学而思高中题库完整版排列与组合[1].版块七.排列组合问题的常用方法总结1.学生版
完整版)排列组合的二十种解法(最全的排列组合方法总结)

完整版)排列组合的二十种解法(最全的排列组合方法总结)教学目标:1.理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力。
3.学会应用数学思想和方法解决排列组合问题。
复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。
3.分类计数原理和分步计数原理区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。
解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。
2.确定采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素。
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
一、特殊元素和特殊位置优先策略:例1:由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。
先排末位共有C3,然后排首位共有C4,最后排其它位置共有A4^3.由分步计数原理得C4×C3×A4^3=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素。
若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
(完整word版)高中数学排列组合题型归纳总结,推荐文档

排列组合1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有m 种不同的方法,…,在第n 类办法中有n m 不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1、.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解: 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2、 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解: 522480A A A =练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解5456A A练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.、 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
学而思高中题库完整版排列与组合.版块五.排列组合问题的常见模型1.学生版

1.基本计数原理 ⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++L 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯L 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+L ,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m n n n n n m n m m n m ---+==-L ,,m n +∈N ,并且m n ≤. 知识内容排列组合问题的常见模型1组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. 6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复; ④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.典例分析排队问题【例1】三个女生和五个男生排成一排⑴如果女生必须全排在一起,可有多少种不同的排法?⑵如果女生必须全分开,可有多少种不同的排法?⑶如果两端都不能排女生,可有多少种不同的排法?【例2】6个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法?⑵其中甲、乙两人不相邻有多少种不同的排法?⑶其中甲、乙两人不站排头和排尾有多少种不同的排法?⑷其中甲不站排头,且乙不站排尾有多少种不同的排法?【例3】7名同学排队照相.⑴若分成两排照,前排3人,后排4人,有多少种不同的排法?⑵若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?⑶若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?⑷若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?【例4】6个队员排成一排,⑴共有多少种不同的排法?⑵若甲必须站在排头,有多少种不同的排法?⑶若甲不能站排头,也不能站排尾,问有多少种不同的排法?【例5】ABCDE五个字母排成一排,若ABC的位置关系必须按A在前、B居中、C在后的原则,共有_______种排法(用数字作答).【例6】用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有_ __个(用数字作答).【例7】记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种B.960种C.720种D.480种【例8】12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A .2283C AB .2686C AC .2286C AD .2285C A【例9】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种 C .720种 D .480种【例10】 在数字123,,与符号+-,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A .6B .12C .18D .24【例11】 计划展出10幅不同的画,其中1幅水彩、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.【例12】 6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法(用数字作答).【例13】 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻位不相邻,共有几种坐法?【例14】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【例15】 古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种(结果用数值表示).【例16】 在1234567,,,,,,的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式共有( )种.A .288B .576C .864D .1152【例17】 从集合{}P Q R S ,,,与{}0123456789,,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例18】 从集合{}O P Q R S ,,,,与{0123456789},,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O Q ,和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例19】 6个人坐在一排10个座位上,问⑴ 空位不相邻的坐法有多少种?⑵ 4个空位只有3个相邻的坐法有多少种? ⑶ 4个空位至多有2个相邻的坐法有多少种?【例20】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【例21】 12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有( )A .2283C A B .2686C A C .2286C A D .2285C A【例22】两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______.【例23】2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有()A.36种B.108种C.216种D.432种数字问题【例24】给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数?⑵可能组成多少个四位奇数?⑶可能组成多少个四位偶数?⑷可能组成多少个自然数?【例25】用0到9这10个数字,可组成多少个没有重复数字的四位偶数?【例26】在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.【例27】 用12345,,,,排成一个数字不重复的五位数12345a a a a a ,,,,,满足12233445a a a a a a a a <><>,,,的五位数有多少个?【例28】 用0129L ,,,,这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个?【例29】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例30】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法数一共有 种. 432;【例31】有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有()A.1344种B.1248种C.1056种D.960种【例32】有4张分别标有数字1234,,,的蓝色卡,,,的红色卡片和4张分别标有数字1234片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有____种(用数字作答).【例33】用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).