常见递推数列通项公式的求法

合集下载

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。

是一类考查思维能力的好题。

要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。

类型一:1()n n a a f n +=+(()f n 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。

解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。

【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。

2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。

3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

4、已知}{n a 中,nn n a a a 2,311+==+,求n a 。

5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a ?7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

9、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法递推数列是指数列中的每一项都由前一项通过其中一种规律得出。

求递推数列的通项公式是数学中的重要问题,可以通过多种方法实现。

下面将介绍最常用的几种方法。

1.等差数列通项公式等差数列是指数列中的每一项与前一项之差都相等的数列。

设等差数列的第一项为a1,公差为d,则第n项为an=a1+(n-1)d。

这是等差数列的通项公式。

2.等比数列通项公式等比数列是指数列中的每一项与前一项之比都相等的数列。

设等比数列的第一项为a1,公比为r,则第n项为an=a1*r^(n-1)。

这是等比数列的通项公式。

3.斐波那契数列通项公式斐波那契数列是指数列中的每一项都是前两项之和。

设斐波那契数列的第一项为a1,第二项为a2,则第n项为an=a(n-1)+a(n-2)。

但通常情况下,我们将斐波那契数列的第一项设为0,第二项设为1,此时的通项公式为an=F(n-1),其中F(n-1)表示第n-1个斐波那契数。

4.龙贝尔数列通项公式龙贝尔数列是指数列中的每一项都是前一项与当前项索引之和。

设龙贝尔数列的第一项为a1,则第n项为an=a(n-1)+n。

这是龙贝尔数列的通项公式。

5.通项公式的递推法有些数列并没有明确的通项公式,但可以通过递推法求得通项公式。

递推法的核心思想是找到数列中的其中一种规律,通过前面的项得出后面的项。

这种方法比较灵活,可以适用于各种类型的数列。

总结起来,以上是求递推数列通项公式的几种常见方法。

在实际中,我们可以观察数列的规律,推测出通项公式,然后通过数学推导证明其正确性。

对于复杂的递推数列,我们可能需要运用更多的数学知识和技巧,如离散数学、线性代数等。

数列递推公式的九种方法

数列递推公式的九种方法

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。

常见递推数列通项公式的求法ppt课件

常见递推数列通项公式的求法ppt课件

1S 2
1 23
2 24
n2 2n
n 1 2 n+1

由①-②得
1S 2
1 22
1 23
1 2n
n 1 2n+1
1 2
n 1 2 n 1
S 1 n1 2n
an 2n
1
an 2n
2
n 1 2n
an 2n1 n 1
变式训练:答案an 6 4n1 (n 1) 2n
数列 满足 an
an1 3 4 5 6
n 1
an a1
1 2 n(n 1)
a1
1 an
2 n(n 1)
累乘
例 2:已知数列an 中,a1
1且满足 an1 an
n ,求数 n2
列an 的通项公式。
其他解法探究:
a n 1 an
n n2
(n 2)an1
nan
(n 1)(n 2)an1 n(n 1)an
则可构造n(n 1)an 是常数数列
故an n2 n 2(n 1,2,3,)
方法归纳:累加
可求和
变式训练:
1.已知数列an中, a1 2 满足 an1 an 2n n ,求数列an 的通 项公式. 2.已知数列an 中, a1 2 满足 an1 an n 2n n ,求数列an 的 通项公式.
类型二:形如 an1 f (n)
an1 2an n 2n1 2n1 2n1
an1 an n 2n1 2n 2n1
累加
a2 22
a1 2
1 ,a3 22 23
a2 22
2 23
,,
an 2n
an1 2n1
n 2n
1
,

求数列的通项公式的八种方法(强烈推荐)

求数列的通项公式的八种方法(强烈推荐)

