2013-2014学年高三理科数学附加题:训练10
2013-2014年高考理科数学陕西卷试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(陕西卷)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分).1.(2013陕西,理1)设全集为R ,函数f (x )的定义域为M ,则R M 为( ).A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 1)∪(1,+∞).2.(2013陕西,理2)根据下列算法语句,当输入x 为60时,输出y 的值为( ).A .25B .30C .31D .613.(2013陕西,理3)设a ,b 为向量,则“|a·b |=|a ||b |”是“a ∥b ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 4.(2013陕西,理4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ).A .11B .12C .13D .145.(2013陕西,理5)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( ). A .π14-B .π12- C .π22-D .π4 6.(2013陕西,理6)设z 1,z 2是复数,则下列命题中的假.命题是( ). A .若|z1-z2|=0,则12z z = B .若12z z =,则12z z =C .若|z1|=|z2|,则1122z z z z⋅=⋅ D .若|z1|=|z2|,则z12=z22 7.(2013陕西,理7)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .不确定 8.(2013陕西,理8)设函数f (x )=6100,x x x x ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪≥⎩,,则当x >0时,f [f (x )]表达式的展开式中常数项为 A .-20 B .20 C .-15 D .15 9.(2013陕西,理9)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( ).A .[15,20]B .[12,25]C .[10,30]D .[20,30]10.(2013陕西,理10)设[x]表示不大于x的最大整数,则对任意实数x,y,有( ).A.[-x]=-[x] B.[2x]=2[x]C.[x+y]≤[x]+[y] D.[x-y]≤[x]-[y]第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.(2013陕西,理11)双曲线22116x ym-=的离心率为54,则m等于__________.12.(2013陕西,理12)某几何体的三视图如图所示,则其体积为__________.13.(2013陕西,理13)若点(x,y)位于曲线y=|x-1|与y=2所围成的封闭区域,则2x-y的最小值为__________.14.(2013陕西,理14)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n个等式可为__________.15.(2013陕西,理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为__________.B.(几何证明选做题)如图,弦AB与CD相交于O内一点E,过E作BC的平行线与AD的延长线交于点P,已知PD=2DA=2,则PE=__________.C.(坐标系与参数方程选做题)如图,以过原点的直线的倾斜角θ为参数,则圆x2+y2-x=0的参数方程为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.(2013陕西,理16)(本小题满分12分)已知向量a =1cos ,2x ⎛⎫- ⎪⎝⎭,b =x ,cos 2x ),x ∈R ,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.17.(2013陕西,理17)(本小题满分12分)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.18.(2013陕西,理18)(本小题满分12分)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1(1)证明:A1C⊥平面BB1D1D;(2)求平面OCB1与平面BB1D1D的夹角θ的大小.19.(2013陕西,理19)(本小题满分12分)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望.20.(2013陕西,理20)(本小题满分13分)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.21.(2013陕西,理21)(本小题满分14分)已知函数f (x )=e x,x ∈R . (1)若直线y =kx +1与f (x )的反函数的图像相切,求实数k 的值;(2)设x >0,讨论曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数; (3)设a <b ,比较2f a f b ()+()与f b f a b a()-()-的大小,并说明理由.2013年普通高等学校夏季招生全国统一考试数学理工农医类(陕西卷)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分). 1. 答案:D解析:要使函数f (x )1-x 2≥0,解得-1≤x ≤1,则M =[-1,1],RM =(-∞,-1)∪(1,+∞). 2. 答案:C解析:由算法语句可知0.5,50,250.650,50,x x y x x ≤⎧=⎨+(-)>⎩所以当x =60时,y =25+0.6×(60-50)=25+6=31.3. 