最新量子力学第一章课外练习题

合集下载

量子力学习题及解答

量子力学习题及解答

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)(有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5:这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =】如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及,eVc e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学教程课后习题答案

量子力学教程课后习题答案

量子力学教程课后习题答案量子力学习题及解答第一章量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长与温度T成反比,即T=b(常量);并近似计算b的数值,准确到二位有效数字。

解根据普朗克的黑体辐射公式,(1)以及,(2),(3)有这里的的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。

本题关注的是λ取何值时,取得极大值,因此,就得要求对λ的一阶导数为零,由此可求得相应的λ的值,记作。

但要注意的是,还需要验证对λ的二阶导数在处的取值是否小于零,如果小于零,那么前面求得的就是要求的,具体如下:如果令x= ,则上述方程为这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有把x以及三个物理常量代入到上式便知这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K附近,钠的价电子能量约为3eV,求其德布罗意波长。

解根据德布罗意波粒二象性的关系,可知E=h,如果所考虑的粒子是非相对论性的电子(),那么如果我们考察的是相对性的光子,那么E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV,远远小于电子的质量与光速平方的乘积,即,因此利用非相对论性的电子的能量——动量关系式,这样,便有在这里,利用了以及最后,对作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

1.3 氦原子的动能是(k为玻耳兹曼常数),求T=1K时,氦原子的德布罗意波长。

第一章量子力学基础例题与习题

第一章量子力学基础例题与习题

第⼀章量⼦⼒学基础例题与习题第⼀章量⼦⼒学基础例题与习题⼀、练习题1.⽴⽅势箱中的粒⼦,具有的状态量⼦数,是A. 211 B. 231 C. 222 D. 213。

解:(C)。

2.处于状态的⼀维势箱中的粒⼦,出现在处的概率是多少?A.B.C.D.E.题⽬提法不妥,以上四个答案都不对。

解:(E)。

3.计算能量为100eV光⼦、⾃由电⼦、质量为300g⼩球的波长。

( )解:光⼦波长⾃由电⼦300g⼩球。

4.根据测不准关系说明束缚在0到a范围内活动的⼀维势箱中粒⼦的零点能效应。

解:。

5.链状共轭分⼦在波长⽅向460nm处出现第⼀个强吸收峰,试按⼀维势箱模型估计该分⼦的长度。

解:6.设体系处于状态中,⾓动量和有⽆定值。

其值是多少?若⽆,求其平均值。

解:⾓动量⾓动量平均值7.函数是不是⼀维势箱中粒⼦的⼀种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。

(2s+1) (1)⼆维⽅势箱中的9个电⼦。

(2)⼆维势箱中的10个电⼦。

(3)三维⽅势箱中的11个电⼦。

解:(1)2,(2)3,(3)4。

9.在0-a间运动的⼀维势箱中粒⼦,证明它在区域内出现的⼏率。

当,⼏率P怎样变?解:10.在长度l的⼀维势箱中运动的粒⼦,处于量⼦数n的状态。

求 (1)在箱的左端1/4区域内找到粒⼦的⼏率?(2)n为何值,上述的⼏率最⼤?(3),此⼏率的极限是多少?(4)(3)中说明什么?解:11.⼀含K个碳原⼦的直链共轭烯烃,相邻两碳原⼦的距离为a,其中⼤π键上的电⼦可视为位于两端碳原⼦间的⼀维箱中运动。

取l=(K-1)a,若处于基组态中⼀个π电⼦跃迁到⾼能级,求伴随这⼀跃迁所吸收到光⼦的最长波长是多少?解:12.写出⼀个被束缚在半径为a的圆周上运动的质量为m的粒⼦的薛定锷⽅程,求其解。

解:13.在什么条件下?解:14.已知⼀维运动的薛定锷⽅程为:。

量子力学第一章习题答案

量子力学第一章习题答案

量⼦⼒学第⼀章习题答案第⼀章1.1 由⿊体辐射公式导出维恩位移定律:能量密度极⼤值所对应的波长λm 与温度T 成反⽐,即λm T = b (常量);并近似计算b 的数值,准确到两位有效数字。

解:⿊体辐射的普朗克公式为:)1(833-=kT h e c h νννπρ∵ v=c/λ∴ dv/dλ= -c/λ2⼜∵ρv dv= -ρλdλ∴ρλ=-ρv dv/dλ=8πhc/[λ5(ehc/λkT-1)] 令x=hc/λkT ,则ρλ=8πhc(kT/hc)5x 5/(e x -1)求ρλ极⼤值,即令dρλ(x)/dx=0,得:5(e x -1)=xe x可得: x≈4.965∴ b=λm T=hc/kx≈6.626 *10-34*3*108/(4.965*1.381*10-23)≈2.9*10-3(m K )1.2√. 在0 K 附近,钠的价电⼦能量约为3电⼦伏,求其德布罗意波长。

解: h = 6.626×10-34 J ·s , m e = 9.1×10-31 Kg,, 1 eV = 1.6×10-19 J故其德布罗意波长为:07.0727A λ=== 或λ= h/2mE = 6.626×10-34/(2×9.1×10-31×3×1.6×10-19)1/2 ≈ 7.08 ?1.3 √.氦原⼦的动能是E=32KT (K B 为波尔兹曼常数),求T=1 K 时,氦原⼦的德布罗意波长。

解:h = 6.626×10-34 J ·s , 氦原⼦的质量约为=-26-2711.993104=6.641012kg , 波尔兹曼常数K B =1.381×10-23 J/K故其德布罗意波长为:λ= 6.626×10-34/ (2×-276.6410?×1.5×1.381×10-23×1)1/2≈01.2706A或λ= ⽽KT E 23=601.270610A λ-==?1.4利⽤玻尔-索末菲量⼦化条件,求:a )⼀维谐振⼦的能量:b )在均匀磁场作圆周运动的电⼦轨道的可能半径。

