专题由递推关系求数列的通项公式(含答案)
数列专题复习之典型例题(含答案)

数列知识点-——-求通项一、由数列的前几项求数列的通项:观察法和分拆与类比法-—-—-猜测———-证明(略)二、由a n 与S n 的关系求通项a n例1已知数列{a n }的前n 项和为S n =3n -1,则它的通项公式为a n =________。
答案2·3n -1练1 已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 答案a n =错误!三、由数列的递推公式求通项例3、(1)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .设3n n n b S =-,求数列{}n b 的通项公式;答案: 13(3)2n n n n b S a -=-=-,*n ∈N .(2)(4)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠).(Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩(3)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ;答案:(1)2nnn a n λ=-+21212(1)22(1)(1)n n n n n n S λλλλλ+++--+=+-≠- 1(1)22(1)2n n n n S +-=+-λ=(4)已知数列{}n a 满足:()213,22n n a a a n n N *+=+=+∈(1)求数列{}n a 的通项公式; (2)设1234212111n n nT a a a a a a -=+++,求lim n n T →∞答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩注意:由数列的递推式求通项常见类型(请同学们查看高一笔记)1.)(1n f a a n n +=+ 2 . n n a n f a )(1=+.3 q pa a n n +=+1(其中p,q 均为常数,)0)1((≠-p pq )。
(完整版)数列专题1递推公式求通项公式(练习)

专题1:递推公式求通项公式1.数列3,7,13,21,31,…,的一个通项公式为( )A .14-=n a nB .223++-=n n n a nC .12++=n n a n D .不存在2.在数列}{n a 中,21-=a , n a a n n +=+21,则=3a ( ) A. 6- B. 5- C. 4- D. 3-3.数列}{n a 中,a 1=1,对于所有的2n ≥,*n N ∈都有2123n a a a a n ⋅⋅=L ,则35a a +=等于( )A.1661B.925C.1625D.1531 4.下列各式中,可以作为数列}{n a 的通项公式的是:( ) A .2-=n a n B .)2(log 1-=-n a n n C .112++=n n a n D .4tan πn a n = 5.在数列}{n a 中,2,121==a a ,n n n a a a -=++122,则=4a ( ) A .3 B .4 C .5 D .6 6.古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。
下列数中及时三角形数又是正方形数的是 ( )A .289B .1024C .1225D .13787.数列}{n a 的前n 项和)2(2≥⋅=n a n S n n ,而11=a ,通过计算2a ,3a ,4a 猜想=n aA .2)1(2+n B .n n )1(2+ C .122-n D .122-n8.数列}{n a 中,)2(31,1111≥+==--n a a a a n n n ,则数列{a n }的通项公式是:( )A .231-n B .231+n C .321-n D .321+n 9.数列}{n a 中,若)(2)13(1+∈-=N n a S n n ,且544=a ,则1a 的值是________. 10.数列}{n a 满足2112313333n n n a a a a -+++++=L *()n N ∈,则=n a __________. 11.已知数列}{n a 满足21=a ,+∈∀N n ,0>n a ,且0)1(2112=-++++n n n n na a a a n ,则数列}{n a 的通项公式是=n a ____ __。
高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)

4.1.2 数列的递推公式知识点一数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.数列递推公式与通项公式的关系:递推公式表示a n 与它的前一项a n -1(或前n 项)之间的关系,而通项公式表示a n 与n 之间的关系. 要点二 a n 与S n 的关系1.前n 项和S n :把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =12n a a a +++ 2.a n 与S n 的关系:a n =11,1,2n n S n S S n -=⎧⎨-≥⎩【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)根据通项公式可以求出数列的任意一项.( ) (2)有些数列可能不存在最大项.( ) (3)递推公式是表示数列的一种方法.( ) (4)所有的数列都有递推公式.( ) 【答案】(1)√(2)√(3)√(4)×2.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5 D .19 【答案】D【解析】a 3=a 2+a 1=5+2=7,a 4=a 3+a 2=7+5=12,a 5=a 4+a 3=12+7=19,故选D. 3.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 【答案】B【解析】令2n 2-3=125得n =8或n =-8(舍),故125是第8项.故选B. 4.已知数列{a n }的前n 项和为S n =n 2,则a n =________. 【答案】2n -1【解析】当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=n 2-n 2+2n -1=2n -1.当n =1时,a 1=S 1=1满足上式,所以{a n }的通项公式为a n =2n -1.题型一 数列中项与项数关系的判断(1)写出数列的一个通项公式,并求出它的第20项;(2)判断42和10是不是该数列中的项?若是,指出是数列的第几项,若不是,请说明理由.【解析】(1)由于22=8,所以该数列前4项中,根号下的数依次相差3,所以它的一个通项公式为a n =3n -1;a 20=3×20-1=59.(2)令3n -1=42,两边平方得3n =33,解得n =11,是正整数令3n -1=10,两边平方得n =1013,不是整数.∴42是数列的第11项,10不是数列中的项. 【方法归纳】(1)由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.(2)判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.(3)在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.