答案:C解析:若a 与b 中有一个为零向量,则“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件;若a 与b 都不为零向量,设a 与b 的夹角为θ,则a ·b =|a ||b |cos θ,由|a ·b |=|a ||b |得|cos θ|=1,则两向量的夹角为0或π,所以a ∥b .若a ∥b ,则a 与b 同向或反向,故两向量的夹角为0或π,则|cos θ|=1,所以|a ·b |=|a ||b |,故“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件. 4. 答案:B解析:840÷42=20,把1,2,…,840分成42段,不妨设第1段抽取的号码为l ,则第k 段抽取的号码为l +(k -1)·20,1≤l ≤20,1≤k ≤42.令481≤l +(k -1)·20≤720,得25+120l -≤k ≤37-20l.由1≤l ≤20,则25≤k ≤36.满足条件的k 共有12个. 5. 答案:A解析:S 矩形ABCD =1×2=2,S 扇形ADE =S 扇形CBF =π4.由几何概型可知该地点无信号的概率为 P =π2π2124FABCD ADE CB ABCDS S S S ---==-矩形扇形扇形矩形. 6.答案:D解析:对于选项A ,若|z 1-z 2|=0,则z 1=z 2,故12z z =,正确;对于选项B ,若12z z =,则122z z z ==,正确;对于选项C ,z 1·1z =|z 1|2,z 2·z 2=|z 2|2,若|z 1|=|z 2|,则1122z z z z ⋅=⋅,正确;对于选项D ,如令z 1=i +1,z 2=1-i ,满足|z 1|=|z 2|,而z 12=2i ,z 22=-2i ,故不正确. 7. 答案:B解析:∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴π2A =,故△ABC 为直角三角形. 8. 答案:A解析:当x >0时,f (x )=0,则f [f (x )]=66⎛= ⎝.663221666C (1)C (1)C rr rr r r r r r r r T x x x ----+⎛=⋅=-⋅=- ⎝.令3-r =0,得r =3,此时T 4=(-1)336C =-20.9. 答案:C解析:设矩形另一边长为y ,如图所示.404040x y -=,则x =40-y ,y =40-x .由xy ≥300,即x (40-x )≥300,解得10≤x ≤30,故选C .10.答案:D解析:对于选项A ,取x =-1.1,则[-x ]=[1.1]=1,而-[x ]=-[-1.1]=-(-2)=2,故不正确;对于选项B ,令x =1.5,则[2x ]=[3]=3,2[x ]=2[1.5]=2,故不正确;对于选项C ,令x =-1.5,y =-2.5,则[x +y ]=[-4]=-4,[x ]=-2,[y ]=-3,[x ]+[y ]=-5,故不正确;对于选项D ,由题意可设x =[x ]+β1,0≤β1<1,y =[y ]+β2,0≤β2<1,则x -y =[x ]-[y ]+β1-β2,由0≤β1<1,-1<-β2≤0,可得-1<β1-β2<1.若0≤β1-β2<1,则[x -y ]=[[x ]-[y ]+β1-β2]=[x ]-[y ];若-1<β1-β2<0,则0<1+β1-β2<1,[x -y ]=[[x ]-[y ]+β1-β2]=[[x ]-[y ]-1+1+β1-β2]=[x ]-[y ]-1<[x ]-[y ],故选项D 正确.第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.答案:9解析:由双曲线方程知a =4.又54c e a ==,解得c =5,故16+m =25,m =9. 12. 答案:π3解析:由三视图可知该几何体是如图所示的半个圆锥,底面半圆的半径r =1,高SO =2,则V 几何体=1π2π323⨯⨯=.13.答案:-4解析:由y =|x -1|=1,1,1,1x x x x -≥⎧⎨-+<⎩及y =2画出可行域如图阴影部分所示.令2x -y =z ,则y =2x -z ,画直线l 0:y =2x 并平移到过点A (-1,2)的直线l ,此时-z 最大,即z 最小=2×(-1)-2=-4. 14.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·12n n (+)解析:第n 个等式的左边第n 项应是(-1)n +1n 2,右边数的绝对值为1+2+3+…+n =12n n (+),故有12-22+32-42+…+(-1)n +1n 2=(-1)n +112n n (+). 15.(2013陕西,理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A .答案:2解析:(am +bn )(bm +an )=abm 2+(a 2+b 2)mn +abn 2=ab (m 2+n 2)+2(a 2+b 2)≥2abmn +2(a 2+b 2)=4ab +2(a 2+b 2)=2(a 2+2ab +b 2)=2(a +b )2=2(当且仅当m =n ).B .解析:∠C 与∠A 在同一个O 中,所对的弧都是BD ,则∠C =∠A .又PE ∥BC ,∴∠C =∠PED .∴∠A=∠PED .又∠P =∠P ,∴△PED ∽△PAE ,则PE PD PA PE=,∴PE 2=PA ·PD .又PD =2DA =2,∴PA =PD +DA=3,∴PE 2=3×2=6,∴PE C .答案:2cos ,sin cos x y θθθ⎧=⎨=⎩(θ为参数)解析:由三角函数定义知y x=tan θ(x ≠0),y =x tan θ,由x 2+y 2-x =0得,x 2+x 2tan 2θ-x =0,x =211tan θ+=cos 2θ,则y =x tan θ=cos 2θtan θ=sin θcos θ,又π2θ=时,x =0,y =0也适合题意,故参数方程为2cos ,sin cos x y θθθ⎧=⎨=⎩(θ为参数).