【例34】用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()A.48个B.36个C.24个D.18个【例35】从1238910,,,,,这6个数中,取出两个,使其和为偶数,则共可得到个这样的不同偶数?【例36】求无重复数字的六位数中,能被3整除的数有______个.【例37】用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数学作答).【例38】从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216C.180D.162【例39】从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216C.180D.162【例40】从1到9的九个数字中取三个偶数四个奇数,试问:⑴能组成多少个没有重复数字的七位数?其中任意两偶数都不相邻的七位数有几个?⑵上述七位数中三个偶数排在一起的有几个?⑶⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个?⑷⑴其中任意两偶数都不相邻的七位数有几个?【例41】用0到9这九个数字.可组成多少个没有重复数字的四位偶数?【例42】有4张分别标有数字1234,,,的蓝色卡,,,的红色卡片和4张分别标有数字1234片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有______种(用数字作答).【例43】在由数字12345,,,,组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有()个A.56个B.57个C.58个D.60个【例44】由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{}n a,则19a=_____.A.2014B.2034C.1432D.1430【例45】从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程20++=,其中有实数根的有几个?ax bx c【例46】从{},,,,,,,---中任选三个不同元素作为二次函数232101234=++y ax bx c 的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?。
学而思高中题库完整版排列与组合[1].版块八.排列组合问题的常用方法总结2.学生版
![学而思高中题库完整版排列与组合[1].版块八.排列组合问题的常用方法总结2.学生版](https://img.taocdn.com/s3/m/8c4b04ae2af90242a895e5cc.png)
1.基本计数原理 ⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++L 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯L 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+L ,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m nn n n n m n m m n m ---+==-L ,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)知识内容排列组合问题的常用方法总结2⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. 6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复; ④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面. ⑦对于一些排列数与组合数的问题,需要构造模型.典例分析挡板法(名额分配或者相同物品的分配问题)【例1】 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有 种.【例2】 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种.【例3】 ()15a b c d +++有多少项?【例4】 有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?【例5】 不定方程12350...100x x x x ++++=中不同的正整数解有 组,非负整数解有 组.【例6】 5个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少种不同的带法.【例7】将7个完全相同的小球任意放入4个不同的盒子中,共有多少种不同的放法?【例8】一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法.【例9】有10个三好学生名额,分配到高三年级的6个班里,要求每班至少1个名额,共有多少种不同的分配方案.【例10】某中学准备组建一个18人的足球队,这18人由高一年级10个班的学生组成,每个班至少一个,名额分配方案共有_____种.【例11】10个优秀指标名额分配到一、二、三3个班,若名额数不少于班级序号数,共有多少种不同的分配方法?插空法(当需排的元素不能相邻时)【例12】从1231000L,,,,个自然数中任取10个互不连续的自然数,有多少种不同的取法.【例13】某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16 C.24 D.32【例14】三个人坐在一排8个座位上,若每个人左右两边都有空位,则坐法种数为_______.【例15】要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,排法种数有____种.【例16】马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有_____种.(用数字作答)【例17】为配制某种染色剂,需要加入三种有机染料、两种无机染料和两种添加剂,其中有机染料的添加顺序不能相邻.现要研究所有不同添加顺序对染色效果的影响,总共要进行的试验次数为.(用数字作答)【例18】一排9个座位有6个人坐,若每个空位两边都坐有人,共有______种不同的坐法.【例19】某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加.当甲乙同时参加时,他们两人的发言不能相邻.那么不同发言顺序的种数为()A.360B.520C.600D.720【例20】在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?【例21】某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.捆绑法(当需排的元素有必须相邻的元素时)【例22】4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?【例23】四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种.【例24】某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有【例25】停车站划出一排12个停车位置,今有8辆不同型号的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法共有__________种.【例26】四个不同的小球放入编号为1234,,,的四个盒中,则恰有一个空盒的放法共有_______种.(用数字作答)除序法(平均分堆问题,整体中部分顺序固定,对某些元素有顺序限制的排列,可以先不考虑顺序限制排列后,再除去规定顺序元素个数的全排列.)【例27】6本不同的书平均分成三堆,有多少种不同的方法?【例28】6本书分三份,2份1本,1份4本,则有不同分法?【例29】用1,2,3,4,5,6,7这七个数字组成没有重复数字的七位数中,⑴若偶数2,4,6次序一定,有多少个?⑵若偶数2,4,6次序一定,奇数1,3,5,7的次序也一定的有多少个?【例30】一天的课程表要排入语文,数学,物理,化学,英语,体育六节课,如果数学必须排在体育之前,那么该天的课程表有多少种排法?【例31】甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.40种D.60种【例32】某考生打算从7所重点大学中选3所填在第一档次的3个志愿栏内,其中A校定为第一志愿,再从5所一般大学中选3所填在第二档次的3个志愿栏内,其中,校必选,且B在C前,问此考生共有种不同的填表方法(用数B C字作答).递推法【例33】一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法?用转换法解排列组合问题【例34】某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.【例35】6个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法.【例36】从1,2,3,…,1000个自然数中任取10个不连续的自然数,有多少种不同的取法.【例37】某城市街道呈棋盘形,南北向大街5条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种.【例38】一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法..板块八.排列组合问题的常用方法总结2.题库 11【例39】 求()10a b c ++的展开式的项数.【例40】 亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?【例41】 圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少个?。
排列组合常见21种解题方法

排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
学而思高中题库完整版排列与组合[1].版块七.排列组合问题的常用方法总结1.学生版
