城市给水管网设计计算说明书要点
市政给排水管网的优化设计要点及措施分析

市政给排水管网的优化设计要点及措施分析市政给排水管网的优化设计是为了提高城市给排水系统的运行效率和服务质量,确保市民的正常生活和城市的可持续发展。
以下是市政给排水管网优化设计的要点及措施分析:1. 管网结构优化:根据城市的用水特点、需求和发展规划,调整管网结构,合理设置主干管、支线管和小区管道,提高管网的整体运行效率和水力性能。
2. 网络设计模型建立:通过建立市政给排水管网设计模型,模拟和分析管网的水力情况,确定管径、坡度、流量等参数,以保证管网的稳定运行和水力条件的合理性。
3. 物料选择与管径设计:根据不同管道的应用需求和管线的物理特性,选择合适的材料,如玻璃钢管、钢筋混凝土管、聚乙烯管等,并根据流量和水质要求设计合适的管径,以提高管网的使用寿命和运行效率。
4. 引进智能化技术:利用现代信息技术,引进智能监控和管理系统,实时监测和分析管网的运行情况,及时发现和解决问题,提高维修和管理效率。
5. 水质保护与净化:加强对给排水管网水质的监测与管理,建立水质保护与净化设施,避免污水和异味的外溢,保护环境和居民的健康。
6. 排水收费及管理:建立合理的给排水收费制度,引导居民和企业合理用水、节约用水,同时加强对管网的日常管理和维护,保证管网的正常运行和服务质量。
7. 防止地质灾害:在设计管网路线时,要考虑地质条件,避免穿越地质灾害点,防止地质灾害对管网的破坏和影响。
8. 管网改造与扩建:根据城市的发展和人口增长情况,定期进行管网改造和扩建,提高管网的容量和服务覆盖范围,满足城市的给排水需求。
9. 联合供水与回收利用:与供水系统、污水处理系统等进行联合设计和管理,实现给排水资源的最大化利用和节约,提高水资源的利用率和可持续发展能力。
市政给排水管网的优化设计是一个复杂而关键的工作,需要结合城市规划、水资源、环境保护等各方面因素进行综合考虑,并进行科学分析和技术应用。
只有通过合理的优化设计和有效的管理措施,才能保证市政给排水系统的稳定运行和服务质量的提升。
第三讲 给水管网设计计算与案例

3.3 输配水管网计算
由于实际管网的复杂性,加上情况在不断的变 化,例如流量在不断增加,管网逐步扩展,诸 多经济指标如水管价格、电费等也随时变化, 要从理论上计算管网造价和年管理费用相当复 杂且有一定难度时可采用经济流速。
3.3 输配水管网计算
五、水头损失计算 管(渠)道流量、流速和管径确定以后,即能进行 管段的水头损失计算。管渠总水头损失,一般可按下 式计算: hz=hy+hj
3.3 输配水管网计算
三、管段计算流量
沿线分配的流量,实
沿 线 流 量
际情况复杂,理论计
算采用:长度比流量、 面积比流量
无 性 扩 增
从沿线流量折算得出 的并且假设是在节点 集中流出的流量
管网图上各节点的流量包括由沿线流量折算的 节点流量和大用户的集中流量
3.3 输配水管网计算
四、沿线流量、节点流量计算实例 例题 某城市最高时总用水量为440L/s,其中集中工业用水量为 120L/s,分别在节点4、5集中出流50L/s。各管段长度(m)和节 点编号如图3.5所示。管段1-2、2-3、4-5、5-6为一侧供水,其余 为双侧供水。试求:(1)比流量;(2)各管段的沿线流量;(3) 各节点流量。
3.3 输配水管网计算
沿程水头损失计算公式的一般形式
上述沿程水头损失计算公式可转划为一般指数形式:
式中 k,b,c—指数公式参数,海曾—威廉公式和曼宁 公式的参数见表; α— 比阻,即单位长度管长的摩阻系数; q—流量,m³ /s; s—摩阻系数; l—管长,m; d—管道计算内径,m。
3.3 输配水管网计算
3.3 输配水管网计算
解:配水干管计算总长度
(1)配水干管比流量 (2)沿线流量(见下表)
7.给水管网设计与计算2

(3)分区给水系统
把城市整个给水系统分为几个区,每区有泵站和管 网等,各区之间有适当的联系,以保证供水可靠和 调度灵活。
(3)分区给水系统
