理解和分析多元函数提供重要的工具。
四、向量代数与空间解析几何向量代数与空间解析几何是应用数学中的基础知识,它们在物理学、工程学和计算机科学等各个领域都有广泛的应用。
在大一下学期,我们将学习向量的基本运算、向量的模、数量积和向量积等。
同时,我们也将学习空间解析几何的基本概念,如直线、平面和球面等。
五、级数级数是数学中非常重要的概念,它涉及到数列的无穷求和。
在大一下学期,我们将学习级数的定义和性质,如等比级数、调和级数和幂级数等。
我们还将学会使用级数收敛的判别法和计算级数的和。
总结:高等数学大一下学期的知识点涵盖了微分方程、概率论和数理统计、多元函数微分学、向量代数与空间解析几何以及级数等内容。
掌握这些知识将为我们打下坚实的数学基础,为将来的学习和研究奠定基础。
在学习这些知识的过程中,我们不仅需要理论的掌握,还要注重实际问题的应用和解决方法的灵活运用。
大一下册高数复习知识点

大一下册高数复习知识点大一下册高等数学是大一学生在学习数学方面的重要课程之一。
本文将为大家总结大一下册高数的复习知识点,供大家参考和学习。
一、极限与连续1. 函数的极限函数的极限是指当自变量无限接近某一特定值时,函数的取值接近于一个常数的性质。
其中包括左极限、右极限和无穷极限。
2. 连续与间断函数在某一点上连续是指函数在该点的极限与函数在该点的值相等,否则函数在该点上间断。
根据间断的性质,可以将间断分为可去间断、跳跃间断和无穷间断。
3. 介值定理与零点存在定理介值定理表明,若函数在区间[a, b]上连续,则函数在该区间上可以取到任意两个介于f(a)和f(b)之间的值。
零点存在定理指出,若函数在区间[a, b]上连续,并且f(a)和f(b)异号,则在该区间上至少存在一个零点。
二、导数与微分1. 导数的定义导数表示函数在某一点上的变化率,可以用极限的概念进行定义。
对于函数f(x),在点x处的导数定义为f'(x) = lim(△x→0)[f(x+△x) - f(x)]/△x。
2. 基本导数公式常见的基本导数公式包括常数函数、幂函数、指数函数、对数函数和三角函数等,应熟练掌握它们的导数表达式和求导法则。
3. 导数的几何意义导数可以表示函数在某一点处的切线斜率,通过导数可以分析函数的单调性、极值和拐点等性质。
三、积分与不定积分1. 定积分的概念定积分表示函数在一个闭区间上的面积值,可以看作是函数在该区间上的累积效应。
2. 不定积分的概念不定积分表示函数在某一点的原函数,也可称为反导函数。
3. 基本积分公式常见的基本积分公式包括常数函数、幂函数、指数函数、对数函数和三角函数等的积分表达式和求积法则。
四、微分方程1. 微分方程的定义微分方程是含有未知函数及其导数的方程,描述了函数与其导数之间的关系。
2. 常微分方程的解法常微分方程包括一阶和二阶微分方程,可以使用分离变量法、齐次方程法、二阶线性常系数齐次方程法等方法求解。
高等数学大一下知识点

高等数学大一下知识点
高等数学是大一下学期的一门重要课程,主要涵盖了以下几个知识点:
1. 一元函数微积分
1.1 函数的极限与连续性
1.2 导数与微分
1.3 函数的应用
2. 一元函数积分学
2.1 不定积分
2.2 定积分
2.3 微积分基本定理
3. 多元函数微积分
3.1 多元函数的极限与连续性
3.2 偏导数与全微分
3.3 隐函数与参数方程 3.4 多元复合函数求导
4. 多元函数积分学
4.1 二重积分
4.2 三重积分
4.3 曲线与曲面积分
5. 常微分方程
5.1 一阶常微分方程 5.2 高阶常微分方程 5.3 线性常微分方程
6. 线性代数
6.1 线性方程组与矩阵 6.2 矩阵的运算与性质 6.3 行列式与矩阵的逆
6.4 特征值与特征向量
7. 概率与统计