![学而思高中题库完整版排列与组合[1].版块七.排列组合问题的常用方法总结1.学生版](https://img.taocdn.com/s3/m/22075d166bec0975f465e2cc.png)
1.基本计数原理 ⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++L 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯L 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+L ,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m n n n n n m n m m n m ---+==-L ,,m n +∈N ,并且m n ≤. 知识内容排列组合问题的常用方法总结1组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. 6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复; ④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.直接法(优先考虑特殊元素特殊位置,特殊元素法,特殊位置法,直接分类讨论)【例1】 从5名外语系大学生中选派4名同学参加广州亚运会翻译、交通、礼仪三项义工活动,要求翻译有2人参加,交通和礼仪各有1人参加,则不同的选派方法共有 .【例2】 北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为A .124414128C C C B .124414128C A A C .12441412833C C C AD .12443141283C C C A【例3】 在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴有3个点,将x 轴上这5个点和y 轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有( )A .30个B .35个C .20个D .15个【例4】 一个口袋内有4个不同的红球,6个不同的白球,⑴从中任取4个球,红球的个数不比白球少的取法有多少种?⑵若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?典例分析【例5】一个口袋内装有大小相同的7个白球和1个黑球.⑴从口袋内取出3个球,共有多少种取法?⑵从口袋内取出3个球,使其中含有1个黑球,有多少种取法?⑶从口袋内取出3个球,使其中不含黑球,有多少种取法?【例6】有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其余5人既会划左舷也会划右舷.从这12名运动员中选出6人平均分在左、右舷划船参加比赛,有多少种不同的选法?【例7】若x A∈,则1Ax∈,就称A是伙伴关系集合,集合11{101234}32M=-,,,,,,,的所有非空子集中,具有伙伴关系的集合的个数为()A.15B.16C.82D.52【例8】 从6名女生,4名男生中,按性别采用分层抽样的方法抽取5名学生组成课外小组,则不同的抽取方法种数为______.A .3264C C ⋅B .2364C C ⋅C .510CD .3264A A ⋅【例9】 某城市街道呈棋盘形,南北向大街3条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种.【例10】 某幢楼从二楼到三楼的楼梯共11级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用7步走完,则上楼梯的方法有______种.【例11】 亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?【例12】设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则TS的值为()A.20128B.15128C.16128D.21128【例13】设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动一个单位,经过5次跳动质点落在点(10),(允许重复过此点)处,则质点不同的运动方法种数为.【例14】从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有________种(用数字作答)【例15】 在AOB 的边OA 上有1234A A A A ,,,四点,OB 边上有12345B B B B B ,,,,共9个点,连结线段(1415)i j A B i j ≤≤,≤≤,如果其中两条线段不相交,则称之为一对“和睦线”,和睦线的对数共有:( )A .60B .80C .120D .160【例16】 从7名男生5名女生中,选出5人,分别求符合下列条件的选法种数有多少种?⑴ A 、B 必须当选; ⑵ A 、B 都不当选; ⑶ A 、B 不全当选; ⑷ 至少有2名女生当选;⑸ 选出5名同学,让他们分别担任体育委员、文娱委员等5种不同工作,但体育委员由男生担任,文娱委员由女生担任.【例17】 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A .150种 B .180种 C .300种 D .345种【例18】 从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A .85B .56C .49D .28【例19】 某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( ) A .14 B .24 C .28 D .48【例20】 要从10个人中选出4个人去参加某项活动,其中甲乙必须同时参加或者同时不参加,问共有多少种不同的选法?【例21】 有四个停车位,停放四辆不同的车,有几种不同的停法?若其中的一辆车必须停放在两边的停车位上,共有多少种不同的停法?【例22】 某班5位同学参加周一到周五的值日,每天安排一名学生,其中学生甲只能安排到周一或周二,学生乙不能安排在周五,则他们不同的值日安排有( ) A .288种 B .72种 C .42种 D .36种【例23】 某班有30名男生,30名女生,现要从中选出5人组成一个宣传小组,其中男、女学生均不少于2人的选法为( )A .221302046C C CB .555503020C C C -- C .514415*********C C C C C --D .322330203020C C C C +【例24】用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个⑴数字1不排在个位和千位⑵数字1不在个位,数字6不在千位.【例25】甲、乙、丙、丁、戊5名学生进行讲笑话比赛,决出了第一到第五的名次,甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军”,对乙说:“你当然不会是最差的”.从这个回答分析,5人的名次排列共有_______(用数字作答)种不同情况.【例26】某高校外语系有8名奥运会志愿者,其中有5名男生,3名女生,现从中选3人参加某项“好运北京”测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有()A.45种B.56种C.90种D.120种【例27】用5,6,7,8,9组成没有重复数字的五位数,其中恰好有一个奇数夹在两个偶数之间的五位数的个数为()A.120B.72C.48D.36【例28】某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有()A.120种B.48种C.36种D.18种【例29】从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中,甲、乙两人不去巴黎游览,则不同的选择方案共有_____种(用数字作答).【例30】从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有()A.108种B.186种C.216种D.270种【例31】甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【例32】将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有_______种(用数字作答).【例33】用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()A.48个B.36个C.24个D.18个【例34】一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A .24种 B .36种 C .48种 D .72种【例35】 2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为 ( )A .36B .42C . 48D .60【例36】 从6名女生,4名男生中,按性别采用分层抽样的方法抽取5名学生组成课外小组,则不同的抽取方法种数为______.A .3264C C ⋅B .2364C C ⋅C .510CD .3264A A ⋅【例37】 7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有 种(用数字作答).【例38】 给定集合{1,2,3,,}n A n =L ,映射:n n f A A →满足:①当,,n i j A i j ∈≠时,()()f i f j ≠;②任取n m A ∈,若2m ≥,则有{(1),(2),,()}m f f f m ∈L .则称映射f :n n A A →是一个“优映射”.例如:用表1表示的映射f :33A A →是一个“优映射”.表1 表2⑴已知表2表示的映射f :44A A →是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);⑵若映射f :1010A A →是“优映射”,且方程()f i i =的解恰有6个,则这样的“优映射”的个数是_____.【例39】 将7个不同的小球全部放入编号为2和3的两个小盒子里,使得每个盒子里的球的个数不小于盒子的编号,则不同的放球方法共有__________种.