【跟踪训练1】已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出此数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢? 【解析】(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项.由3n 2-28n =68解得n =-2或n =343,所以68不是该数列的一项.题型二 已知S n 求a n例2 设S n 为数列{a n }的前n 项和,S n =2n 2-30n .求a n . 【解析】当n ≥2时,a n =S n -S n -1=2n 2-30n -[2(n -1)2-30(n -1)]=4n -32 当n =1时,a 1=S 1=-28,适合上式, 所以a n =4n -32.借助a n =⎩⎪⎨⎪⎧S 1,(n =1)S n -S n -1(n ≥2)【变式探究1】将本例中的“S n =2n 2-30n ”换为“S n =2n 2-30n +1”,求a n . 【解析】当n =1时,a 1=S 1=2×1-30×1+1=-27. 当n ≥2时,a n =S n -S n -1=2n 2-30n +1-[2(n -1)2-30(n -1)+1] =4n -32.验证当n =1时,上式不成立∴a n =⎩⎪⎨⎪⎧-27,n =14n -32,n ≥2.方法归纳已知数列{a n }的前n 项和公式S n ,求通项公式a n 的步骤: (1)当n =1时,a 1=S 1.(2)当n ≥2时,根据S n 写出S n -1,化简a n =S n -S n -1.(3)如果a 1也满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式为a n =S n -S n -1;如果a 1不满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式要分段表示为a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1,n ≥2.【跟踪训练2】已知数列:a 1+3a 2+32a 3+…+3n -1a n =n 3,求a n .【解析】当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13,满足a n =13n ,所以a n =13n .题型三 由数列递推公式求通项公式【例3】已知数列{a n }中,a 1=1,a n +1=a n +n +1,则a n =________.【答案】n (n +1)2【解析】∵a n +1=a n +n +1,a 1=1,∴a n +1-a n =n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,…,a 2-a 1=2 以上式子相加得: a n -a 1=2+3+…+n∴a n =1+2+3+…+n =n (n +1)2.变形为:a n +1-a n =n +1,照此递推关系写出前n 项中任意相邻两项的关系,这些式子两边分别相加可求. 【变式探究2】若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,则a n =________.【答案】1n【解析】∵a n +1=n n +1a n ,a 1=1,∴a n +1a n =nn +1,∴a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 2a 1=12,以上式子两边分别相乘得:a n a 1=n -1n ×n -2n -1×…×12=1n∴a n =1n a 1=1n .【方法归纳】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加法或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.【跟踪训练3】在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 【答案】A【解析】∵在数列{a n }中,a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=2+ln n .故选A.【易错辨析】数列中忽视n 的限制条件致误【例4】设S n 为数列{a n }的前n 项和,log 2(S n +1)=n +1,则a n =________.【答案】⎩⎪⎨⎪⎧3,n =12n ,n ≥2【解析】由log 2(S n +1)=n +1得S n +1=2n +1,∴S n =2n +1-1当n ≥2时a n =S n -S n -1=2n +1-1-2n +1=2n .当n =1时,a 1=S 1=3.经验证不符合上式.∴a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2.【易错警示】1. 出错原因忽视n =1的情况致错,得到错误答案:a n =2n . 2. 纠错心得已知a n 与S n 的关系求a n 时,常用a n =S n -S n -1(n ≥2)来求a n ,但一定要注意n =1的情况.一、单选题1.设数列{}n a 的前n 项和为n S ,11a =,2(1)nn S a n n =+-,(*n N ∈),若()22112n S S S n n+++--2013=,则n 的值为( ). A .1007 B .1006 C .2012 D .2014【答案】A 【分析】根据数列n a 与n S 的关系证得数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,利用等差数列的前n 项和公式求出题中的式子,化简计算即可. 【解析】2(1)nn S a n n=+-, 12(1)(2)nn n S S S n n n-∴-=+-, 整理可得,1(1)2(1)n n n S nS n n ---=-, 两边同时除以(1)n n -可得12(2)1n n S S n n n --=-,又111S = ∴数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,2321(1)23nS S S S n n∴++++-- 2(1)12(1)2n n n n -=⨯+⨯-- 22(1)n n =--21n =-,由题意可得,212013n -=, 解得1007n =. 故选:A .2.南宋数学家杨辉在《解析九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .171 B .190 C .174 D .193【答案】C 【分析】根据题意可得数列3,4,6,9,13,18,24,⋯,满足:11(2)n n a a n n --=-,13a =,从而利用累加法即可求出n a ,进一步即可得到19a 的值. 【解析】3,4,6,9,13,18,24,后项减前项可得1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()111133,222n n n n n -+⋅--=+=+≥.所以19191831742a ⨯=+=. 故选:C3.在数列{}n a 中,11a =,121nn n a a +-=-,则9a =( )A .512B .511C .502D .503【答案】D 【分析】利用累加法先求出通项即可求得答案. 【解析】因为11a =,121nn n a a +-=-,所以()()()121321n n n a a a a a a a a -=+-+-++-=()()()21211(21)21211222(1)2n n n n n --+-+-++-=++++--=-,所以9929503a =-=.