给水区域大、地形起伏、远距离输水,分为并联分区 和串联分区两种基本形式。 并联分区:由同一泵站内的低压和高压水泵分别供给 低区和高区用水。 供水安全可靠,水泵集中;管理方便,但管网造价高, 需要高压输水管。 串联分区:高低两区用水均由低区泵站供给,高区用 水再由高区水泵加压。 管网造价低,但供水安全、可靠性较差,水泵站分散, 管理不便。
输水管渠流量要求
输水管渠的设计流量,应按最高日平均时供水量 加自用水量确定。当长距离输水时,输水管渠的 设计流量应计入管渠漏失水量。 水厂:Qn=aQd/T a:水厂自用水系数 管网:Q=KhQd/T Kh:时变化系数
输水管渠条数
输水干管一般不宜少于两条,并且每隔一定距离设 连接管连通。当有安全贮水池或其他安全供水措施 时,也可修建一条输水干管。
输水管渠定线
定义:从水源到水厂或水厂到相距较远管网 的管、渠叫做输水管渠。 特点:距离长,与河流、高地、交通路线等 的交叉较多。中途一般没有流量的流入与流 出。 形式:常用的有压力输水管渠和无压输水管 渠两种形式。
输水管渠定线原则
必须与城市建设规划相结合,尽量缩短线路长度, 减少拆迁,少占农田,便于管渠施工和运行维护, 保证供水安全; 选线时,应选择最佳的地形和地质条件,尽量沿现 有道路定线,以便于施工和检修; 减少与铁路、公路和河流的交叉; 管线避免穿越滑坡、岩层、沼泽、高地下水位和河 水淹没与冲刷地区,以降低造价和便于管理; 尽可能重力输水 ; 路线的选择应考虑近远期结合和分期实施的可能。
第6章给水管网的设计计算

ql
qx
qt
1 ql
q
L
ql
qt
ql
L
dx
ql qt
x
qt
qx
qt
ql
L L
x
ql
L L
x
qt / ql
dh
dx qx2
dx
ql2
L L
x
2
h
L 0
dh
L
ql
2
2
1 3
hij
Hi
H
j
L d
2
2g
8
2D5g
LQ 2
LQ2 SQ2
6.2 管网图形及简化
➢管网计算中,城市管网现状核算、现有管网扩建计 算最为常见。
➢除新设计管网,定线和计算仅限于干管,对改建和 扩建管网往往适当简化,保留主要干管,略去次要、 水力条件影响较小的管线。
➢管网图形简化是在保证计算结果接近实际情况的前 提下对管线进行的简化,这样能减轻计算工作量。
节点:有集中流量进出、管道合并或 环:起点与终点重合的管线 分叉以及边界条件发生变化的地点
忽略:管网中主要起联络作 用的管段,由于正常运行时 流量很小,对水力条件影响 很小,计算时可忽略。
分解
忽略
管段合并:长度近似相等、 彼此几乎平行且相距很近的 两条管段计算时可合并。
节点合并:距离很近的两个节 点计算时可视为一个节点。
管网图形及简化
经分解、合并和省略 等,管网由原来42个
环减少到21环。
使环状网某些管段流量为零,即将环状网改成树状 网,才能得到最经济的流量分配,但树状网并不能 保证可靠供水。
环状网流量分配时,应同时照顾经济性和可靠性。
《给排水管道工程》设计指导书

给水排水管网课程设计指导书福建工程学院生态环境与城市建设学院给水排水教研室2015年12月给水管网课程设计指导书班级学生姓名学号一、设计步骤:1、用水量计算(1)、确定用水量标准,计算城市最高日用水量。
居民最高日生活用水量按城市分区用水量标准计算.工厂最高日生产用水量,按工厂性质、产品数量等分别计算,工厂用水量还包括工人在工作时生活用水量及班后淋浴用水量。
此外,还有浇洒道路、绿地用水量。
加上未预见水量和管网漏失水量,即得该城市最高日设计用水量。
(2)、计算城市最高日最高时用水量。
(3)、计算消防时用水量。
2、供水系统方案选择(1)选定水源及位置和净水厂位置;(2)选定供水系统方案.3、管网定线根据选定的给水系统方案,进行配水管网定线。
管网布置采用环状管网和树状管网相结合的方式.4、清水池容积,水塔(或高地水池)容积计算。
5、管段设计流量计算(1)比流量计算采用长度比流量的方法进行计算。
分区用水量标准若不相同应分别计算比流量。
(2)节点流量计算先由比流量计算出沿线流量,再用沿线流量算出节点流量。
(3)进行流量分配①枝状网水流方向唯一,流量分配唯一,任一管段的流量等于以后所有节点流量总和。