【例40】 将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .10种 B .20种 C .36种 D .52种【例41】 一个口袋内有4个不同的红球,6个不同的白球,⑴从中任取4个球,红球的个数不比白球少的取法有多少种?⑵若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?i 1 2 3 ()f i2 3 1 i1 2 3 4 ()f i 3i12 3 4 ()f i 23 1 4【例42】 正整数122221(1)n n n a a a a a n n --∈>N L L ,称为凹数,如果12n a a a >>>L ,且2122n n n a a a -->>>L ,其中{0129}(12)i a i ∈=L L ,,,,,,,请回答三位凹数12313()a a a a a ≠共有 个(用数字作答).【例43】 2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ) A .36种 B .12种 C .18种 D .48种【例44】 某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_______种.(用数字作答)【例45】 某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?【例46】 从7人中选派5人到10个不同交通岗的5个中参加交通协管工作,则不同的选派方法有( )A .5557105C A A 种B .5557105AC P 种 C .55107C C 种D .55710C A【例47】 12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A .4441284C C C 种 B .34441284C C C 种 C .4431283C C A 种D .444128433C C C A 种【例48】 袋中装有分别编号为1,2,3,4的4个白球和4个黑球,从中取出3个球,则取出球的编号互不相同的取法有( )A.24种 B.28种 C.32种 D.36种.【例49】现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是()A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人.【例50】将4个小球任意放入3个不同的盒子中,⑴若4个小球各不相同,共有多少种放法?⑵若要求每个盒子都不空,且4个小球完全相同,共有多少种不同的放法?⑶若要求每个盒子都不空,且4个小球互不相同,共有多少种不同的放法?【例51】将7个小球任意放入4个不同的盒子中,每个盒子都不空,⑴若7个小球完全相同,共有多少种不同的放法?⑵若7个小球互不相同,共有多少种不同的放法?【例52】四个不同的小球,每球放入编号为1、2、3、4的四个盒子中.⑴随便放(可以有空盒,但球必须都放入盒中)有多少种放法?⑵四个盒都不空的放法有多少种?⑶恰有一个空盒的放法有多少种?⑷恰有两个空盒的放法有多少种?⑸甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?【例53】设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,若经过5次跳动质点落在点(),处(允许重复过此点),则质点不同的运30动方法共___________种;若经过m次跳动质点落在点()0n,处(允许重复过此点),其中m n≥,且m n-为偶数,则质点不同的运动方法共有_______种.【例54】设集合{12345}I=,,,,,选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种【例55】f是集合{1234}N=,,的映射,g是集合N到集合M的映M=,,,到集合{123}射,则不同的映射f的个数是多少?g有多少?满足()()()()8+++=f a f b f c f d的映射f有多少?满足[()]f g,有多少?=的映射对()f g x x【例56】排球单循坏赛,胜者得1分,负者0分,南方球队比北方球队多9支,南方球队总得分是北方球队的9倍,设北方的球队数为x.⑴试求北方球队的总得分以及北方球队之间比赛的总得分;⑵证明:6x=;x=或8⑶证明:冠军是一支南方球队.【例57】 已知集合{}1,2,3,4A =,函数()f x 的定义域、值域都是A ,且对于任意,()i A f i i ∈≠.设1234,,,a a a a 是1,2,3,4的任意的一个排列,定义数表12341234()()()()a a a a f a f a f a f a ⎛⎫ ⎪⎝⎭,若两个数表的对应位置上至少有一个数不同,就说这是两张不同的数表,那么满足条件的不同的数表的张数为( ) A .216 B .108 C .48 D .24间接法(直接求解类别比较大时) 【例58】 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?【例59】 从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A .36B .48C .52D .54【例60】 以三棱柱的顶点为顶点共可组成 个不同的三棱锥.【例61】 设集合{}1,2,3,,9S =L ,集合{}123,,A a a a =是S 的子集,且123,,a a a 满足123a a a <<,326a a -≤,那么满足条件的子集A 的个数为( )A .78B .76C .84D .83【例62】 将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( ) A .18 B .24 C .30 D .36【例63】 某高校外语系有8名奥运会志愿者,其中有5名男生,3名女生,现从中选3 人参加某项“好运北京”测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有( ) A .45种 B .56种 C .90种 D .120种【例64】 对于各数互不相等的正数数组()12,,,n i i i ⋅⋅⋅(n 是不小于2的正整数),如果在p q <时有p q i i <,则称“p i 与q i ”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组()2,4,3,1中有顺序“2,4”,“2,3”,其“顺序数”等于2.若各数互不相等的正数数组()12345,,,,a a a a a 的“顺序数”是4,则()54321,,,,a a a a a 的“顺序数”是_________.【例65】已知集合{5}C=,,,从这三个集合中各取一个元素构A=,{12}B=,,{134}成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33B.34C.35D.36【例66】甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).【例67】设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内,⑴只有一个盒子空着,共有多少种投放方法?⑵没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?⑶每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?【例68】在排成44⨯的方阵的16个点中,中心4个点在某一个圆内,其余12个点在圆外,在16个点中任选3个点构成三角形,其中至少有一顶点在圆内的三角形共有()A.312个B.328个C.340个D.264个【例69】从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( ) A .70种 B .112种 C .140种D .168种【例70】 若关于x y ,的方程组22117ax by x y +=⎧⎨+=⎩有解,且所有解都是整数,则有序数对()a b ,的数目为( )A .36B .16C .24D .32【例71】 从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( ) A .70种 B .80种 C .100种 D .140种【例72】 甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( ) A .6种 B .12种 C .30种 D .36种【例73】 {}129,,,A =L ,则含有五个元素,且其中至少有两个偶数的A 的子集个数为_____.【例74】 在由数字0,1,2,3,4所组成的没有重复数字的四位数中,不能被5整除的数共有_______个.【例75】 在AOB ∠的OA 边上取4个点,在OB 边上取5个点(均除O 点外),连同O 点共10个点,现任取其中三个点为顶点作三角形,可作出三角形的个数为多少?【例76】,,,,a b c d e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()A.20B.16C.10D.6【例77】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18B.24C.30D.36【例78】三行三列共九个点,以这些点为顶点可组成___ _个三角形.【例79】从5名奥运志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有()A.24种B.36种C.48种D.60种【例80】某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有种()A.1320B.288C.1530D.670【例81】从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的选法有_____种(用数字作答)。
排列与组合.版块七.排列组合问题的常用方法总结1.学生版