故选:D. 4.数列23,45,69,817,1033,…的一个通项公式为( )A .221n n n a =+ B .2221n n n a +=+ C .1121n n n a ++=-D .12222n n n a ++=+【答案】A 【分析】根据数列中项的规律可总结得到通项公式. 【解析】1221321⨯=+,2422521⨯=+,3623921⨯=+,48241721⨯=+,510253321⨯=+, ∴一个通项公式为:221n nna =+. 故选:A.5.下列命题不正确的是( )A 的一个通项公式是n aB .已知数列{},3n n a a kn =-,且711a =,则1527a =C .已知数列{}n a 的前n 项和为()*,25n n n S S n N =-∈,那么123是这个数列{}n a 的第7项D .已知()*1n n a a n n N +=+∈,则数列{}n a 是递增数列【答案】C 【分析】A:根据被开方数的特征进行判断即可;B:运用代入法进行求解判断即可;C:根据前n项和与第n项之间的关系进行求解判断即可;D:根据递增数列的定义进行判断即可.【解析】对于A31⇒⨯na⇒=A正确;对于B,3na kn=-,且7151122327na k a n a=⇒=⇒=-⇒=,B正确;对于C,()*25nnS n N=-∈,13a=-,当2,n n N*≥∈时,111222n n nn n na S S---=-=-=,12127n-=,无正整数解,所以123不是这个数列{}n a的第7项,C错误;对于D.由()*11,0n n n na a n n N a a n++=+∈-=>,易知D正确,故选:C.6.已知数列{}n a的前n项和2nS n=,则数列11n na a+⎧⎫⎨⎬⎩⎭的前99项和为()A.1168B.1134C.198199D.99199【答案】D【分析】先根据11,2,1n nnS S naS n--≥⎧=⎨=⎩,求出21na n=-,然后利用裂项相消求和法即可求解.【解析】解:因为数列{}n a的前n项和2nS n=,2121nS n n-=-+,两式作差得到21(2)na n n=-≥,又当1n=时,21111a S===,符合上式,所以21na n=-,111111(21)(21)22121n na a n n n n+⎛⎫==-⎪-+-+⎝⎭,所以12233411111n na a a a a a a a+++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D.7.数列{}n a 中的前n 项和22nn S =+,数列{}2log n a 的前n 项和为n T ,则20T =( ).A .190B .192C .180D .182【答案】B 【分析】根据公式1n n n a S S -=-计算通项公式得到14,12,2n n n a n -=⎧=⎨≥⎩,故2,11,2n n b n n =⎧=⎨-≥⎩,求和得到答案.【解析】当1n =时,111224a S ==+=;当2n ≥时,()11112222222n n n n n n n n a S S ----=-=+-+=-=,经检验14a =不满足上式,所以14,12,2n n n a n -=⎧=⎨≥⎩, 2log n n b a =,则2,11,2n n b n n =⎧=⎨-≥⎩,()201911921922T ⨯+=+=. 故选:B.8.已知数列{}n a 满足11a =,()()()11*12n n n n a a a a n N n n ++-=∈++,则10a 的值为( )A .1231B .2231C .1D .2【答案】B 【分析】首先根据已知条件得到1111112n n a a n n +-=-++,再利用累加法求解即可. 【解析】 因为()()()*1112n n n n a a n n n N a a ++++=∈-,所以()()()*11112nn n n a a n N a a n n ++-=∈++, 所以()()111111212n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,当2n ≥时,11221111111n n n n a a a a a a ---⎛⎫⎛⎫⎛⎫-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111123n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪⎪+ ⎪ ⎝⎭⎝⎭-⎝⎭, 1111121n a a n -=-+,解得()11131122122n n n a n n +=-+=≥++ 当1n =时,上式成立,故2231n n a n +=+,故102022230131a +==+. 故选:B二、多选题9.数列{a n }的前n 项和为S n ,()*111,2N n n a a S n +==∈,则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .21,123,2n n n a n -=⎧=⎨⋅≥⎩【答案】ABD 【分析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a ,进而求得n S 以及判断出{}n S 是等比数列.【解析】依题意()*111,2N n n a a S n +==∈,当1n =时,2122a a ==, 当2n ≥时,12n n a S -=,11222n n n n n a a S S a +--=-=,所以13n n a a +=,所以()2223232n n n a a n --=⋅=⋅≥,所以21,123,2n n n a n -=⎧=⎨⋅≥⎩. 当2n ≥时,1132n n n a S -+==;当1n =时,111S a ==符合上式,所以13n n S -=.13n nS S +=,所以数列{}n S 是首项为1,公比为3的等比数列. 所以ABD 选项正确,C 选项错误.故选:ABD10.已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足1n n b a =,若n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,则k 的值不可能是( ) A .4 B .6 C .8 D .10【答案】AD 【分析】利用n a 与n S 的关系,求得n a ,进而求得n b ,然后根据n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,得到n 与k 的关系,进而求得答案.【解析】当1n =时,11212a S ===,当2n ≥时,()()2211122n n n n n n n a S S n --+++=-=-=,故n a n =(N n *∈),11n n b a n ==(N n *∈).因为n b ,2n b +,n k b +(N k *∈,2k >)成等差数列,所以22n n n k b b b ++=+,即2112n n n k=+++,所以48422n k n n ==+--,(2k >,N k *∈),从而2n -的取值为1,2,4,8,则对应的k 的值为12,8,6,5,所以k 的值不可能是4,10, 故选:AD .第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.数列{}n a 的前n 项的和231n S n n =++,n a =________.