三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.解:f (x )=1cos ,2x ⎛⎫- ⎪⎝⎭x ,cos 2x )x sin x -12cos 2xx -12cos 2x=ππcos sin 2sin cos 266x x -=πsin 26x ⎛⎫- ⎪⎝⎭.(1)f (x )的最小正周期为2π2ππ2T ω===, 即函数f (x )的最小正周期为π. (2)∵0≤x ≤π2, ∴ππ5π2666x -≤-≤.由正弦函数的性质,当ππ262x -=,即π3x =时,f (x )取得最大值1.当ππ266x -=-,即x =0时,f (0)=12-,当π52π66x -=,即π2x =时,π122f ⎛⎫= ⎪⎝⎭,∴f (x )的最小值为12-.因此,f (x )在π0,2⎡⎤⎢⎥⎣⎦上最大值是1,最小值是12-.17.(1)解:设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴111nn a q S q (-)=-,∴11,1,1, 1.1n n na q S a q q q=⎧⎪=(-)⎨≠⎪-⎩(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N +,(a k +1+1)2=(a k +1)(a k +2+1),21k a ++2a k +1+1=a k a k +2+a k +a k +2+1,a 12q 2k +2a 1q k =a 1q k -1·a 1q k +1+a 1q k -1+a 1q k +1,∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾,∴假设不成立,故{a n +1}不是等比数列.18.(1)证法一:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立直角坐标系,如图.∵AB =AA 1∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1). 由11A B =AB ,易得B 1(-1,1,1).∵1AC =(-1,0,-1),BD =(0,-2,0),1BB =(-1,0,1),∴1AC ·BD =0,1AC ·1BB =0,∴A 1C ⊥BD ,A 1C ⊥BB 1, ∴A 1C ⊥平面BB 1D 1D .证法二:∵A 1O ⊥平面ABCD ,∴A 1O ⊥BD .又∵ABCD 是正方形,∴BD ⊥AC ,∴BD ⊥平面A 1OC ,∴BD ⊥A 1C .又∵OA 1是AC 的中垂线,∴A 1A =A 1CAC =2,∴AC 2=AA 12+A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C .又BB 1∥AA 1,∴A 1C ⊥BB 1,∴A 1C ⊥平面BB 1D 1D . (2)解:设平面OCB 1的法向量n =(x ,y ,z ),∵OC =(-1,0,0),1OB =(-1,1,1),∴10,0,OC x OB x y z ⎧⋅=-=⎪⎨⋅=-++=⎪⎩n n ∴0,.x y z =⎧⎨=-⎩取n =(0,1,-1),由(1)知,1AC =(-1,0,-1)是平面BB 1D 1D 的法向量, ∴cos θ=|cos 〈n ,1AC 〉|12=.又∵0≤θ≤π2,∴π3θ=.19.解:(1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=1223C 2C 3=,P (B )=2435C 3C 5=.∵事件A 与B 相互独立,∴观众甲选中3号歌手且观众乙未选中3号歌手的概率为P (A B )=P (A )·P (B )=P (A )·[1-P (B )]=2243515⨯=.13242335C C 4.C C 15P AB ⎛⎫⋅()== ⎪⋅⎝⎭或(2)设C 表示事件“观众丙选中3号歌手”,则P (C )=2435C 3C 5=,∵X 可能的取值为0,1,2,3,且取这些值的概率分别为P (X =0)=1224()35575P ABC =⨯⨯=,P (X =1)=()()()P ABC P ABC P ABC ++ =2221321232035535535575⨯⨯+⨯⨯+⨯⨯=, P (X =2)=P (AB C )+P (A B C )+P (A BC )=2322231333335535535575⨯⨯+⨯⨯+⨯⨯=,P (X =3)=P (ABC )=2331835575⨯⨯=,∴X 的分布列为∴X 的数学期望40123757575757515EX ⨯+⨯+⨯+⨯===. 20.(1)解:如图,设动圆圆心O 1(x ,y ),由题意,|O 1A |=|O 1M|,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点, ∴1||O M =1||O A =,=化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x ,∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y=kx +b 代入y 2=8x 中,得k 2x 2+(2bk -8)x +b 2=0, 其中Δ=-32kb +64>0. 由求根公式得,x 1+x 2=282bkk -,① x 1x 2=22b k,②因为x 轴是∠PBQ 的角平分线,所以121211y yx x =-++, 即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1), 即直线l 过定点(1,0). 21.解:(1)f (x )的反函数为g (x )=ln x .设直线y =kx +1与g (x )=ln x 的图像在P (x 0,y 0)处相切, 则有y 0=kx 0+1=ln x 0,k =g ′(x 0)=01x , 解得x 0=e 2,21ek =. (2)曲线y =e x与y =mx 2的公共点个数等于曲线2e xy x=与y =m 的公共点个数.