直接法(优先考虑特殊元素特殊位置,特殊元素法,特殊位置法,直接分类讨论)【例1】 从5名外语系大学生中选派4名同学参加广州亚运会翻译、交通、礼仪三项义工活动,要求翻译有2人参加,交通和礼仪各有1人参加,则不同的选派方法共有 .【例2】 北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为A .124414128C C C B .124414128C A A C .12441412833C C C AD .12443141283C C C A【例3】 在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴有3个点,将x 轴上这5个点和y 轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有( )A .30个B .35个C .20个D .15个典例分析排列组合问题的常用方法总结 1【例4】一个口袋内有4个不同的红球,6个不同的白球,⑴从中任取4个球,红球的个数不比白球少的取法有多少种?⑵若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?【例5】一个口袋内装有大小相同的7个白球和1个黑球.⑴从口袋内取出3个球,共有多少种取法?⑵从口袋内取出3个球,使其中含有1个黑球,有多少种取法?⑶从口袋内取出3个球,使其中不含黑球,有多少种取法?【例6】有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其余5人既会划左舷也会划右舷.从这12名运动员中选出6人平均分在左、右舷划船参加比赛,有多少种不同的选法?【例7】 若x A ∈,则1A x∈,就称A 是伙伴关系集合,集合11{101234}32M =-,,,,,,,的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .82D .52【例8】 从6名女生,4名男生中,按性别采用分层抽样的方法抽取5名学生组成课外小组,则不同的抽取方法种数为______.A .3264C C ⋅B .2364C C ⋅C .510CD .3264A A ⋅【例9】 某城市街道呈棋盘形,南北向大街3条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种.【例10】 某幢楼从二楼到三楼的楼梯共11级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用7步走完,则上楼梯的方法有______种.【例11】亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?【例12】设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则TS的值为()A.20128B.15128C.16128D.21128【例13】设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动一个单位,经过5次跳动质点落在点(10),(允许重复过此点)处,则质点不同的运动方法种数为.【例14】 从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有________种(用数字作答)【例15】 在AOB 的边OA 上有1234A A A A ,,,四点,OB 边上有12345B B B B B ,,,,共9个点,连结线段(1415)i j A B i j ≤≤,≤≤,如果其中两条线段不相交,则称之为一对“和睦线”,和睦线的对数共有:( )A .60B .80C .120D .160【例16】 从7名男生5名女生中,选出5人,分别求符合下列条件的选法种数有多少种?⑴ A 、B 必须当选; ⑵ A 、B 都不当选; ⑶ A 、B 不全当选; ⑷ 至少有2名女生当选;⑸ 选出5名同学,让他们分别担任体育委员、文娱委员等5种不同工作,但体育委员由男生担任,文娱委员由女生担任.【例17】甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【例18】从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85B.56C.49D.28【例19】某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()A.14B.24C.28D.48【例20】要从10个人中选出4个人去参加某项活动,其中甲乙必须同时参加或者同时不参加,问共有多少种不同的选法?【例21】有四个停车位,停放四辆不同的车,有几种不同的停法?若其中的一辆车必须停放在两边的停车位上,共有多少种不同的停法?【例22】某班5位同学参加周一到周五的值日,每天安排一名学生,其中学生甲只能安排到周一或周二,学生乙不能安排在周五,则他们不同的值日安排有()A.288种B.72种C.42种D.36种【例23】 某班有30名男生,30名女生,现要从中选出5人组成一个宣传小组,其中男、女学生均不少于2人的选法为( )A .221302046C C CB .555503020C C C -- C .514415*********C C C C C --D .322330203020C C C C +【例24】 用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个⑴数字1不排在个位和千位⑵数字1不在个位,数字6不在千位.【例25】 甲、乙、丙、丁、戊5名学生进行讲笑话比赛,决出了第一到第五的名次,甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军”,对乙说:“你当然不会是最差的”.从这个回答分析,5人的名次排列共有_______(用数字作答)种不同情况.【例26】 某高校外语系有8名奥运会志愿者,其中有5名男生,3名女生,现从中选3人参加某项“好运北京”测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有( ) A .45种 B .56种 C .90种 D .120种【例27】 用5,6,7,8,9组成没有重复数字的五位数,其中恰好有一个奇数夹在两个偶数之间的五位数的个数为( ) A .120 B .72 C .48 D .36【例28】某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有()A.120种B.48种C.36种D.18种【例29】从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中,甲、乙两人不去巴黎游览,则不同的选择方案共有_____种(用数字作答).【例30】从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有()A.108种B.186种C.216种D.270种【例31】甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【例32】将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有_______种(用数字作答).【例33】 用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A .48个B .36个C .24个D .18个【例34】 一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A .24种 B .36种 C .48种 D .72种【例35】 2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为 ( )A .36B .42C . 48D .60【例36】 从6名女生,4名男生中,按性别采用分层抽样的方法抽取5名学生组成课外小组,则不同的抽取方法种数为______.A .3264C C ⋅B .2364C C ⋅C .510CD .3264A A ⋅【例37】 7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有 种(用数字作答).【例38】 给定集合{1,2,3,,}n A n =,映射:n n f A A →满足:①当,,n i j A i j ∈≠时,()()f i f j ≠; ②任取n m A ∈,若2m ≥,则有{(1),(2),,()}m f f f m ∈.则称映射f :n n A A →是一个“优映射”.例如:用表1表示的映射f :33A A →是一个“优映射”.表1 表2已知表2表示的映射f :44A A →是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);⑵若映射f :1010A A →是“优映射”,且方程()f i i =的解恰有6个,则这样的“优映射”的个数是_____.【例39】 将7个不同的小球全部放入编号为2和3的两个小盒子里,使得每个盒子里的球的个数不小于盒子的编号,则不同的放球方法共有__________种.【例40】 将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .10种 B .20种 C .36种 D .52种【例41】 一个口袋内有4个不同的红球,6个不同的白球,⑴从中任取4个球,红球的个数不比白球少的取法有多少种?⑵若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?【例42】 正整数122221(1)n n n a a a a a n n --∈>N ,称为凹数,如果12n a a a >>>,且2122n n n a a a -->>>,其中{0129}(12)i a i ∈=,,,,,,,请回答三位凹数12313()a a a a a ≠共有 个(用数字作答).【例43】 2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ) A .36种 B .12种 C .18种 D .48种【例44】 某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_______种.(用数字作答)【例45】 某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?