怎样由递推关系式求通项公式一、基本型:(1)a n =pa n-1+q (其中pq ≠0 ,p ≠1,p 、q 为常数)型:——运用代数方法变形,转化为基本数列求解.利用待定系数法,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x ⇒a 1+n + x = p(a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p(a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例1. 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.-1练1.已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n ∈ N +,求通项a n .a n = 2 -2n-1 ,n ∈N + 练2.已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.21nn a ∴=- 二、可化为基本型的数列通项求法: (一)指数型:a n=ca n-1+f(n)型 1、a 1=2,a n =4a n-1+2n (n ≥2),求a n .2、a 1=-1,a n =2a n-1+4〃3n-1(n ≥2),求a n .3、已知数列{}n a 中,1a =92,113232+-+=n n n a a (n ≥2),求n a .∴ n a =13)21(2+--n n(二)指数(倒数)型 1、a 1=1,2a n -3a n-1=(n ≥2),求a n .2、a 1=,a n+1=a n +()n+1,求a n . (三)可取倒数型:将递推数列1nn n ca a a d+=+(0,0)c d ≠≠,1、(2008陕西卷理22)(本小题满分14分)已知数列{a n }的首项135a =,1321n n n a a a +=+,12n = ,,. (Ⅰ)求{a n }的通项公式; 332nn n a ∴=+2、已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式.∴121n a n =-. 3、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . a n =4、 若数列{n a }中,1a =1,n S 是数列{n a }的前n 项之和,且nnn S S S 431+=+(n 1≥),求数列{n a }的通项公式是n a . 131-=n n S ⎪⎩⎪⎨⎧+⋅-⋅-=123833212n n n n a )2()1(≥=n n 三、叠加法:a n=a n-1+f(n)型:1.已知数列{a n }中, 11a =,1n-13n n a a -=+(2)n ≥。

十类递推数列的通项公式的求法

十类递推数列的通项公式的求法
十类递推数列的通项公式的求法
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&
文!黄爱民
一、an+1= an+ f(n)型 这类递推数列可通过累加法求得其通项公式.当 f(n)
为常数时,通过累加法可求得等差数列的通项公式;当
f(n)为等差数列形式时,an+1= an+ f(n)为二阶等差数列, 它的通项公式的形式为 an=an2+bn+c.同时要注意它与等 差数列求和公式的一般形式的区别,后者是 Sn=an2+bn, 它的常数项一定为 0.
对数,得 lgan=lg2an4- 1 ,则有 lgan=4lgan-1+lg2.
∴lgan+
1 3
lg2=4(lgan-
1+
1 3
lg2).从而知{lgan+
1 3
lg2}是
首项为 1 lg2,公比为 4 的等比数列. 3
∴lgan=
(4n-1- 1)lg2 3
=(4n-1- 1)lg#3 2
,即
高中生·高考指导 13
×(3 2
)n- 1=(3 2
)n,即
an=
2n 3n- 2n

九、a n+1=
Aan+B Can+D
(A,B,C,D 为非零常数)型
这类递推数列的通项公式是利用函数的不动点来
求的.尽管这个知识点高考不作要求,但考题往往就从
这些地方出,只需增加一些铺垫.
例 9 若 f(x0)=x0,则称 x0 为 f(x)的不动点.已知函 数 f(x)= 2x+3 .
+1 2
.令
bn=
an 2n
,则有
bn+1=
3 2
bn+

常见递推数列求通项公式的七种方法

常见递推数列求通项公式的七种方法
o型 , 】 两边 取 倒 数 , 造 新 数 列求 解 . 构
解A争 1_. l 1 边 - 得 一 :—-= , : q 两 加2 :l =L 2. } I . ‘+ 在 ,
例 5已知数列 ‘ l a 2 = . 中,t , =
)C k十 l
。 求数列 { ) 的
类 型 二 : 知 口: 口 ) 。, ・ 型 . 用 累 乘 法 求 已 I ≠o , = ( | 可
‘ ・
例. 数 {J,} =,数 {) 4知 列 中8 , 列 的 已 - + 求 = -
通项公式.
由 口- 叶
。 可知 :
u l
1 )

, , …
t t. t ̄ 1

1 ) ・
解法一 : 已知 + 两边 同除 以 2 J 给 a 肿, }一 得
把上面各项两边分别相乘 , 得
’ 1 ,b 参- + 冷6 则 . } 1 ,