②环状网流量分配有多种组合方案.基本原则:满足供水可靠性前提下,兼顾经济性。
注:此分配值是预分配,用来选择管径,真正值由平差结果定。
6、管网水力计算和平差计算:给水管网各管段直径应按最高日最高时用水量和经济流速来确定,按管段预分配流量和所选定的管径,查水力计算表,即可求得各管段的1000i,按h=iL计算各管段水头损失.管网平差采用哈代克罗斯法,通过平差计算确定管网的实际流量分配,并计算相应的水头损失。
平差计算采用列表形式,并以平差计算简图的形式标识平差计算过程中的流量分配变化和校正流量大小方向。
对供水方案的除了进行最大用水时管网平差之外,还需要进行消防校核平差及事故校核。
7、水泵扬程和水塔高度计算。
由管网的控制点开始,按相应的计算条件(最高时、消防时、事故时等),经管网推算到二级泵站,求出水泵的总扬程及供水总流量.8、节点水压标高计算。
给水管网工程设计重点内容

( 1 ~ 6
1 9
)(W1
W2
W3
)
m3
给水管网工程设计重点内容
(2)水塔的容积
Wt W1W2 m3 W1——调节容积 W1, k2Q( d m3)
式中 q3a1——各工业企业一般职 车工 间生活用水量定25额 L/人 ,班; q3a2 ——各工业企业高温职 车工 间生活用水量定35额 L/人 ,班; N3a1 ——各工业企业一般最 车高 间日职工总人数; ,人 N3a2 ——各工业企业高温最 车高 间日职工总人数; ,人 q3b1 ——各工业企业一般职 车工 间淋浴用水量定40额 L/ 人 ,班; q3b2 ——各工业企业高温职 车工 间淋浴用水量定60额 L/人 ,班; N3b1 ——各工业企业一般最 车高 间日职工淋浴总, 人人 数; N3b2 ——各工业企业高温最 车高 间日职工淋浴总, 人人 数。
1)浇洒道路:1~2 L/m2 ·次,每日2~3 2)绿化:1.5~4 L/m2 ·d
给水管网工程设计重点内容
2.最高日设计用水量计算Qd
(1)城市最高日综合生活用水量(包括公共设施 生活用水量)
Q 1
q1iN1i (m3/d) 1000
式中 q1i— —城市各用 高水 日分 综区 合的 生 , 最 L活 /人 d用水 N1i— —设计年限 水内 分城 区市 的各 计 数 用 划 ,用 人水 。
给水管网工程设计重点内容
3.消防用水量(校核时使用)
QxqfNf m3/d
式中 qf ——消防用水量定L额/s; , Nf ——同时发生火灾次数。
给水管网工程设计重点内容
1.1.2 设计用水量变化及其调节计算
1.设计用水量变化规律的确定 可用变化系数(粗略)或变化曲线(比较精确)。
给水排水管网课程设计说明书及计算书
前言水是人类生活、工农业生产和社会经济发展的重要资源,科学用水和排水是人类社会发展史上最重要的社会活动和生产活动内容之一。
特别是在近代历史中,随着人类居住和生产的程式化进程,给水排水工程已经发展成为城市建设和工业生产的重要基础设施,成为人类生命健康安全和工农业科技与生产发展的基础保障。
给水排水系统是为人们的生活、生产、和消防提供用水和排除废水的设施的总称。
它是人类文明进步和城市化聚集居住的产物,是现代化城市最重要的基础设施之一,是城市社会文明、经济发展和现代化水平的重要标志。
尤其是在面临全球水资源极其缺乏的今天,给排水管网的作用显得尤为重要。
由于城市给排水系统在新的时期赋予了新的内涵,与人们的生产和生活息息相关。
看似平凡的规划设计却有着不平凡的现实意义,在满足规范和其它技术要求的条件下,根据城市的具体情况,科学规划设计城市给排水管网系统是一个非常重要的课题。
课程设计是学习计划的一个重要的实践性学习环节,是对前期所学基础理论、基本技能及专业知识的综合应用。
通过课程设计调动了我们学习的积极性和主动性,培养我们分析和解决实际问题的能力,为我们走向实际工作岗位,走向社会打下良好的基础。
本设计为玉树囊谦县香达镇给排水管道工程设计。
整个设计包括三大部分:给水管网设计、排水管网设计。
给水管网的设计主要包括管网的定线、流量的设计计算、清水池容积的确定、管网的水力计算、管网平差和消防校核。
排水管网设计主要包括排水管网定线、设计流量计算和设计水力计算。