【例46】 从7人中选派5人到10个不同交通岗的5个中参加交通协管工作,则不同的选派方法有( )A .5557105C A A 种B .5557105AC P 种 C .55107C C 种D .55710C A【例47】 12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A .4441284C C C 种 B .34441284C C C 种 C .4431283C C A 种D .444128433C C C A 种【例48】 袋中装有分别编号为1,2,3,4的4个白球和4个黑球,从中取出3个球,则取出球的编号互不相同的取法有( )A .24种B .28种C .32种D .36种.【例49】 现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( ) A .男生2人,女生6人 B .男生3人,女生5人 C .男生5人,女生3人 D .男生6人,女生2人.【例50】 将4个小球任意放入3个不同的盒子中,⑴若4个小球各不相同,共有多少种放法?⑵若要求每个盒子都不空,且4个小球完全相同,共有多少种不同的放法? ⑶若要求每个盒子都不空,且4个小球互不相同,共有多少种不同的放法?【例51】 将7个小球任意放入4个不同的盒子中,每个盒子都不空,⑴若7个小球完全相同,共有多少种不同的放法? ⑵若7个小球互不相同,共有多少种不同的放法?【例52】 四个不同的小球,每球放入编号为1、2、3、4的四个盒子中.⑴ 随便放(可以有空盒,但球必须都放入盒中)有多少种放法? ⑵ 四个盒都不空的放法有多少种? ⑶ 恰有一个空盒的放法有多少种? ⑷ 恰有两个空盒的放法有多少种?⑸ 甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?【例53】 设坐标平面内有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳1个单位,若经过5次跳动质点落在点()30,处(允许重复过此点),则质点不同的运动方法共___________种;若经过m 次跳动质点落在点()0n ,处(允许重复过此点),其中m n ≥,且m n -为偶数,则质点不同的运动方法共有_______种.【例54】 设集合{12345}I =,,,,,选择I 的两个非空子集A 和B ,要使B 中最小的数大于A 中最大的数,则不同的选择方法共有( )A .50种B .49种C .48种D .47种【例55】 f 是集合{1234}M =,,,到集合{123}N =,,的映射,g 是集合N 到集合M 的映射,则不同的映射f 的个数是多少?g 有多少?满足()()()()8f a f b f c f d +++=的映射f 有多少?满足[()]f g x x =的映射对()f g ,有多少?【例56】 排球单循坏赛,胜者得1分,负者0分,南方球队比北方球队多9支,南方球队总得分是北方球队的9倍,设北方的球队数为x .⑴试求北方球队的总得分以及北方球队之间比赛的总得分; ⑵证明:6x =或8x =;⑶证明:冠军是一支南方球队.【例57】 已知集合{}1,2,3,4A =,函数()f x 的定义域、值域都是A ,且对于任意,()i A f i i ∈≠.设1234,,,a a a a 是1,2,3,4的任意的一个排列,定义数表12341234()()()()a a a a f a f a f a f a ⎛⎫ ⎪⎝⎭,若两个数表的对应位置上至少有一个数不同,就说这是两张不同的数表,那么满足条件的不同的数表的张数为( ) A .216 B .108 C .48 D .24间接法(直接求解类别比较大时)【例58】 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?【例59】 从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A .36B .48C .52D .54【例60】 以三棱柱的顶点为顶点共可组成 个不同的三棱锥.【例61】 设集合{}1,2,3,,9S =,集合{}123,,A a a a =是S 的子集,且123,,a a a 满足123a a a <<,326a a -≤,那么满足条件的子集A 的个数为( )A .78B .76C .84D .83【例62】 将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( ) A .18 B .24 C .30 D .36【例63】 某高校外语系有8名奥运会志愿者,其中有5名男生,3名女生,现从中选3 人参加某项“好运北京”测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有( ) A .45种 B .56种 C .90种 D .120种【例64】 对于各数互不相等的正数数组()12,,,n i i i ⋅⋅⋅(n 是不小于2的正整数),如果在p q <时有p q i i <,则称“p i 与q i ”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组()2,4,3,1中有顺序“2,4”,“2,3”,其“顺序数”等于2.若各数互不相等的正数数组()12345,,,,a a a a a 的“顺序数”是4,则()54321,,,,a a a a a 的“顺序数”是_________.【例65】 已知集合{5}A =,{12}B =,,{134}C =,,,从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A .33B .34C .35D .36【例66】 甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).【例67】 设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内,⑴只有一个盒子空着,共有多少种投放方法?⑵没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法? ⑶每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?【例68】 在排成44⨯的方阵的16个点中,中心4个点在某一个圆内,其余12个点在圆外,在16个点中任选3个点构成三角形,其中至少有一顶点在圆内的三角形共有( )A .312个B .328个C .340个D .264个【例69】 从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( ) A .70种 B .112种 C .140种 D .168种【例70】 若关于x y ,的方程组22117ax by x y +=⎧⎨+=⎩有解,且所有解都是整数,则有序数对()a b ,的数目为( )A .36B .16C .24D .32【例71】 从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( ) A .70种 B .80种 C .100种 D .140种【例72】 甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( ) A .6种 B .12种 C .30种 D .36种【例73】 {}129,,,A =,则含有五个元素,且其中至少有两个偶数的A 的子集个数为_____.【例74】在由数字0,1,2,3,4所组成的没有重复数字的四位数中,不能被5整除的数共有_______个.【例75】在AOB的OA边上取4个点,在OB边上取5个点(均除O点外),连同O点共10个点,现任取其中三个点为顶点作三角形,可作出三角形的个数为多少?【例76】,,,,a b c d e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()A.20B.16C.10D.6【例77】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18B.24C.30D.36【例78】三行三列共九个点,以这些点为顶点可组成___ _个三角形.【例79】从5名奥运志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有()A.24种B.36种C.48种D.60种【例80】某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有种()A.1320B.288C.1530D.670【例81】从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的选法有_____种(用数字作答)。
排列组合知识点与方法归纳

排列组合知识点与方法归纳一、知识要点(1)分类计数原理与分步计算原理(1)分类计算原理(加法原理):完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有N= m1+ m2+…+ m n种不同的方法。
(2)分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N= m1× m2×…× m n种不同的方法。
(2)排列a)定义从n个不同元素中取出m()个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为 .b)排列数的公式与性质a)排列数的公式: =n(n-1)(n-2)…(n-m+1)=特例:当m=n时, =n!=n(n-1)(n-2)…×3×2×1规定:0!=1b)排列数的性质:(Ⅰ) =(Ⅱ)(Ⅲ)(3)组合a)定义a)从n个不同元素中取出个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合b)从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示。
b)组合数的公式与性质a)组合数公式:(乘积表示)(阶乘表示)特例:b)组合数的主要性质:(Ⅰ)(Ⅱ)(4)排列组合的区别与联系(1)排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。
因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