【分析】利用2n 时,1n n n a S S -=-求n a ,同时注意11a S =. 【解析】解析:由题可知,当2n 时,1n n n a S S -=-22313(1)(1)1n n n n ⎡⎤=++--+-+⎣⎦62n =-,当1n =时,113115a S ==++=,故答案为:5,162,2n n n =⎧⎨-⎩.12.设数列{a n }的前n 项和为S n =2n -3,则a n =________.【答案】【解析】解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =13.已知数列{}n a 的前n 项和为n S ,若n n a b S +=,2414a a =,则数列{}n a 的通项公式为___________. 【答案】212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭【分析】 由n n a b S +=可得数列{}n a 是公比为12的等比数列,然后根据2414a a =求出21a =即可. 【解析】因为n n a b S +=,所以当1n =时,1112b a S a +==,即12b a = 当2n ≥时,11n n b a S --+=,然后可得10n n n a a a --+=,即()1122n n a a n -=≥ 所以数列{}n a 是公比为12的等比数列 所以21124b a a ==,4111816a a b ==, 因为22411644a ab ==,所以4b =±, 当4b =时, 21a =,2221122n n n a a --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当4b =-时, 21a =-,2221122n n n a a --⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭故答案为:212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭四、解答题 14.已知数列{}n a 的前n 项和()2*2n S n kn k N =-+∈,且n S 的最大值为4.(1)求常数k 及n a ;(2)设()17n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)2k =,25n a n =-+ (2)2(1)n n T n =+ 【分析】(1)由于()222*2()n S n kn n k k k N =-+=--+∈,则可得24k =,从而可求出2k =,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a , (2)由(1)可得11121n b n n ⎛⎫=- ⎪+⎝⎭,然后利用裂项相消求和法求解即可 (1)因为()222*2()n S n kn n k k k N =-+=--+∈,所以当n k =时,n S 取得最大值2k , 所以24k =,因为*k N ∈,所以2k =,所以24n S n n =-+,当1n =时,11143a S ==-+=,当2n ≥时,2214[(1)4(1)]25n n n a S S n n n n n -=-=-+---+-=-+,13a =满足上式,所以25n a n =-+(2)由(1)可得()()11111177252(1)21n n b n a n n n n n n ⎛⎫====- ⎪-+-++⎝⎭, 所以1111111112222321n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111212(1)n n n ⎛⎫=-= ⎪++⎝⎭ 15.已知数列{}n a 满足()23*1232222n n a a a a n n N ++++=∈,求数列{}n a 的通项公式.【答案】12n na =【分析】 先根据前n 项和与通项的关系得12n n a =,再检验1n =时也满足条件即可求得答案. 【解析】因为23*1232222()n n a a a a n n N ++++=∈①, 所以()2311231222212n n a a a x a n n --++++=-≥②, ①-②得21(2)n n a n =≥,即 12n n a =, 当1n =时,112a =,满足12n n a =, 所以12n na = 16.已知数列{}n a 的前n 项和112n n S ⎛⎫=+ ⎪⎝⎭,求数列{}n a 的通项公式. 【答案】312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【分析】根据n S 与n a 的关系式,求解数列的通项公式即可.需要注意验证首项.【解析】()111111222n n n n S S n --⎛⎫⎛⎫=+∴=+≥ ⎪ ⎪⎝⎭⎝⎭①②-①②得()122n n a n ⎛⎫=-≥ ⎪⎝⎭ 根据题意,1111311222a S ⎛⎫==+=≠- ⎪⎝⎭ 所以数列的通项公式为312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩。
高考数学题型全归纳:如何由递推公式求通项公式典型例题(含答案)

如何由递推公式求通项公式高中数学递推数列通项公式的求解是高考的热点之一,是一类考查思维能力的题型,要求考生进行严格的逻辑推理。
找到数列的通项公式,重点是递推的思想:从一般到特殊,从特殊到一般;化归转换思想,通过适当的变形,转化成等差数列或等比数列,达到化陌生为熟悉的目的。
下面就递推数列求通项的基本类型作一个归纳,以供参考。
类型一:1()nna a f n 或1()n na g n a 分析:利用迭加或迭乘方法。
即:112211()()+()nnnnna a a a a a a a ……或121121n n n nna a a a a a a a ……例1.(1)已知数列na 满足11211,2nna a a nn,求数列n a 的通项公式。
(2)已知数列n a 满足1(1)1,2nn n a a s ,求数列n a 的通项公式。
解:(1)由题知:121111(1)1nna a nnn n nn 112211()())n n n n na a a a a +(a -a a (1)111111()()()121122n n nn ……312n(2)2(1)n n s n a 112(2)nn s na n两式相减得:12(1)(2)n nna n a na n 即:1(2)1n na n n a n 121121n n nn n a a a a a a a a (121)121nn n n……n类型二:1(,(1)0)nn a pa q p q pq p 其中为常数,分析:把原递推公式转为:1(),1nnq a tp a t p其中t=,再利用换元法转化为等比数列求解。
例2.已知数列n a 中,11,123n n a a a ,求n a 的通项公式。
解:由123nn a a 可转化为:132(3)n na a 令3,nn b a 11n+1n则b =a +3=4且b =2b n b 1是以b =4为首项,公比为q=2的等比数列11422n n bn即123n na 类型三:1()(nn a pa f n 其中p 为常数)分析:在此只研究两种较为简单的情况,即()f x 是多项式或指数幂的形式。
常见递推数列通项公式的求法

(5)累乘法:
an1 an
f (n) ( f (1) f (2)
i 1
f (n)可求)
(6)构造法 an1 kan b
(7)作商法( a1a2 an cn 型);
(8)数学归纳法.