目录第一章设计任务书 (4)第二章给水管网设计说明与计算 (6)2.1给水管网的设计说明 (6)2.1.1 给水系统的类型 (6)2.1.2 给水管网布置的影响因素 (6)2.1.3 管网系统布置原则 (7)2.1.4 配水管网布置 (7)2.2给水管网设计计算 (8)2.2.1 设计用水量的组成 (8)2.2.2 设计用水量的计算 (8)2.2.3 管网水力计算 (12)2.3二级泵站的设计 (20)2.3.1 水泵选型的原则 (20)2.3.2 二级泵站流量计算 (21)2.3.3二级泵站扬程的确定 (21)2.3.4 水泵校核 (22)第三章排水管网设计说明与计算 (23)3.1排水系统的体制及其选择 (23)3.2排水系统的布置形式 (24)3.3污水管网的布置 (24)3.4污水管道系统的设计 (24)3.4.1 污水管道的定线 (24)3.4.2 控制点的确定 (25)3.4.3 污水管道系统设计参数 (25)3.4.4 污水管道上的主要构筑物 (26)3.5污水管道系统水力计算 (27)3.5.1 污水流量的计算 (27)3.5.2 集中流量计算 (27)3.5.3 污水干管设计流量计算 (27)3.5.4 污水管道水力计算 (29)3.6管道平面图及剖面图的绘制 (31)3.6.1 管道平面图的绘制 (34)3.6.2 管道剖面图的绘制 (35)结论 (35)总结与体会 (36)参考文献 (37)第一章设计任务书一、设计题目囊谦县香达镇给水排水管网工程设计。
市政给排水管网的优化设计要点及措施分析
市政给排水管网的优化设计要点及措施分析随着城市化进程的加快和城市人口的增加,市政给排水管网的规划和设计变得越来越重要。
优化设计是提高市政给排水管网运行效率和减少运营成本的关键,下面将从几个方面进行分析。
1. 管网规划和设计的合理性市政给排水管网的规划和设计需要考虑到城市的整体发展规划,包括土地利用、人口规模、建筑密度和道路交通等因素。
通过合理布局和设计管网,可以降低排水管网的阻力,减少管网的长度和直径,提高水流速度和水力能量利用率,减少能耗和运行成本。
2. 管网结构的优化和改进市政给排水管网的结构包括主管网和支管网。
主管网的优化是减少部分主干管的长度,增加交叉管道的数量和规模,使得管网具有更好的冗余性和容错性,降低故障率和维修成本。
支管网的优化是合理设计支管和排水口的数量和位置,提高排水速度和排水能力,避免因排水不畅导致的积水和污水倒灌等问题。
3. 管材和管径的选择和优化市政给排水管网的管材和管径的选择与管网的输水能力密切相关。
合理选择管材和管径可以降低管网的摩阻、波阻和液阻,减少能耗和水质损失。
在一般情况下,可以选择流速较高、摩阻较小的管材,以提高管网的输水能力。
而在需要湍流状态的场合,可以选择粗糙度较大的管材,以增加涡动摩阻,提高管道的防止管道壁面污秽、疏通难度大。
4. 管网调压控制和监测系统的建设市政给排水管网的调压控制和监测系统可以实时监测管网的流量、压力、水质、温度等参数,帮助运维人员了解管网的运行状态并进行调整和优化。
调压控制系统可以通过调整水源泵站的供水量和水压,优化管网的输水能力和压力分布。
监测系统可以通过传感器和远程通信技术实时监测管道的运行状态和异常情况,及时发现并处理故障。
5. 管网维护和清洗技术的改进市政给排水管网的长期运行容易导致管道内壁附着物的堆积和生物膜的生长,降低管道的截面和液流能力。
需要改进和创新管道维护和清洗技术,定期对管道进行清洗和维护,保证管网的畅通和正常运行。
给水管网设计说明书
设计说明书一.原始资料设计任务为陕西中部A县给水系统。
1、设计年限与规模:设计年限为2020年,主要服务对象为该城区人口生活与工业生产用水,包括:居民综合生活用水,工业企业生产、生活用水,市政及消防用水,不考虑农业用水。
2、水文情况:本县地势较平缓,附近有地表水源,考虑城区发展及供水安全可靠,采用环状网得布置形式,管线遍布整个供水区,保证用户有足够得水量与水压。
3、气象情况:该地区一年中各种风向出现得频率见远期规划图中得风向玫瑰图,冬季冰冻深度0、5米。