令()2e x x xϕ=,则3e 2()x x x x ϕ(-)'=, ∴φ′(2)=0.当x ∈(0,2)时,φ′(x )<0,φ(x )在(0,2)上单调递减;当x ∈(2,+∞)时,φ′(x )>0,φ(x )在(2,+∞)上单调递增,∴φ(x )在(0,+∞)上的最小值为2e (2)4ϕ=.当0<m <2e 4时,曲线2e xy x =与y =m 无公共点;当2e 4m =时,曲线2e xy x =与y =m 恰有一个公共点;当2e 4m >时,在区间(0,2)内存在1x =,使得φ(x 1)>m ,在(2,+∞)内存在x 2=m e 2,使得φ(x 2)>m .由φ(x )的单调性知,曲线2e xy x=与y =m 在(0,+∞)上恰有两个公共点.综上所述,当x >0时,若0<m <2e 4,曲线y =f (x )与y =mx 2没有公共点;若2e 4m =,曲线y =f (x )与y =mx 2有一个公共点;若2e 4m >,曲线y =f (x )与y =mx 2有两个公共点.(3)解法一:可以证明2f a f b f b f a b a()+()()-()>-.事实上,2f a f b f b f a b a ()+()()-()>-⇔e e e e 2a b b ab a+->-⇔e e 2e e b a b a b a -->+⇔2e 12e eab a b a ->-+⇔212e 1b a b a -->-+(b >a ).(*) 令2()12e 1xx x ψ=+-+(x ≥0), 则2222212e e 14e e 1()02e 12e 12e 1x x x x x x x x ψ(+)-(-)'=-==≥(+)(+)(+)(仅当x =0时等号成立),∴ψ(x )在[0,+∞)上单调递增,∴x >0时,ψ(x )>ψ(0)=0.令x =b -a ,即得(*)式,结论得证.解法二:e e e e 22b a b af a f b f b f a b a b a()+()()-()+--=---=e e e e 2e 2e 2b a b a b a b b a a b a +---+(-)=e 2a b a (-)[(b -a )e b -a +(b -a )-2e b -a+2], 设函数u (x )=x e x+x -2e x+2(x ≥0),则u ′(x )=e x +x e x +1-2e x,令h (x )=u ′(x ),则h ′(x )=e x +e x +x e x -2e x =x e x≥0(仅当x =0时等号成立), ∴u ′(x )单调递增,∴当x >0时,u ′(x )>u ′(0)=0, ∴u (x )单调递增.当x >0时,u (x )>u (0)=0.令x =b -a ,则得(b -a )e b -a +(b -a )-2e b -a+2>0,∴e e e e >02b a b ab a+---, 因此,2f a f b f b f a b a()+()()-()>-.2014年普通高等学校招生全国统一考试(陕西)卷数学(理科)一.选择题(本大题共10小题,每小题5分,共50分。
高三数学复习附加题专项训练15套有答案

ABC •••2013届高三数学复习附加题专项训练(一)烟雾满山飘 制作上传选修4-2:矩阵与变换二阶矩阵M 对应的变换将点(1,1)-与(2,1)-分别变换为点(1,1)--与(0,2)-,设直线l 在变换M 作用下得到了直线:24m x y -=,求直线l 的方程答案:直线l 的方程为40x +=选修4-4:坐标系与参数方程在极坐标系中,已知圆sin a ρθ=(0a >)与直线()cos 1ρθπ+=4相切,求实数a 的值.答案:解得4a =+【必做题】22. 如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.求APB ∆的重心G 的轨迹方程.答案:重心G 的轨迹方程为:221(34)20,(42)3x y x y x x --+-==-+即.23. 如图所示,某城市有南北街道和东西街道各2n +条,一邮递员从该城市西北角的邮局A 出发,送信到东南角B 地,要求所走路程最短.求该邮递员途径C 地的概率()f n 答案: 概率[]2212222(1)!(2)!1()2(!)(22)!21n n n n C n n n f n C n n n ++++==⋅=++。
(第4题)BACA 1B 1C 12013届高三数学一轮复习附加题专项训练(二)1设A=1212⎤⎥⎢⎢⎢⎣,则6A的逆矩阵是 。
答案:逆矩阵为 1 00 -1-⎡⎤⎢⎥⎣⎦。
选修4-4:坐标系与参数方程已知点),(y x P 在椭圆1121622=+y x 上,试求y x z 32-=的最大值. 答案: 10z 的最大值是【必做题】22.如图,在三棱柱111ABC A B C -中,AB AC ⊥,顶点1A 在底面ABC 上的射影恰为点B ,且12AB AC A B ===.(1)求棱1AA 与BC 所成的角的大小;(2)在棱11B C 上确定一点P ,使AP =1P AB A --的平面角的余弦值.答案(1)1AA 与棱BC 所成的角是π3.(2)二面角1P ABA --.23. 已知抛物线24y x =的焦点为F ,直线l 过点(4,0)M .(1)若点F 到直线l l 的斜率;(4分)(2)设,A B 为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值.(6分)答案: (1)直线l 的斜率为(2)线段AB 中点的横坐标为定值2.2013届高三数学一轮复习附加题专项训练(三)选修4-2:矩阵与变换若点(2,2)A 在矩阵cos sin sin cos M αααα-⎡⎤=⎢⎥⎣⎦对应变换的作用下得到的点为(2,2)B -,求矩阵M 的逆矩阵答案: 10110-⎡⎤=⎢⎥-⎣⎦M . 选修4-4:坐标系与参数方程在极坐标系中,求经过三点O (0,0),A (2,2π),B (4π)的圆的极坐标方程.解答: )4ρθπ=-.