类型1 an1 an f (n)
类型1 an1 an f (n)
求法:累加法
类型3 an1 pan q( p 0, p 1)
求法 : 待定系数法.令an1 p(an ), 其中为待定系数,化为等比数列 {an }求通项.
例3 已知数列{an }中,若a1 1, an1 2an 3(n 1),求数列{an }的通项公式.
为首项, 公比为
(1)n1. 2
1 2
的等比数列.
又
an
1 2
an1
1,
an 2 21n.
【1】设数列{an}的前 n 项和为 Sn , 已知 a1 5 ,且 nSn1 2n(n 1) (n 1)Sn (n N ) , 则数列 an 的通项公式 是( A)
1 3 (an1 2an2 )(n 3,4, ) (1)求证 : 数列{an1 an }是等比数列; (2)求数列{an }的通项公式an .
【1】已知数列 {an} 中,
a1=1,
an+1=
1 2
an+1 (nN*),
则an =___2___2__1_n____.
Q
an1
类型6
an1
pan qan
r
(
p, q,
r均不为零)
类型6
an1
利用递推关系求数列通项的九种类型及解法

利用递推关系求数列通项的九种类型及解法1.形如)(1n f a a n n =-+型(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,)2(23f a a =-)1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n +++-+-=-即:∑-=+=111)(n k n k f a a .为了书写方便,也可用横式来写:2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---=1)1()2()2()1(a f f n f n f ++++-+- . 例 1. (2003天津文) 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=nn a证明:由已知得:故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=---=.213133321-=++++--nn n ∴213-=nn a .例 2.已知数列{}n a 的首项为1,且*12()n n a a n n N+=+∈写出数列{}n a 的通项公式.答案:12+-n n例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:na n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
数列培优教程通项公式及递推关系变(有答案)

数列培优教程通项公式及递推关系一.概述各种数列问题在很多情形下,就是对数列通项公式的求解.特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈.这里总结出几种求解数列通项公式的方法.方法1:归纳猜想方法2:化为等差数列或等比数列二.类型与例题类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解. 例1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a . 变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解. 例2.已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a .变式1:已知正项数列{}n a 满足11a =,1221(2)(1)0,n n n n n a n a a a +++-++=则它的通项公式为A.11n a n =+ B. 21n a n =+ C. 12n n a += D. n a n =变式2:已知数列{}n a 满足11a =,12,n n n a a +=求它的通项公式.例3.已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a . 变式:已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项 、 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ). 解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解. {}变式:已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式; (II )若数列{b n }滿足12111*444(1)(),n n b b b b n a n N ---=+∈证明:数列{b n }是等差数列;(Ⅲ)证明:*122311...().232n n a a a n nn N a a a +-<+++<∈类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ).(或1n n n a pa rq +=+,其中p ,q, r 均为常数) .解法:一般地,要先在原递推公式两边同除以1+n q ,得:q q a q p qa n n n n 111+∙=++引入辅助数列{}n b (其中nn n q a b =),得:q b q p b nn 11+=+再待定系数法解决. 例5.已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a . 变式:设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2nn nT S =,1,2,3,n =,证明:132nii T =<∑ 例6.设0a 为常数,且)(2311N n a a n n n ∈-=--.(Ⅰ)证明对任意n ≥1,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-; (Ⅱ)假设对任意n ≥1有1->n n a a ,求0a 的取值范围.类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数).例7.数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式.例8.已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a .变式1:已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈ (I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式;变式2.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2==n a c n nn ,求证:数列{}n c 是等差数列; ⑶求数列{}n a 的通项公式及前n 项和.类型6 递推公式为n S 与n a 的关系式.(或()n n S f a =) 解法:这种类型一般利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S)2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解.例9.已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .变式1: 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n变式2:已知数列{a n }的前n 项和S n 满足S n -S n -2=3,23,1),3()21(211-==≥--S S n n 且求数列{a n }的通项公式.