= l ) 2… ・ 一 ) 口・ 【) 1 ≥2 1 . )


例 2设 I l 首 项 为 1的 正 项 数 列 , (+ ) . 是 且 ,1 l
至多 有 1 是 二 等 品 ” 件 的概 率 P A)O9 . ( = .6
解 法 二 : I 2 两 边 同除 以 ( 1 , ( 1“ 广 对 + = l I 一 ) 得 一 )


}^ ‘‘=. ・ }争争} ・
E . Ⅳ) .
} 等 比数 列. 为
(1 = (2^ _ ) 一- ) . 令 6 - ) , 6 l(1 ‰ l (1 则 =_ ,
常见递推数列 求通项公 式的七种方法

寒假专题——常见递推数列通项公式的求法

寒假专题——常见递推数列通项公式的求法

寒假专题——常见递推数列通项公式的求法在数学中,递推数列是一种由前一项或多项推出后一项的数列。

在寒假期间,我们将专注于常见递推数列通项公式的求法。

掌握这些公式可以帮助我们更快速地解决数学问题。

一、斐波那契数列斐波那契数列是一个非常经典的递推数列。

它的通项公式求法如下所示:设斐波那契数列的第n项为Fn,那么有以下公式成立:Fn = Fn-1 + Fn-2其中,F1 = 1,F2 = 1。

二、等差数列等差数列是一种每一项与前一项之差相等的数列。

对于等差数列,我们可以使用通项公式来求解。

设等差数列的第n项为an,首项为a1,公差为d,则有以下公式成立:an = a1 + (n-1)d三、等比数列等比数列是一种每一项与前一项之比相等的数列。

对于等比数列,我们可以使用通项公式来求解。

设等比数列的第n项为an,首项为a1,公比为r,则有以下公式成立:an = a1 * r^(n-1)四、斐波那契数列的推广斐波那契数列可以推广到更复杂的形式。

例如,当第一项为F1 = a,第二项为F2 = b时,我们可以得到如下通项公式:Fn = F(n-1) + F(n-2)五、等差数列的推广等差数列也可以进行推广。

例如,若等差数列的初始项不是a1,而是a2,则通项公式变为:an = a2 + (n-2)d其中,n表示所求项的位置。

六、等比数列的推广等比数列也可以有进一步的推广形式。

当等比数列的首项为a1,比率为r,公式可以改写成以下形式:an = a1 * r^(n-k)其中,k表示所求项的位置。

七、其他数列的通项公式除了斐波那契数列、等差数列和等比数列之外,还存在许多其他常见的数列,它们也都有各自的通项公式。

在寒假期间,我们可以研究这些数列的特性和求解方法,从而增加数学的深度和广度。

八、总结递推数列通项公式的求法是数学中的重要内容之一。

通过掌握常见数列的通项公式,我们可以在解决数学问题时更加高效和便捷。

希望在寒假期间,大家能够钻研这些通项公式,并在实践中掌握它们的应用方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列复习课(3)———常见递推数列通项公式的求法主备人:刘莉苹 组长:李英 时间:2013-9-16教学目标:1.通过求出数列前几项,了解递推公式是给出数列的一种方法,并能根据特殊的递推公式求出数列的通项公式.2.掌握把一些简单的数列变形转化为等差数列、等比数列的方法,体验解决数列问题的基本方法及理解运用的过程.教学重点:处理递推关系的基本方法.教学难点:通过变形转化成等差、等比数列的有关问题. 研讨互助 问题生成引入新课: 由递推公式求数列的通项公式的类型:(1) (2) (3) (4)()n f pa a n n +=+1型数列(p 为常数)(5)n n n qa pa a +=++12(其中p ,q 均为常数)。

(6)递推公式为n S 与n a 的关系式()n n S f a = 即n a 与n s 的关系11(1)(2)n nn s n a s s n -=⎧=⎨-≥⎩ (7)rn n pa a =+1)0,0(>>n a p(8))()()(1n h a n g a n f a n nn +=+(9)周期型思考:各类型通项公式的求法?合作探究 问题解决 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求1()n n a a f n +=+1()n n a a f n +=⋅1(0,1)n n a pa q p p +=+≠≠变式:1. 已知数列{}n a 满足211=a ,112n n a a +=+,求n a . 2.若数列{}n b 满足11b =,112nn n b b +⎛⎫-= ⎪⎝⎭(1)n ≥,求数列{}n b 的通项公式. 3.已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。