【必做题】 第22题口袋中有3个白球,4个红球,每次从口袋中任取一球,如果取到红球,那么继续取球,如果取到白球,就停止取球,记取球的次数为X . (I )若取到红球再放回,求X 不大于2的概率;(II )若取出的红球不放回,求X 的概率分布与数学期望.解答:(Ⅰ) ∴33(1)(2)49P P X P X ==+==;∴32631()12345277353535E X =⨯+⨯+⨯+⨯+⨯= 第23题已知1()ln(1)(1)nf x a x x =+--,其中*n N ∈,a 为常数, (1)当2n =时,求函数()f x 的极值;(2)当1a =时,证明:对任意的正整数n ,当2x ≥时,()1f x x ≤-.答案:(1) 2n =时,当0a >时,()f x 在1x =+处取得极小值2(1(1ln )2a f a+=+;当0a ≤时, ()f x 无极值. (2)略2013届高三数学一轮复习附加题专项训练(四)选修4-2:矩阵与变换.已知矩阵1101,20201⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A B ,若矩阵AB 对应的变换把直线l :20x y +-=变为直线'l ,求直线'l 的方程.答案:直线l '的方程为480x y +-=选修4-4:坐标系与参数方程求直线12,12x t y t =+⎧⎨=-⎩(t 为参数)被圆3cos ,3sin x y αα=⎧⎨=⎩(α为参数)截得的弦长.答案:弦长为【必做题】 第22题假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5,记此时教室里敞开的窗户个数为X . (Ⅰ)求X 的分布列;(Ⅱ)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y ,求Y 的分布列.答案:(Ⅰ)X 的分布列为(Ⅱ)Y 的分布列为第23题已知2()1f x x x =+-,()ln g x =若对任意12x >,都有()()f x g x ≤,试求a 的取值范围.答案: a 的取值范围是[,)e +∞.2013届高三数学一轮复习附加题专项训练(五)1选修4-2:矩阵与变换设A=,则A 6= 答案:66cos -sin 0 14466-1 0sin cos 44ππππ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦选修4-4:坐标系与参数方程椭圆2211612x y +=上找一点,使这一点到直线2120x y --=的距离的最小值. 答案:当 53πθ=时,min d =,此时所求点为(2,3)-【必做题】第22题 已知斜三棱柱111ABC A B C -,90BCA ∠=o,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥. (I )求证:1AC ⊥平面1A BC ; (II )求1CC 到平面1A AB 的距离; 答案:(I )略(II )1||||AC n d n ⋅==u u u u r rr 7. 第23题设数列{}n a 满足*1112,().n n na a a n N a +==+∈ (1)证明:n a 对*n N ∈恒成立; (2)令*)n b n N =∈,判断n b 与1n b +的大小,并说明理由.23题提供答案 证明: (1)111111(0)(0,1)12,22,{}(2,)12111k k n n kk kk k y x x x xa a a a a n a a nn k nk a a a ++=+>∈∈∞==+≥≥+∞===>>==>=+=+>=是减函数,x (1,+)为增函数。
石景山区2013—2014学年第一学期期末考试试卷高三数学(理科)

150o ,则 | PF | ______.
A1
14. 已知四边形是边长为的正方形,且平面,为上动点,过且垂直于的平面交于,那么
异面直线 PC 与 BD 所成的角的度数为
P
,当三棱锥的体积取得最大值时,
四棱锥 P ABCD 的高 PA 的长为
.
三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分 13 分)
)
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
4.已知数列为等差数列, ,那么数列通项公式为(
)
A.
B.
C.
D.
5.执行如图所示的程序框图,若输入的
则输出的 x 的值为(
)
x 的值为 2 ,
A. 3
B. 126
C. 127
D. 128
开始
输入 x
x 2x 1 否 x 126
.
1.已知集合 M x R x2 2 x 3 0 , N x R x 1 0 ,那么 M N ( )
A. { 1,0,1}
B. { 3, 2 , 1}
C. { x 1 x 1}
i
2.复数
(
1i
1i
A.
22
)
1i
B.
22
D. { x 3 x 1}
1i
C.
22
1i
D.
22
3.已知向量 a ( x ,1) , b (4 ,x) ,则“ x 2 ”是“ a ∥ b ”的(
格.
现从某校高三年级的 300名学生中随机抽取 30名学生体质健康测试成绩,其茎叶图如下:
2013-2014学年高三理科数学附加题:训练14

高三数学理科附加题训练14
1.(选修4—2:矩阵与变换)
已知矩阵A =⎣⎢⎡⎦⎥⎤ 3 3 c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦
⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦
⎥⎤ 3-2.求矩阵A ,并写出A 的逆矩阵.
2.(选修4—4:坐标系与参数方程)
已知曲线C 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的非负半轴建立平面
直角坐标系,直线l
的参数方程为1212
x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),求直线l 被曲线C 截得的线段
长度.