类型7 b an pa a n n ++=+1)001(≠≠,a 、p 解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列. 例10.设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .变式:已知数列{n a }中,11122n n a n a a +=-、点(、)在直线y=x 上,其中n=1,2,3… (Ⅰ)令11,n n n b a a +=-+求证数列{}n b 是等比数列; (Ⅱ)求数列{}的通项;n a (Ⅲ)设分别为数列、n n T S {}、n a {}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭为等差数列?若存在试求出λ 不存在,则说明理由.类型8 rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解. 例11.已知数列{n a }中,2111,1n n a aa a ⋅==+)0(>a ,求数列{}.的通项公式n a变式1:已知数列:,}{且满足的各项都是正数n a .),4(21,110N n a a a a n n n ∈-==+ (1)证明;,21N n a a n n ∈<<+ (2)求数列}{n a 的通项公式a n . 变式2:已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,… ⑴证明数列{lg(1+a n )}是等比数列;⑵设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项;类型9 )()()(1n h a n g a n f a n nn +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1.例12.已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式.变式:1.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-(1) 求数列{a n }的通项公式;(2) 证明:对于一切正整数n ,不等式a 1∙a 2∙……a n <2∙n !2、已知数列{a }满足2,1≥=n a 时,a a a a 2=-,求通项公式.3、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式.4、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . 类型10 hra qpa a n n n ++=+1解法:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra qpa a n n n ++=+1(其中p 、q 、r 、h均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=,当特征方程有且仅有一根0x 时,则01n a x ⎧⎫⎨⎬-⎩⎭是等差数列;当特征方程有两个相异的根1x 、2x 时,则12n n a x a x ⎧⎫-⎨⎬-⎩⎭是等比数列.例13.已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.例14.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a(1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a(4)当1a 取哪些值时,无穷数列}{n a 不存在?变式:数列).1(0521681}{111≥=++-=++n a a a a a a n n n n n 且满足记).1(211≥-=n a b n n(Ⅰ)求b 1、b 2、b 3、b 4的值; (Ⅱ)求数列}{n b 的通项公式及数列}{n n b a 的前n 项和.n S类型11 q pn a a n n +=++1或n n n pq a a =⋅+1解法:这种类型一般可转化为{}12-n a 与{}n a 2是等差或等比数列求解. 例15.(I )在数列}{n a 中,n n a n a a -==+6,111,求n a (II )在数列}{n a 中,n n n a a a 3,111==+,求n a类型12双数列型解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解. 例16.已知数列{}n a 中,11=a ;数列{}n b 中,01=b .当2≥n 时,)2(3111--+=n n n b a a ,)2(3111--+=n n n b a b ,求n a ,n b .变式.设点n A (n x ,0),1(,2)n n nP x -和抛物线n C :y =x 2+a n x +b n (n ∈N *),其中a n =-2-4n -112n -,nx 由以下方法得到:x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1上点的最短距离,…,点11(,2)nn n P x ++在抛物线n C :y =x 2+a n x +b n 上,点n A (n x ,0)到1n P+的距离是n A 到n C 上点的最短距离.(Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.类型13周期型 解法:由递推式计算出前几项,寻找周期.例17.若数列{}n a 满足⎪⎪⎩⎪⎪⎨⎧<≤-≤≤=+)121(,12)210(,21n n n n n a a a a a ,若761=a ,则20a 的值为___________.变式:已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .23例18.1231,,,2n a a a a =-依次写出数列:的法则如下:如果为自然数且未出现过,n +1n n +1n 6则用递推公式a =a -2,否则用递推公式a =a +3,则a =_________1. 例1.na n 123-=; 变式:⑴33=a ,135=a ;⑵⎪⎪⎩⎪⎪⎨⎧--+--+=+.n ],2)1(3[21n ],2)1(3[212222为奇数时为偶数时;-11n n nnn a 2. 例2. n=32n a变式1:B变式2:⎪⎩⎪⎨⎧=-.n ,2n ,222为奇数时为偶数时;1n nn a3.例3.136-n=n a ;变式:2!n=n a4. 例4.321-+n=n a ;变式:12-n=n a5.例5.nn=)31(2)21(3-⋅n a ;变式:21=a ;nn=24-n a6. 例6.(Ⅱ))31,0(7. 例7. ])32(1)[(31---+n=a b a a n8. 例8. 1)31(4347---n=n a ; 变式1:12-n=n a .变式2:⑶n=2)21n (-n a .9. 例9.⑴2121-+-=n n n a a ;⑵3230+=n n a变式1. 35-n a n =;变式2. nn=)1(4)21(6---⋅n a10. 例10. 132--⋅n a n n=;变式:(Ⅱ) 2)21(3-+⋅n a n n=;(Ⅲ)2-=λ11. 例11. 1212--n n a =; a 22-=变式2:⑵12n 3-=nT ⑶1312n -=-n a12.例12. 2n 3--=n a ; 变式1:⑴1n )3(21n-⋅+=n a ;变式2: 121-n=n a ;变式3: 231-n=n a变式4: 12+n=n a13. 例13. na )51(2132n -⋅++-=14. 例14.⑴ 5=n a ;⑵)4(58≤-n a n n=⑶78+n=n a ⑷时=4,3,1,31-a . 变式: )42(31+n n b =;)72(61+nn n b a =15. 例15.16.变式: 解:(I )由题意,得2111(1,0),:7A C y x x b =-+。
由递推关系求数列通项定律的几种方法

).