变式:1. 已知31=a ,132n n a a +=,求n a 。

2.已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。

3.在数列{}n a 中, n a >0,221112,(1)n n n n a na n a a a ++==++,求n a .类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例3.已知数列{}n a 中,11a =-,123n n a a +=-+,求n a .变式:在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________类型4 ()n f pa a n n +=+1型数列(p 为常数)若()f n 为n 的一次函数,则n a 加上关于n 的一次函数构成一个等比数列; 若()f n 为n 的二次函数, 则n a 加上关于n 的二次函数构成一个等比数列.这时我们用待定系数法来求解.若()f n 为n 的指数幂形式,此类数列可变形为()111++++=n n n n n p n f p a p a ,则⎭⎬⎫⎩⎨⎧n n p a 可用累加法求出,由此求得n a .例4 (1)已知数列{}n a 满足1111,2,21,.2n n n a n a a n a -=≥=+-当时求(2)已知数列{}n a 满足1111,22n n n a a a ++==+,求n a .变式:1.已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。

2.已知数列{}n a ,n S 表示其前n 项和,若满足231n n S a n n +=+-,求数列{}n a 的通项公式。

类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

解法(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足⎩⎨⎧-==+q st pt s例5.已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈(I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式;变式: 已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。

类型6 递推公式为n S 与n a 的关系式。

(或()n n S f a =)解法:这种类型一般利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n nn 与)()(11---=-=n n n n n a f a f S S a 消去n S)2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。

例6.已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .变式:1. {}n a 的前n 项和221n s n =-,求通项n a .2.(2006,陕西,理,20)已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n类型7 rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。

例7.已知数列{n a }中,2111,1n n a aa a ⋅==+)0(>a ,求数列{}.的通项公式n a类型8 )()()(1n h a n g a n f a n nn +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1。

例8.已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。

变式:数列{}n a 中,11113,33n nn n na a a a +++⋅==+,求{}n a 的通项。

类型9 周期型 解法:由递推式计算出前几项,寻找周期。

例9.若数列{}n a 满足⎪⎪⎩⎪⎪⎨⎧<≤-≤≤=+)121(,12)210(,21n n n n n a a a a a ,若761=a ,则20a 的值为___________。

变式。

已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .23拓展训练 巩固提高1.已知数列{}n a 中, 11a =, 12n n a a +=+ ().n N *∈求数列{}n a 的通项公式.2.已知数列{}n a 中, 11,2a =113n n n a a +=+*(),n N ∈求数列{}n a 的通项公式.3.已知数列{}n a 中,11,2a =121n n a a n n+=++, *(),n N ∈求数列{}n a 的通项公式.4.已知数列{}n a 中13,a =13n n a a +=*().n N ∈求数列{}n a 的通项公式.5.已知数列{}n a 满足11,a =12n n n a a +=*(),n N ∈求数列{}n a 的通项公式.6.已知数列{}n a 中,13,2a =*133(),n n a a n N +=+∈求数列{}n a 的通项公式. 7. 已知数列{}n a 中,11,a =*133(),n n n a a n N +=+∈求数列{}n a 的通项公式.8.已知数列{}n a 中,12a =,1431n n a a n +=-+,*(),n N ∈求数列{}n a 的通项公式.9. 数列{}n a 中,,3,221==a a 且()2,211≥∈+=++-n N n a a a n n n ,求n a 10.已知数列{}n a 满足1122,2nn n a a a a +==+,求n a . 11.数列{}n a 中,11112,22n nn n na a a a +++⋅==+,求{}n a 的通项。

12.已知下列两数列{}n a 的前n 项和n s 的公式,求{}n a 的通项公式。

(1)21n s n =- (2)223n s n n =-。

相关文档
最新文档