3.某从集合{}1,2,3,4,5,6,7,8,9M =中,抽取三个不同元素构成子集{}123,,a a a . (Ⅰ)求对任意的i j ≠,满足2i j a a -≥的概率;
(Ⅱ)若123,,a a a 成等差数列,设其公差为()0ξξ>,求随机变量ξ的分布列与数学期望.
4.设函数(,)1(0,0)x
m f x y m y y ⎛⎫=+>> ⎪⎝
⎭. (1)当3m =时,求(6,)f y 的展开式中二项式系数最大的项;
(2)若31240234(4,)a a a a f y a y y y y =++++且332a =,求40i i a =∑; (3)设n 是正整数,t 为正实数,实数t 满足(,1)(,)n f n m f n t =,
求证:7(2010,)f f t >-.。
2014年江苏高考理科附加题(10套)

2014省数学高考附加题强化试题1班级得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每题10分,计20分.B .选修4—2:矩阵与变换假设点A 〔2,2〕在矩阵cos sin sin cos αααα-⎡⎤=⎢⎥⎣⎦M 对应变换的作用下得到的点为B 〔-2,2〕,求矩阵M 的逆矩阵.C.选修4 - 4:坐标系与参数方程在极坐标系中,直线l 的极坐标方程为()3πθρ=∈R ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为2cos ,1cos 2αα=⎧⎨=+⎩x y 〔α为参数〕,求直线l 与曲线C 的交点P 的直角坐标.D.选修4-5:不等式选讲 函数2222()()()()()3a b c f x x a x b x c ++=-+-+-+〔,,a b c 为实数〕的最小值为m ,假设23a b c -+=,求m 的最小值.[必做题] 第22、23题,每题10分,计20分.22、如图,正四棱锥P ABCD -中,2,AB PA =,AC 、BD 相交于点O ,求:〔1〕直线BD 与直线PC 所成的角;〔2〕平面PAC 与平面PBC 所成的角23、设数列{}n a 满足2111,n n a a a a a +==+,{}* | |2R N n M a n a =∈∈,≤.〔1〕当(,2)a ∈-∞-时,求证:a ∉M ;〔2〕当1(0,]4a ∈时,求证:a M ∈;〔3〕当1(,)4a ∈+∞时,判断元素a 与集合M 的关系,并证明你的结论.省数学高考附加题强化试题2班级得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每题10分,计20分.B .选修4—2:矩阵与变换二阶矩阵M 对应的变换将点(1,1)-与(2,1)-分别变换成点(1,1)--与(0,2)-.求矩阵M ;C .选修4—4:坐标系与参数方程假设两条曲线的极坐标方程分别为=l 与=2cos(θ+π3),它们相交于A ,B 两点,求线段AB 的长.D .选修4—5:不等式选讲求函数()212f x x x =+-[必做题] 第22、23题,每题10分,计20分.22.〔本小题10分〕口袋中有)(*N ∈n n 个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .假设307)2(==X P ,求〔1〕n 的值; 〔2〕X 的概率分布与数学期望.23.〔本小题10分〕曲线1:(0)C y x x=>,过1(1,0)P 作y 轴的平行线交曲线C 于1Q ,过1Q 作曲线C 的切线与x 轴交于2P ,过2P 作与y 轴平行的直线交曲线C 于2Q ,照此下去,得到点列12,,P P ⋅⋅⋅,和12,,Q Q ⋅⋅⋅,设||n n n P Q a =*1|()n n n Q Q b n N +=∈.〔1〕求数列{}n a 的通项公式;〔2〕求证:1222n nn b b b -++⋅⋅⋅+>-;省数学高考附加题强化试题3班级得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每题10分,计20分.B .〔选修4—2:矩阵与变换〕矩阵A =⎣⎢⎡⎦⎥⎤ 3 3cd ,假设矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤ 3-2.求矩阵A ,并写出A 的逆矩阵.C .〔选修4—4:坐标系与参数方程〕曲线C 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l的参数方程为121x t y ⎧=⎪⎪⎨⎪=+⎪⎩〔t 为参数〕,求直线l 被曲线C 截得的线段长度.D .〔选修4-5:不等式选讲〕设z y x ,,为正数,证明:()()()()3332222x y z x y z y x z z x y +++++++≥.[必做题] 第22、23题,每题10分,计20分.22.〔本小题总分值10分〕某中学选派40名同学参加世博会青年志愿者效劳队〔简称“青志队〞〕,他们参加活动的次数统计如表所示.(Ⅰ)从“青志队〞中任意选3名学生,求这3名同学中至少有2名同学参加活动次数恰好相等的概率; (Ⅱ)从“青志队〞中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望ξE .23.〔本小题总分值10分〕 设函数(,)1(0,0)x m f x y m y y ⎛⎫=+>> ⎪⎝⎭. 〔1〕当3m =时,求(6,)f y 的展开式中二项式系数最大的项;〔2〕假设31240234(4,)a a a a f y a y y y y =++++且332a =,求40i i a =∑; 〔3〕设n 是正整数,t 为正实数,实数t 满足(,1)(,)nf n m f n t =,求证:7(2010,)f f t >-.