4、用水情况:城区2011年现状人口13、5万人;人口机械增长率为5%。
,设计水平年为2020年。
城区最高建筑物为六层(要求管网干管上最不利点最小服务水头为28、00米)。
消防时最低水压不小于10、00米。
要求供水符合生活饮用水水质标准(无论生活用水与生产用水)。
无特殊要求。
采用统一给水系统。
用水普及率为100 %。
综合生活用水逐时变化表二.设计内容1、给水量定额确定(1)参照附表1 (a)选用得居民综合生活用水定额为240L/cap、d(2)工企业内工作人员生活用水量根据车间性质决定,一般车间采用每人每班25L,高温车间采用每人每班35L。
(3)浇洒街道用水量定额选用2、5L/m、d。
浇洒绿地用水量定额为2L/m2、d o(4)参照附表3该城市同一时间内可能发生火灾2次,一次用水量为45L/S。
2、设计用水量计算(1)最高日用水量计算城市最高日用水量包括综合用水、工业用水、浇洒道路与绿化用水、未预见用水与管网漏失水量。
(一)城市综合用水量计算:设计年限内人口为14、12万人,综合生活用水定额采用240L/cap d最高日综合生活用水量Q:Q1 =qNf城市最高日综合生活用水,m3/ d;q ----- 城市最高日综合用水量定额,L/(cap、d);N ----- 城市设计年限内计划用水人口数;f ――城市自来水普及率,采用f=100% 所以最高日综合生活用水为:Q1=qNf=0、24*141200*100%=33888m3/d=39、2 22L/s(二)工业用水量计算工业生产用水2000+1000+600=3600m3/d=4、1 7L/s 。
给水管网计算
一、用水量计算1 最高日用水量1.1最高日生活用水量基本数据:由原始资料知该城市位于二分区,在设计年限内人口数6.0万,查《室外给水设计规范》(GB 50013-2006)可知该城市为中小城市。
最高日综合活用水定额生:150~240 L/(cap•d)。
根据资料显示人口数,选取q=240 L/(cap•d)。
城市的未预见水量和管网漏失水量按最高日用水量的20%计算。
=∑qNf/1000根据公式 Q1―—城市最高日生活用水,m³/d;Q1q――城市最高综合生活用水量定额,取240 L/(cap•d);N――城市设计年限内计划用水人口数(cap);f――城市自来水普及率,采用f=100%则该城市最高日生活用水量为:=(240×6.0×104×100%)/1000=14400 m³/d=166.67 L/sQ11.2工业企业职工的生活用水和沐浴用水量工业企业职工的生活用水量和淋浴用水量,可按《工业企业设计卫生标准》确定。
选取如下数据:职工生活用水量:冷车间按每人每班25升计,热车间按每人每班35升计;职工淋浴用水量:均按每人每班50升计。
则企业甲职工的生活用水和沐浴用水量为:=(25×3×1200+35×3×900)/1000+(50×600×3)/1000=274.50 m³/d Q21企业乙职工的生活用水和沐浴用水量为:=(25×2×1000+35×2×800)/1000+(50×800×2)/1000=239.00 m³/d Q22所以工业企业职工的生活用水和沐浴用水量为:=274.50+239.00=513.5 m³/d =5.94 L/sQ21.3浇洒道路大面积绿化所需的水量洒道路用水量为每平方米路面每次1-1.5L,大面积绿化用水量可采用1.5-2.0L/(d·m²)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华侨大学化工学院课程论文某城市给水管网的设计课程名称给水排水姓名学号专业2007级环境工程成绩指导教师华侨大学化工学院印制2010 年06 月25 日目录第一章设计用水量 (3)1.1用水量的计算 (3)1.2管网布置图 (4)1.3 节点流量计算 (4)第二章管网水力计算 (5)1.1 初始流量分配 (6)1.3事故流量校正 (9)1.2消防流量校正 (12)第三章水泵的选取 (15)第四章设计总结 (15)4.1 设计补充 (16)4.2 设计总结 (16)第一章设计用水量一、用水量的计算:1、最高日居民生活用水量Q1城区规划人口近期为9.7万,按居民生活用水定额属于中小城二区来计算,最高日用水量定额在100~160L/cap.d,选用Q=130L/cap.d,自来水普及率为1。