2 递推相减(或相除)
求数列an的通项公式.
1.已知数列an中,a1 1,an1 an ( 2 n N *),求数列an的通项公式
2.已知数列an中, a1
1, an1
an (n 1 2an
N
*),求an .
3.已知数列an中,a1 1,an1 2an 1,求:an
4.已知数列an 中, a1
+ an an1 n 1
得 n2 n 1
(n 2)
2
1 2 a1
an a1 1 2 3 (n 1)
an
n(n 1) 2
1 2
n2
n 2
1
(当n 1时也适合)
an
n(n 1) 2
1 2
n2
n 1 2
(n N*)
5 .形如an1 f(n) an 迭乘法
已知数列an 中,a1
解:a2 2
1,an1 an
n
n
1
,
求:an
a1 1
a3 3
×
an an1
a2 2 a4 4 a3 3
n
(n n 1
2)
an 2 3 4 n 1 n a1 1 2 3 n 2 n 1
an n (当n 1时也适合)
an n (n N*)
6 归纳法
已知数列an 中,a1
2,an1
2
1(n an
令2 3n1中n 1得2 3n1 2 a1
1
an
2
3n1
(n 1) (n 2)
2.数 列an 的 前 项 和 为Sn, 且Sn
1
2 3
an (n
N * ),求an .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 由递推关系求数列的通项公式一、目标要求通过具体的例题,掌握由递推关系求数列通项的常用方法:二、知识梳理求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。
三、典例精析1、公式法:利用熟知的公式求通项公式的方法称为公式法。
常用的公式有⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 及等差数列和等比数列的通项公式。
例1 已知数列{n a }中12a =,2+2n s n =,求数列{n a }的通项公式评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。
2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。
它是求型如()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。
例2 已知数列{n a }中112a =,121++32n n a a n n +=+,求数列{n a }的通项公式评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式321121n n n a a a a a a a a -=⋅⋅⋅⋅⋅⋅⋅⋅()0n a ≠求通项公式的方法叫累乘法。
它是求型如()1n n a g n a +=的递推数列的方法(){}()g n n 数列可求前项积例3 已知数列{n a }中1n n s na =- ,求数列{n a }的通项公式评注 此类问题关键是化()1nn a g n a -=,且式子右边累乘时可求积,而左边中间项可消。
4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法称为转化法。
常用的转化途径有: ⑴凑配、消项变换——如将一阶线性递推公式1n n a qa d +=+(q, d 为常数,0,1q q ≠≠)通过凑配变成11n d a q ++-=1n d q a q ⎛⎫+ ⎪-⎝⎭,或消常数项转化为()211n n n n a a q a a +++-=- 例4、已知数列{n a }中,11a =,()1212n n a a n -=+≥,求数列{n a }的通项公式点评: 此类问题关键是利用配凑或消项变换将其转化为等比数列(2)倒数变换——如将一阶分式递推公式1n n n ca a a d +=+(c,d 为非零常数)取倒数得1111n n d a c a c+=⋅+ 例5 已知数列{n a }中,11a =,121nn n a a a +=+,求数列{n a }的通项公式点评: 此类问题关键是取倒数使其转化为一阶线性递推数列然后可用凑配、消项变换。
⑶对数变换——如将一阶分式递推公式1pn n a ca +=()0,0,0,1n a c p p >>>≠取对数可得 1lg lg lg n n a p a c +=+例6 已知数列{n a }中,110a =,0n a >,且2110n n a a +=,求数列{n a }的通项公式点评:此类问题关键是取对数使其转化为关于n a 的对数的一阶线性递推数列即可用凑配、消项变换⑷换元变换——如将一阶分式递推公式1nn n a qa d +=+(q,d 为非零常数,q ≠1,d ≠1)变换成111n n n n a a q d d d d ++=⋅+,令nnna b d =,则转化为一阶线性递推公式 例7在数列{n a }中,11a =,13+2nn n a a +=()*n N ∈,求数列{n a }的通项公式评注:此类问题关键是通过换元将其转化为一阶线性递推公式5、待定系数法 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
解法:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足⎩⎨⎧-==+qst pt s ,再应用前面转化法(4)类型的方法求解。
例8 . 已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。
7、叠代法例9 已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式。
8、归纳法:由数列前几项用不完全归纳法猜测出数列的通项公式,再用数学归纳法证明其正确性,这种方法叫归纳法。
例10 数列{n a }满足2n n s n a =-()*n N ∈ ,求数列{n a }的通项公式四、实战演练 1、[2012·辽宁卷] 已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式为a n =________.2、 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .3、设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁4、已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