省数学高考附加题强化试题4班级得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每题10分,计20分.B .〔选修4—2:矩阵与变换〕在二阶矩阵M 对应变换的作用下,四边形ABCD 变成四边形''''A B C D ,其中(1,1)A ,(1,1)B -,(1,1)C --,'(3,3)A -,'(1,1)B ,'(1,1)D --.〔1〕求出矩阵M ;〔2〕确定点D 及点'C 的坐标.C .〔选修4—4:坐标系与参数方程〕{(,),,A x y x y m ααα===+为参数},{(,)3,3,B x y x t y t t ==+=-为参数},且A B ≠∅,数m 的取值围.D .〔选修4-5:不等式选讲〕,,a b c R ∈,证明不等式:〔1〕66622218227a b c a b c ++≥; 〔2〕22249236a b c ab ac bc ++≥++.[必做题] 第22、23题,每题10分,计20分.22.〔本小题总分值10分〕如下图,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且垂直于底面ABCD ,底面ABCD 是边长为2的菱形,︒=∠60BAD ,M 为PC 上一点,且PA ∥平面BDM .⑴求证:M 为PC 中点;⑵求平面ABCD 与平面PBC 所成的锐二面角的大小.23.〔本小题总分值10分〕抛物线L 的方程为()022>=p py x ,直线x y =截抛物线L 所得弦24=AB .⑴求p 的值;⑵抛物线L 上是否存在异于点A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有一样的切线.假设存在,求出点C 的坐标;假设不存在,请说明理由.AP B C D M第22题图省数学高考附加题强化试题5班级得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每题10分,计20分.B .〔选修4—2:矩阵与变换〕求将曲线2y x =绕原点逆时针旋转90︒后所得的曲线方程.C .〔选修4—4:坐标系与参数方程〕 求圆心为36C π⎛⎫ ⎪⎝⎭,,半径为3的圆的极坐标方程.D .〔选修4-5:不等式选讲〕c b a ,,均为正数,证明:36)111(2222≥+++++cb ac b a ,并确定c b a ,,为何值时,等号成立。
北京101中学2013-2014学年上学期高三年级10月段考数学试卷(理科) 后有答案

北京101中学2013-2014学年上学期高三年级10月段考数学(理科)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{}1,0=A ,{}3,0,1+-=a B ,且B A ⊆,则a 等于A. -3B. -2C. 0D. 12. 已知21,e e 是不共线向量,2121,2e e e e -=+=λ,当∥时,实数λ等于A. -2B. -1C. 21-D. 03. 已知i 是虚数单位,则复数3232i i i z ++=所对应的点落在A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 一个锥体的主视图和左视图如下图所示,下面选项中,不可能是该锥体的俯视图的是5. 要得到函数x y cos 2=的图象,只需将函数⎪⎭⎫ ⎝⎛+=42sin 2πx y 的图象上所有的点的A. 横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度 B. 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度C. 横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度D. 横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度6. 已知正项数列{}n a 中,21212212,2,1-++===n n n a a a a a (2≥n ),则6a 等于A. 16B. 8C. 22D. 47. 已知函数()x f 是定义在R 上的奇函数,若()x f 在区间[]()2,1>a a 上单调递增,且()0>x f ,则以下不等式不一定成立的是A. ()()0f a f >B. ()a f a f >⎪⎭⎫⎝⎛+21C. ()a f a a f ->⎪⎭⎫⎝⎛+-131D. ()2131->⎪⎭⎫⎝⎛+-f a a f8. 设V 是已知平面M 上所有向量的集合,对于映射V a V V f ∈→,:,记a 的象为()a f ,若映射V V f →:满足:对所有a 、V b ∈及任意实数λ,μ都有()()()b f a f b a f μλμλ+=+,则f 称为平面M 上的线性变换,下列命题中假命题是A. 设f 是平面M 上的线性变换,a 、V b ∈,则()()()b f a f b a f +=+B. 对V a ∈,设()a a f -=,则f 是平面M 上的线性变换C. 若e 是平面M 上的单位向量,对V a ∈,设()e a a f +=,则f 是平面M 上的线性变换D. 设f 是平面M 上的线性变换,V a ∈,则对任意实数k 均有()()a kf ka f =二、填空题:本大题共6小题,每小题5分,共30分。
高三数学附加题练习1-12

①求恰有两个区域用红色鲜花的概率;
②记花圃中红色鲜花区域的块数为S,求S的分布列及其数学期望E(S).