(2)注意到获得(一个)排列历经“获得(一个)组合”和“对取出元素作全排列”两个步骤,故得排列数与组合数之间的关系:二、经典例题例1、某人计划使用不超过500元的资金购买单价分别为60、70元的单片软件和盒装磁盘,要求软件至少买3片,磁盘至少买2盒,则不同的选购方式是()A .5种 B.6种 C. 7种 D. 8种解:注意到购买3片软件和2盒磁盘花去320元,所以,这里只讨论剩下的180元如何使用,可从购买软件的情形入手分类讨论:第一类,再买3片软件,不买磁盘,只有1种方法;第二类,再买2片软件,不买磁盘,只有1种方法;第三类,再买1片软件,再买1盒磁盘或不买磁盘,有2种方法;第四类,不买软件,再买2盒磁盘、1盒磁盘或不买磁盘,有3种方法;于是由分类计数原理可知,共有N=1+1+2+3=7种不同购买方法,应选C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.基本计数原理 ⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++L 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯L 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+L ,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m n n n n n m n m m n m ---+==-L ,,m n +∈N ,并且m n ≤. 知识内容排列组合问题的常用方法总结1组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. 6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复; ④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.直接法(优先考虑特殊元素特殊位置,特殊元素法,特殊位置法,直接分类讨论)【例1】 从5名外语系大学生中选派4名同学参加广州亚运会翻译、交通、礼仪三项义工活动,要求翻译有2人参加,交通和礼仪各有1人参加,则不同的选派方法共有 .【例2】 北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为A .124414128C C C B .124414128C A A C .12441412833C C C AD .12443141283C C C A【例3】 在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴有3个点,将x 轴上这5个点和y 轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有( )A .30个B .35个C .20个D .15个【例4】 一个口袋内有4个不同的红球,6个不同的白球,⑴从中任取4个球,红球的个数不比白球少的取法有多少种?⑵若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?典例分析【例5】一个口袋内装有大小相同的7个白球和1个黑球.⑴从口袋内取出3个球,共有多少种取法?⑵从口袋内取出3个球,使其中含有1个黑球,有多少种取法?⑶从口袋内取出3个球,使其中不含黑球,有多少种取法?【例6】有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其余5人既会划左舷也会划右舷.从这12名运动员中选出6人平均分在左、右舷划船参加比赛,有多少种不同的选法?【例7】若x A∈,则1Ax∈,就称A是伙伴关系集合,集合11{101234}32M=-,,,,,,,的所有非空子集中,具有伙伴关系的集合的个数为()A.15B.16C.82D.52【例8】 从6名女生,4名男生中,按性别采用分层抽样的方法抽取5名学生组成课外小组,则不同的抽取方法种数为______.A .3264C C ⋅B .2364C C ⋅C .510CD .3264A A ⋅【例9】 某城市街道呈棋盘形,南北向大街3条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种.【例10】 某幢楼从二楼到三楼的楼梯共11级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用7步走完,则上楼梯的方法有______种.【例11】 亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?【例12】设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则TS的值为()A.20128B.15128C.16128D.21128【例13】设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动一个单位,经过5次跳动质点落在点(10),(允许重复过此点)处,则质点不同的运动方法种数为.【例14】从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有________种(用数字作答)【例15】 在AOB 的边OA 上有1234A A A A ,,,四点,OB 边上有12345B B B B B ,,,,共9个点,连结线段(1415)i j A B i j ≤≤,≤≤,如果其中两条线段不相交,则称之为一对“和睦线”,和睦线的对数共有:( )A .60B .80C .120D .160【例16】 从7名男生5名女生中,选出5人,分别求符合下列条件的选法种数有多少种?⑴ A 、B 必须当选; ⑵ A 、B 都不当选; ⑶ A 、B 不全当选; ⑷ 至少有2名女生当选;⑸ 选出5名同学,让他们分别担任体育委员、文娱委员等5种不同工作,但体育委员由男生担任,文娱委员由女生担任.【例17】 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A .150种 B .180种 C .300种 D .345种【例18】 从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A .85B .56C .49D .28【例19】 某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( ) A .14 B .24 C .28 D .48【例20】 要从10个人中选出4个人去参加某项活动,其中甲乙必须同时参加或者同时不参加,问共有多少种不同的选法?【例21】 有四个停车位,停放四辆不同的车,有几种不同的停法?若其中的一辆车必须停放在两边的停车位上,共有多少种不同的停法?【例22】 某班5位同学参加周一到周五的值日,每天安排一名学生,其中学生甲只能安排到周一或周二,学生乙不能安排在周五,则他们不同的值日安排有( ) A .288种 B .72种 C .42种 D .36种【例23】 某班有30名男生,30名女生,现要从中选出5人组成一个宣传小组,其中男、女学生均不少于2人的选法为( )A .221302046C C CB .555503020C C C -- C .514415*********C C C C C --D .322330203020C C C C +【例24】用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个⑴数字1不排在个位和千位⑵数字1不在个位,数字6不在千位.【例25】甲、乙、丙、丁、戊5名学生进行讲笑话比赛,决出了第一到第五的名次,甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军”,对乙说:“你当然不会是最差的”.从这个回答分析,5人的名次排列共有_______(用数字作答)种不同情况.【例26】某高校外语系有8名奥运会志愿者,其中有5名男生,3名女生,现从中选3人参加某项“好运北京”测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有()A.45种B.56种C.90种D.120种【例27】用5,6,7,8,9组成没有重复数字的五位数,其中恰好有一个奇数夹在两个偶数之间的五位数的个数为()A.120B.72C.48D.36【例28】某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有()A.120种B.48种C.36种D.18种【例29】从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中,甲、乙两人不去巴黎游览,则不同的选择方案共有_____种(用数字作答).【例30】从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有()A.108种B.186种C.216种D.270种【例31】甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【例32】将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有_______种(用数字作答).【例33】用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()A.48个B.36个C.24个D.18个【例34】一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A .24种 B .36种 C .48种 D .72种【例35】 2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为 ( )A .36B .42C . 48D .60【例36】 从6名女生,4名男生中,按性别采用分层抽样的方法抽取5名学生组成课外小组,则不同的抽取方法种数为______.A .3264C C ⋅B .2364C C ⋅C .510CD .3264A A ⋅【例37】 7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有 种(用数字作答).【例38】 给定集合{1,2,3,,}n A n =L ,映射:n n f A A →满足:①当,,n i j A i j ∈≠时,()()f i f j ≠;②任取n m A ∈,若2m ≥,则有{(1),(2),,()}m f f f m ∈L .则称映射f :n n A A →是一个“优映射”.例如:用表1表示的映射f :33A A →是一个“优映射”.