5、设正数列0a ,1a ,n a …,n a ,…满足2-n n a a 21---n n a a =12-n a )2(≥n 且110==a a ,求}{n a 的通项公式.五、能力提升(逆推法)已知数列{}n a 的前n 项和n S 与n a 满足:21,,-n n n S S a )2(≥n 成等比数列,且11=a ,求数列{}n a 的前n 项和n S点评:本题的常规方法是先求通项公式,然后求和,但逆向思维,直接求出数列{}n a 的前n 项和n S 的递推公式,是一种最佳解法由递推关系求数列的通项公式答案例1解: 当2n ≥由1n n n a s s -=-=()22+2-1+2n n ⎡⎤-⎣⎦=21n -当1n =时113a s ==不满足 故3,121,2n n a n n =⎧=⎨-≥⎩例2解:由121++32n n a a n n +=+可知121113212n n a a n n n n +-==-++++ ()()1211+......+n n n a a a a a a -=+--=12+111111......23341n n ⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭=1n n +()2n ≥ 当1n =时也成立。
故有n a =1nn + 例3 解:当n=1时 由1111a s a ==-可得112a = 由11n n n a s s ++=-=()1111n n n a na +-+--可得12n n a na n +=+ ∴321121n n n a a a a a a a a -=⋅⋅⋅⋅⋅⋅⋅⋅=12123213451n n n n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+=()11n n + 当n=1时也成立。
故有n a =()11n n +例4解法一()凑配变换:由121n n a a -=+可得()1121n n a a -+=+,又112a +=,故数列{}1n a +是首项为2,公比为2的等比数列,1122n n a -∴+=⋅,即21nn a =-解法二(消项变换)121n n a a -=+⋅⋅⋅⋅⋅⋅① ∴ 121n n a a +=+⋅⋅⋅⋅⋅⋅②②-①得()112n n n n a a a a +--=-()2n ≥,故数列{}1n n a a +-是首项为212a a -=公比为2的等比数列即12n n n a a +-=,再用累加法得21nn a =-例5 解:由121n n n a a a +=+可得1112n n a a +=+即1112n n a a +-= ∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项2为公差的等差数列。
∴1n a =1+2(n-1),即121n a n =-例6 解:由0n a >,且2110n n a a +=可得1lg 12lg n n a a +=+,即1lg 12lg 1n n a a ++=+∴数列{}lg 1n a +是以1lg 12a +=为首项以2为公比的等比数列∴lg 1n a +=2n 即 2110nn a -=例7解:由13+2nn n a a +=可得11312222n n n n a a ++=⋅+ 即1131(1)222n nn n a a +++=+ 令12n nna b =+ ∴132n n b b += ∴数列{}n b 是以32为首项以32为公比的等比数列即32nn b ⎛⎫= ⎪⎝⎭∴12n n na b =+=32n⎛⎫ ⎪⎝⎭即32n nn a =- 例8解:由n n n a a a 313212+=++可转化为)(112n n n n sa a t sa a -=-+++ 即n n n sta a t s a -+=++12)(⎪⎪⎩⎪⎪⎨⎧-==+⇒3132st t s ⎪⎩⎪⎨⎧-==⇒311t s 或⎪⎩⎪⎨⎧=-=131t s 这里不妨选用⎪⎩⎪⎨⎧-==311t s (当然也可选用⎪⎩⎪⎨⎧=-=131t s ,大家可以试一试),则)(31112n n n n a a a a --=-+++{}n n a a -⇒+1是以首项为112=-a a ,公比为31-的等比数列,所以11)31(-+-=-n n n a a ,应用类型1的方法,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即2101)31()31()31(--+⋅⋅⋅⋅⋅⋅+-+-=-n n a a 311)31(11+--=-n 又11=a ,所以1)31(4347---=n n a 。
例9 解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a 11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n经验证11=a 也满足上式,所以])1(2[3212---+=n n n a 方法二、1122(1),n n n a a --∴=+⨯-111122222()(1)(1)(1)3(1)3n n n n n n n n a a a a ----⇒=-⨯-⇒+=-+---- 构造数列2(1)3n na ⎧⎫+⎨⎬-⎩⎭公比为-2首项为13-的等比数列(以下略) 例10 解:易求1231,2a a ==,34715,48a a ==,由此可猜想1212n n n a --=下面用数学归纳法证明:①当1n =时,左边=11a =,右边=111212--=1,猜想成立;②假设n=k 时命题成立,即1212k k k a --=,那么由已知2k k s k a =- ①112(1)k k s k a ++=+- ② 由②-①可得112k k k a a a ++=-+∴112k k a a +=+=2112k k-+=()1111212122k k k k +++---=,即当1n k =+时命题也成立。