高三数学附加题练习(五)
班级姓名
1.在平面直角坐标系xOy中,已知四边形ABCD的四个顶点A(0,1),B(2,1),C(2,3),D(0,2),经矩阵M= 表示的变换作用后,四边形ABCD变为四边形A1B1C1D1,问:四边形ABCD与四边形A1B1C1D1的面积是否相等?试证明你的结论.
高三数学附加题练习(九)
班级姓名
1.已知矩阵 ,向量 .
(Ⅰ)求 的特征值 、 和特征向量 、 ;
(Ⅱ)计算 的值.
2.已知曲线 的极坐标方程为 ,曲线 的极坐标方程为 ,曲线 , 相交于 , 两点.
(Ⅰ)把曲线 , 的极坐标方程转化为直角坐标方程;
(Ⅱ)求弦 的长度.
3.在四棱锥 中,底面 为直角梯形, ∥ , , ⊥平面 , , , .
(1)求油罐被引爆的概率;
(2)如果引爆或子弹打光则停止射击,设射击次数为 ,求 的分布列及 的数学期望.
4.已知两曲线 , , .
(1)求两曲线Leabharlann 交点坐标;(2)设两曲线在交点处的切线分别与 轴交于 两点,求 的长.
高三数学附加题练习(三)
班级姓名
1.已知圆锥曲线的极坐标方程为 的焦点极坐标和准线极坐标方程.
(1)请预测旅客乘到第一班客车的概率;
(2)旅客候车时间的分布列;
(3)旅客候车时间的数学期望.
高三数学附加题练习(六)
班级姓名
1.已知矩阵 ,点 ,点 .
高三数学附加题练习(5套)

所以设直线 的方程为 ,代入 ,得 ,
则 , ,①所以 ,所以 ,②…4分
因为 ,所以 ,将①②代入并整理得, ,
所以 .………………………………………………………………………………6分
⑵因为 ,所以 ,当且仅当 ,即 时,取等,所以 ,所以 的最大值为 .……………………10分
⑴设该参加者单独闯第一关、第二关、第三关成功的概率分别为 , , ,该参加者有资格闯第三关为事件 .
则 .…………………………………………………4分
(2)由题意可知, 的可能取值为 , , , , ,
, ,
,
, ,
所以 的分布列为
……………………………………………………………8分
所以 的数学期望 .……………………………10分
已知矩阵M=对应的变换将点A(1,1)变为A'(0,2),将曲线C:xy=1变为曲线C'.
(1)求实数a,b的值;(2)求曲线C'的方程.
2(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)选修4-4:坐标系与参数方程
在极坐标系中,已知直线 被圆 截得的弦长为 ,求 的值.
【答案】直线的极坐标方程化为直角坐标方程为 ,
则 ,
,
因为 ,
所以 是平面 法向量,………2分
又因为 ,
所以 ,
故直线 与平面 所成角正弦值为 .…………………5分
(2)设 .
因为 ,所以 .
解得 ,故存在满足条件的点P为AC的中点.……………10分
4已知动圆 过点 且与直线 相切.
(Ⅰ)求点 的轨迹 的方程;
(Ⅱ)过点 作一条直线交轨迹 于 两点,轨迹 在 两点处的切线相交于点 , 为线段 的中点,求证: 轴.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学理科附加题训练10
1.已知矩阵A =⎣⎢
⎡⎦⎥⎤ 3 3 c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值
1的一个特征向量为α2=⎣⎢⎡⎦
⎥⎤
3-2.求矩阵A ,并写出A 的逆矩阵.
2.某中学选派40名同学参加上海世博会青年志愿者服务队(简称“青志队”),他们参加活
动的次数统计如表所示.
(Ⅰ)从“青志队”中任意选3名学生,求这3名同学中至少有2名同学参加活动次数恰好相
等的概率;
(Ⅱ)从“青志队”中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变
量ξ的分布列及数学期望ξE .
3.已知曲线C 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的非负半轴建立平
面直角坐标系,直线的参数方程为1212
x t y ⎧=⎪⎪
⎨⎪=+⎪⎩(为参数),求直线被曲线C 截得的线段长
度.
4.用,,,a b c d 四个不同字母组成一个含1n +*)(N n ∈个字母的字符串,要求由a 开始,相邻两个字母不同. 例如1n =时,排出的字符串是,,ab ac ad ;2n =时排出的字符串是
,,,,,,,,aba abc abd aca acb acd ada adb adc ,……, 如图所示.记这含1+n 个字母的所有字符串中,排在最后一个的字母仍是a 的字符串的种数为n a .
(1)试用数学归纳法证明:*33(1)(N ,1)4
n n
n a n n +-=
∈≥; (2)现从,,,a b c d 四个字母组成的含*1(N ,2)n n n +∈≥个字母的所有字符串中随机抽取
一个字符串,字符串最后一个的字母恰好是a 的概率为P ,求证:21
93
P ≤≤.
a
b c d n=1
a
b
c
d n=2
a c d a
b d a b c。