故一天的用水量为Q1=qNf=130×9.7×104×1=12610m3/d 。
:2、企业用水量Q2企业内人员生活用水量和淋浴用水量可按:生活用水,冷车间采用每人每班25L,热车间采用每人每班35L;淋浴用水,冷车间采用每人每班40L,热车间采用每人每班60L。
企业甲:冷车间生活用水量为:3000×25=75000L=75m3/d冷车间淋浴用水量为:700×40×3=84000L=84m3/d热车间生活用水量为:2700×35=94500L=94.5m3/d热车间生活用水量为:900×60×3=162000L=162m3/d则企业甲用水量为75+84+94.5+162=415.5m3/d企业乙:冷车间生活用水量为:1800×25=45000L=45m3/d冷车间淋浴用水量为:800×40×2=64000L=64m3/d热车间生活用水量为:1400×35=49000L=49m3/d热车间生活用水量为:700×60×2=84000L=84m3/d则乙车间用水量为:45+64+49+84=242m3/d则企业用水量Q=415.5+242=657.5m3/d2:3、道路浇洒和绿化用水量Q3⑴、道路浇洒用水量:道路面积为678050m2道路浇洒用水量定额为1~1.5L/(m2·次),取1.2L/(m2·次)。
每天浇洒2~3次,取3次则道路浇洒用水量为687075×1.2×3=2473470L=2473.47m3/d⑵绿化用数量绿化面积为城市规划总面积的1.3%,城市规划区域总面积为3598300m2,则绿化面积为3598300×1.3%=46777.9m2,用水定额为1.5~2.0L/(m2·d),取2.0L/(m2·d)故绿化用水量为46777.9×2=93555.8L/d=93.5558m3/d则道路浇洒和绿化总用水量Q3=2473.47m3/d+93.5558m3/d=2567.0258m3/d ==319.92L/s4、企业生产用水量Q4:企业甲:生产用水量为:3500t/d=3500m3/d企业乙:生产用水量为:3700t/d=3700m3/d则Q4=3500+3700=7200m3/d5、未预见水量及管网漏失水量为最高日用水量的15%~25%。
以20%计。
6、设计年限内的城市最高日用水量为Q=1.2(Q1+Q2+Q3+Q4)=1.2(12610+657.5+2567.0258+7200)=27641.43m3/d=319.916L/s依据下表可知,居民时最大用水量为最高日居民总用水量的7.59%,出现在18:00—19:00时段。
最高日每小时综合生活用水量占该日总综合生活用水量的百分比小时生活用水量(%)小时生活用水量(%)小时生活用水量(%)小时生活用水量(%)0~1 1.92 6~7 4.77 12~13 4.39 18~19 7.59 1~2 1.85 7~~8 4.71 13~14 4.63 19~20 4.55 2~3 1.84 8~9 4.71 14~15 4.57 20~21 3.84 3~4 1.85 9~10 4.79 15~16 5.25 21~22 3.67 4~5 3.51 10~11 4.87 16~17 5.91 22~23 2.82 5~6 3.96 11~12 4.87 17~18 6.73 23~24 2.01 最高日最高时用水量出现在18:00—19:00时段。
则最高日最高时用水量为27641.43×7.59%=2097.98m3/h最高日平均时用水量为27641.43÷24=1151.73m3/h则是变化系数kh=2097.98÷1151.73=1.827、消防时用水量:城市规划人口数为9.7万人,则取同一时间内的火灾次数为2次,一次灭火用水量为35L/s,火灾延时为2h则消防用水量为q=35×3600×2×2=504m3二、给水系统方案选择从流经城市和工业区的河流上游取地表水,采用统一给水系统三、管网定线:输水管渠定线的基本原则:输水灌渠定线时,必须与城市建设规划相结合,尽量缩短线路长度,减少拆迁,少占农田,便于灌渠施工和运行维护,保证供水安全;定线时,应选择最佳的地形和地质条件,尽量沿现有道路定线,以便施工和检修;减少与铁路、公路和河流的交叉;管线避免穿越滑坡、岩层、沼泽、高地下水位和河流淹没与冲刷地区,以降低造价和便于管理。