7.1 随机事件与概率
7.2 随机变量与概率分布
7.3 大数定律与中心极限定理
以上是高等数学大一下学期的主要知识点概述。
学习这些知识将为大家打下扎实的数学基础,为以后的学习和应用提供坚实的支持。
希望大家在学习过程中能够切实掌握这些知识,灵活运用于实际问题中,提高数学思维和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学A2知识点【注意】不考试的知识点:带*号的(除球面坐标系、比值审敛法),二次曲面,斯托克斯公式,函数的幂级数展开式的应用,一般周期函数的傅立叶级数,
物理应用部分,
一、概念与定义
1、数量积、向量积及坐标表示(向量的位置关系);
2、柱面,旋转曲面的方程形式及常见曲面画图,平面,直线的方程及其位置关系,平面束;
曲面、曲线、实体在坐标平面上的投影
3、偏导数定义及判定一点可导的定义方法;
4、偏导、连续、全微分的关系,方向导数与梯度;
5、极值、条件极值,最值和驻点.及拉格朗日乘数法;
6、七类积分的关系,格林公式、高斯公式;
7、级数的定义,等比级数的和,级数收敛的必要条件,常见级数的敛散性及判定方法。
二、计算
1、求极限
(1)二元函数求极限:代入法、两类特殊极限、无穷小性质等
(2)极限不存在的判断:取不同的路径
2、求偏导数或全微分
(1)定义——在某一点可导,常见于分段函数
(2)一个变量为常数,按一元函数求导法则计算,对于指定点的偏导可以先代入一个变量再求;
(3)多元复合函数求导——链式法则;
(4)隐函数(方程与方程组)求导及其高阶导数——不要记公式,理解方法;(5)抽象函数求导及其高阶导数——注意符号;
(6)求(指定点)全微分或判断是否可微——用定义
0 z z x z y
ρ→
∆-∆-∆
=
3、求重积分(画图)
(1)二重积分—坐标系以及区域类型的选择【由区域和被积函数特点定】,积分次序的交换;
(2)三重积分—坐标系以及区域类型的选择【由区域和被积函数特点定】;
(3)对称性区域上奇、偶函数的积分以及对1积分时的计算。
4、求曲线、面积分(画图)
“一代、二换、三定限”
(1)代入参数方程或()
,
z f x y
=;不同的积分换的公式不同;
(2)定限或定区域的时候注意方向性【第二类】及定限规则
(3)格林公式、高斯公式的应用——验证条件并灵活使用;
(4)对称性区域上奇、偶函数的积分以及对1积分时的计算。
5、无穷级数
(1)数项级数审敛;
(2)幂级数收敛域与和函数,函数展开成幂级数;
(3)傅立叶级数的收敛情况——Dirichlet定理的结论
三、应用
1、偏导数的几何应用——空间曲线的切线和法平面、空间曲面的切平面和法线、方
向导数与梯度。
2、偏导数求极值以及条件极值、最值;
3、重积分、曲线、面的几何应用——平面区域的面积、空间曲面的面积,曲顶柱体的体积;
四、证明
1、极限不存在、连续性、可导、可微;
2、偏导数相关等式;
3、格林公式——积分与路径无关、原函数;
4、级数的敛散性判定——注意级数的分类与对应方法;
5、向量的位置关系,平面、直线的位置关系等几何问题。
曲面及其方程
平面与直线
偏导、连续、可微
隐函数的求导
复合函数的链式法则
偏导数的应用
重积分的几何应用
重积分的计算
曲线、曲面积分的差异
GREEN公式计算第二类曲线积分的用法
GAUSS公式计算第二类曲面积分的用法
对称性区域上奇偶性函数的积分
七类积分间的关系
数项级数的审敛方法
幂级数收敛域
幂级数和函数
第一步:求收敛域
第二步:对和函数()S x 求导或积分得到等比级数或x e 、sinx 等,标上收敛区间 第三步:()()0
x
S x S x dx '=⎰或()()()0
x
S x S x dx '
=
⎰表上收敛域。