表1 表2⑴已知表2表示的映射f :44A A →是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);⑵若映射f :1010A A →是“优映射”,且方程()f i i =的解恰有6个,则这样的“优映射”的个数是_____.【例39】 将7个不同的小球全部放入编号为2和3的两个小盒子里,使得每个盒子里的球的个数不小于盒子的编号,则不同的放球方法共有__________种.【例40】 将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .10种 B .20种 C .36种 D .52种【例41】 一个口袋内有4个不同的红球,6个不同的白球,⑴从中任取4个球,红球的个数不比白球少的取法有多少种?⑵若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?i 1 2 3 ()f i2 3 1 i1 2 3 4 ()f i 3i12 3 4 ()f i 23 1 4【例42】 正整数122221(1)n n n a a a a a n n --∈>N L L ,称为凹数,如果12n a a a >>>L ,且2122n n n a a a -->>>L ,其中{0129}(12)i a i ∈=L L ,,,,,,,请回答三位凹数12313()a a a a a ≠共有 个(用数字作答).【例43】 2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ) A .36种 B .12种 C .18种 D .48种【例44】 某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_______种.(用数字作答)【例45】 某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?【例46】 从7人中选派5人到10个不同交通岗的5个中参加交通协管工作,则不同的选派方法有( )A .5557105C A A 种B .5557105AC P 种 C .55107C C 种D .55710C A【例47】 12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A .4441284C C C 种 B .34441284C C C 种 C .4431283C C A 种D .444128433C C C A 种【例48】 袋中装有分别编号为1,2,3,4的4个白球和4个黑球,从中取出3个球,则取出球的编号互不相同的取法有( )A.24种 B.28种 C.32种 D.36种.【例49】现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是()A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人.【例50】将4个小球任意放入3个不同的盒子中,⑴若4个小球各不相同,共有多少种放法?⑵若要求每个盒子都不空,且4个小球完全相同,共有多少种不同的放法?⑶若要求每个盒子都不空,且4个小球互不相同,共有多少种不同的放法?【例51】将7个小球任意放入4个不同的盒子中,每个盒子都不空,⑴若7个小球完全相同,共有多少种不同的放法?⑵若7个小球互不相同,共有多少种不同的放法?【例52】四个不同的小球,每球放入编号为1、2、3、4的四个盒子中.⑴随便放(可以有空盒,但球必须都放入盒中)有多少种放法?⑵四个盒都不空的放法有多少种?⑶恰有一个空盒的放法有多少种?⑷恰有两个空盒的放法有多少种?⑸甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?【例53】设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,若经过5次跳动质点落在点(),处(允许重复过此点),则质点不同的运30动方法共___________种;若经过m次跳动质点落在点()0n,处(允许重复过此点),其中m n≥,且m n-为偶数,则质点不同的运动方法共有_______种.【例54】设集合{12345}I=,,,,,选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种【例55】f是集合{1234}N=,,的映射,g是集合N到集合M的映M=,,,到集合{123}射,则不同的映射f的个数是多少?g有多少?满足()()()()8+++=f a f b f c f d的映射f有多少?满足[()]f g,有多少?=的映射对()f g x x【例56】排球单循坏赛,胜者得1分,负者0分,南方球队比北方球队多9支,南方球队总得分是北方球队的9倍,设北方的球队数为x.⑴试求北方球队的总得分以及北方球队之间比赛的总得分;⑵证明:6x=;x=或8⑶证明:冠军是一支南方球队.【例57】 已知集合{}1,2,3,4A =,函数()f x 的定义域、值域都是A ,且对于任意,()i A f i i ∈≠.设1234,,,a a a a 是1,2,3,4的任意的一个排列,定义数表12341234()()()()a a a a f a f a f a f a ⎛⎫ ⎪⎝⎭,若两个数表的对应位置上至少有一个数不同,就说这是两张不同的数表,那么满足条件的不同的数表的张数为( ) A .216 B .108 C .48 D .24间接法(直接求解类别比较大时) 【例58】 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?【例59】 从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A .36B .48C .52D .54【例60】 以三棱柱的顶点为顶点共可组成 个不同的三棱锥.【例61】 设集合{}1,2,3,,9S =L ,集合{}123,,A a a a =是S 的子集,且123,,a a a 满足123a a a <<,326a a -≤,那么满足条件的子集A 的个数为( )A .78B .76C .84D .83【例62】 将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( ) A .18 B .24 C .30 D .36【例63】 某高校外语系有8名奥运会志愿者,其中有5名男生,3名女生,现从中选3 人参加某项“好运北京”测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有( ) A .45种 B .56种 C .90种 D .120种【例64】 对于各数互不相等的正数数组()12,,,n i i i ⋅⋅⋅(n 是不小于2的正整数),如果在p q <时有p q i i <,则称“p i 与q i ”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组()2,4,3,1中有顺序“2,4”,“2,3”,其“顺序数”等于2.若各数互不相等的正数数组()12345,,,,a a a a a 的“顺序数”是4,则()54321,,,,a a a a a 的“顺序数”是_________.【例65】已知集合{5}C=,,,从这三个集合中各取一个元素构A=,{12}B=,,{134}成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33B.34C.35D.36【例66】甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).【例67】设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内,⑴只有一个盒子空着,共有多少种投放方法?⑵没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?⑶每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?【例68】在排成44⨯的方阵的16个点中,中心4个点在某一个圆内,其余12个点在圆外,在16个点中任选3个点构成三角形,其中至少有一顶点在圆内的三角形共有()A.312个B.328个C.340个D.264个【例69】从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( ) A .70种 B .112种 C .140种D .168种【例70】 若关于x y ,的方程组22117ax by x y +=⎧⎨+=⎩有解,且所有解都是整数,则有序数对()a b ,的数目为( )A .36B .16C .24D .32【例71】 从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( ) A .70种 B .80种 C .100种 D .140种【例72】 甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( ) A .6种 B .12种 C .30种 D .36种【例73】 {}129,,,A =L ,则含有五个元素,且其中至少有两个偶数的A 的子集个数为_____.【例74】 在由数字0,1,2,3,4所组成的没有重复数字的四位数中,不能被5整除的数共有_______个.【例75】 在AOB ∠的OA 边上取4个点,在OB 边上取5个点(均除O 点外),连同O 点共10个点,现任取其中三个点为顶点作三角形,可作出三角形的个数为多少?【例76】,,,,a b c d e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()A.20B.16C.10D.6【例77】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18B.24C.30D.36【例78】三行三列共九个点,以这些点为顶点可组成___ _个三角形.【例79】从5名奥运志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有()A.24种B.36种C.48种D.60种【例80】某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有种()A.1320B.288C.1530D.670【例81】从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的选法有_____种(用数字作答)。