依据地形图如下图,管网布置如下:四、绘制城市用水量变化曲线图设计为有水塔二级泵站五、清水池容积计算:清水池有效容积W=W1+W2+W3+W4调节容积W1=27641.43×9.96%=2753.1m3消防贮水量W2=504m3水厂冲洗滤池和沉淀池排泥等生产用水,以最高日用水量的5%计,则W3=27641.43×5%=1382.1m3安全贮量,以设计用水量的0.5%计,则W4=27641.43×0.5%=138.2m3故清水池的有效容积W=W1+W2+W3+W4=4777.4m3六、管段设计流量计算1、比流量计算:大用户集中用水为∑q=Q甲+Q乙=657.5+7200=7857.5m3/d= 90.94 L/s∑l=10700m比流量q s=(Q-∑q)/∑l=(319.916-90.94)/10700=0.0214 L/(s·m)管线流量q l=q s·L (L为有效长度)有部分管线为单侧供水,管线流量如下表所示沿线流量(表2)管段有效管长m 比流量L/s 沿线流量L/s1~2 760 0.021416.2642~3 550 0.021411.773~4 540 0.021411.5564~5 625 0.021413.3755~6 660 0.021414.1246~7 490 0.021410.4867~8 505 0.021410.8078~9 740 0.021415.8369~10 685 0.021414.65910~11 750 0.021416.0511~12 525 0.021411.23512~5 505 0.021410.8071~10 635 0.021413.5892~11 690 0.021414.7668~11 680 0.021414.5523~12 690 0.021414.7667~12 670 0.021414.338节点流量q i=0.5q s∑l(L/s)企业甲集中节点流量Q甲/86.4= 45.315 L/s企业乙集中节点流量Q乙/86.4=45.625L/s总节点流量以及消防总节点流量图下表节点流量(表3)节点编号∑L节点流量L/s 集中节点流量L/s总节点流量L/s消防总节点流量L/s1 1395 14.9265 0 14.9265 72.12 2000 21.4 0 21.4 113.63 1780 19.046 45.625 64.671 61.04 1165 12.4655 45.315 57.7805 21.75 1790 19.153 0 19.1536 1150 12.305 0 12.3057 1665 17.8115 0 17.81158 1925 20.5975 0 20.59759 1425 15.2475 0 15.247510 2070 22.149 0 22.14911 2645 28.3015 0 28.301512 2390 25.573 0 25.573总流量L/s319.916 691.4第二章管网水力计算1.1 初始流量分配根据用水量Q=319.92 L/s,以及各个节点的流量,分配到各个管段,进行平差将初分流量和平差结果制成附表4初始流量分配表4环号管段管长管径qⅠ1~2 760 450 168.79 2~11 690 250 9.86 11~10 750 350 -67.05 10~1 635 450 -136.1995Ⅱ2~3 550 400 137.53 3~12 690 200 912~11 525 300 -43.2585 11~2 690 250 -9.86Ⅲ3~4 540 300 63.859 4~5 625 200 6.0785 5~12 505 250 -13.5 12~3 690 200 -9Ⅳ10~11 750 350 67.05 11~8 680 200 5.35 8~9 740 250 -31.7539~10 685 300 -47.0005Ⅴ11~12 525 300 43.2585 12~7 670 250 13.1855 7~8 505 250 -16.5055 8~11 680 200 -5.35Ⅵ12~5 505 250 13.55~6 660 200 0.42556~7 490 250 -11.87957~12 670 250 -13.1855续表4——————————第20次平差——————————第1环编号流量损失hf' 1 166.06 2.36 26.33 11 20.77 0.8 71.21 -4 -73.28 -1.74 44.01 -10 -138.93 -1.42 18.9总h= .0005 总hf'= 160.447△q=-.0031第2环编号流量损失hf' 2 123.89 1.76 26.35 12 8.11 0.41 94.71 -5 -52.21 -1.38 48.89 -11 -20.77 -0.8 71.21总h= .0001 总hf'= 241.16△q=-.0005 第3环编号流量损失hf' 3 51.11 1.36 49.38 13 -6.67 -0.26 72.68 -6 -22.64 -0.69 56.08 -12 -8.11 -0.41 94.71总h= .0006 总hf'= 272.8543△q=-.0023第4环编号流量损失hf'4 73.28 1.74 44.01 15 13.54 1.06 144.46 -7 -28.26 -1.51 99.26 -14 -43.5 -1.28 54.61总h= .0001 总hf'= 342.3382△q=-.0003第5环编号流量损失hf'5 52.21 1.38 48.89 16 12.11 0.29 43.65 -8 -21.2 -0.61 53.02 -15 -13.54 -1.06 144.46总h= .0008 总hf'= 290.0299△q=-.0029第6环编号流量损失hf'6 22.64 0.69 56.08 17 -3.19 -0.07 40.91 -9 -15.49 -0.33 39.39 -16 -12.11 -0.29 43.65总h= .0001 总hf'= 180.035△q=-.0003大环闭合差=0,符合条件编号流量损失1 166.06 2.362 123.89 1.763 51.11 1.364 73.28 1.745 52.21 1.386 22.64 0.697 28.26 1.518 21.2 0.619 15.49 0.3310 138.93 1.4211 20.77 0.812 8.11 0.4113 -6.67 -0.2614 43.5 1.2815 13.54 1.0616 12.11 0.2917 -3.19 -0.07∑h=16.67m校正结果如下图所示:环号管段管长管径qⅠ1~2 760 450 168.792~11 690 250 9.8611~10 750 350 -67.0510~1 635 450 -136.1995 Ⅱ2~3 550 400 137.533~12 690 200 912~11 525 300 -43.258511~2 690 250 -9.86Ⅲ3~4 540 300 63.8594~5 625 200 6.07855~12 505 250 -13.512~3 690 200 -9 Ⅳ10~11 750 350 67.0511~8 680 200 5.358~9 740 250 -31.7539~10 685 300 -47.0005 Ⅴ11~12 525 300 43.258512~7 670 250 13.18557~8 505 250 -16.50558~11 680 200 -5.35 Ⅵ12~5 505 250 13.55~6 660 200 0.42556~7 490 250 -11.87957~12 670 250 -13.1855以节点6为控制点。