苏汝铿量子力学(第二版)课后习题(含答案)---第一章1.7-1.8#04(延边大学)三年级

苏汝铿量子力学(第二版)课后习题(含答案)---第一章1.7-1.8#04(延边大学)三年级

1.7 一个德布罗意波在k空间的表示220()4()a k k C k --=求:(ⅰ)(,)x t ψ和2(,)x t ψ,在时刻t 这是否是个高斯波包? (ⅱ)波包的宽度()x t ∆; (ⅲ)2(,)x t dx ψ∞-∞⎰是否依赖于t ?解:(ⅰ) 由于已知德布罗意波在k 空间的表示220()4()a k k C k --=因此对该一维波包有 ()121(,)()(2)i kx t x t C k e dk ωψπ-=⎰(1)将()k ω在0k 附近展开并略去高阶项有 20001()()()()2g k k v k k k k ωωβ≈+-+- (2) 其中 0()g k d v dk ω= ,022()k d dkωβ= 将(2)式代入(1)式有 20001()[()()]212(,)()()g i k t i kx v k k k k e x t C k edk ωβψαπ-∞-----∞=⎰(3)当220()414()(2)a k k C k eπ--=代入(3)式可得:22200001()()[()()]4212(,)()g a i k t k k i kx v k k k k e x t e dk ωβψαπ-∞------=⎰积分上式可得0022()2()(,)]2(1)g i k tik x x v t x t e e i t ωαψβα--=+则222242()(,)]1g x v t x t tαψβα-=+故在时刻t 这是个高斯波包 (ⅱ) 波包宽度()x t ∆≈(ⅲ) 由222242()(,)]1g x v t x t t αψβα-=+易知2(,)x t dx ψ∞-∞⎰依赖于t1.8将平面波和波包的讨论推广到三维情况,求群速度。

解:对于三维平面波和波包,也可将波包视为由若干个平面波叠家而来,则有 ()321(,)()(2)i k r t r t C k e dk ωψπ⋅-=⎰由于()()i C k C k e α= 令 k r t ϕωα=⋅-+()C k 在点0k k = 周围宽度为k ∆的一个小区域内有一个明显的峰值,只有当相位ϕ在小区域内基本上保持不变时,ψ才有最大值。

量子力学第一章作业

量子力学第一章作业

量子力学 第一章 习题一、填空题1. 普朗克(Planck )常数h 的数值是 ,普朗克(Planck )常数ħ和h 之间的关系是 ,普朗克(Planck )常数ħ的数值是 。

2. 索末菲(Sommerfeld )的量子化条件是 。

3. 德布罗意(de Broglie )公式是 。

二、问答题1.什么是黑体(或绝对黑体)?根据普朗克(Planck )黑体辐射规律(教材第二页1.2.1式),试讨论辐射频率很高(趋于无穷大)和很低(趋于零)时的黑体辐射规律,并与维恩公式、瑞利——金斯公式相比较。

请给出波长在λ到λ+d λ之间的辐射能量密度规律。

2.什么是光电效应?光电效应的实验特点是什么?经典物理在解释光电效应时的困难是什么?采用爱因斯坦(Einstein )的光量子假设后,光电效应是如何解释的?3.光子有什么特点?爱因斯坦关于光子能量、动量和光子频率、波长之间的关系是什么?这个关系反映出光子的什么特征?4.什么是康普顿效应?试由Einstein 的光量子说,利用能量动量守恒,解释Compton 效应。

康普顿效应说明了什么?和光电效应相比,入射光子能量哪个大,并说明理由。

5.玻尔的氢原子模型内容是什么?试根据玻尔的氢原子模型给出里德堡(Rydberg )常数和氢原子第一玻尔半径的表达式和数值结果。

并说明为什么玻尔的量子论是半经典的半量子的?三、多项选择题1.说明微观粒子具有波动性的现象有 说明电磁波具有粒子性的现象有(a)以太漂移说 (b)黑体辐射 (c)光电效应(d)康普顿(Compton )效应 (e)原子结构和线性光谱 (f)电子的双缝衍射 (g)戴维逊(Davisson )——革末(Germer )实验(h)迈克尔逊(Michelson )——莫雷(Monley )实验四、计算题1. 教材习题(1.1)(1.2)(1.3)(1.4)(1.5)2. 设粒子限制在长、宽、高分别为a,b,c 的箱内运动,试用量子化条件求粒子能量的可能取值。

(完整版)第一章练习题及答案

(完整版)第一章练习题及答案

第一章一、单项选择题(每小题1分) 1.一维势箱解的量子化由来( d )a. 人为假定b. 求解微分方程的结果c. 由势能函数决定的d. 由微分方程的边界条件决定的。

2.指出下列哪个是合格的波函数(粒子的运动空间为 0→+∞)( b )a. sinxb. e -xc. 1/(x-1)d. f(x) = e x( 0≤ x ≤ 1); f(x) = 1 ( x > 1)3.首先提出微观粒子的运动满足测不准原理的科学家是( c. ) a.薛定谔 b. 狄拉克 c. 海森堡 c.波恩4.立方势箱中22810ma h E <时有多少种状态( c )a. 11b. 3c. 7d. 25.立方势箱在22812ma h E ≤的能量范围内,能级数和状态数为( c)a.5,20b. 6,6c. 5,11d. 6,176.立方势箱中2287ma h E <时有多少种状态( c )a. 11b. 3c. 4d. 27.立方势箱中2289ma h E <时有多少种状态( c )a. 11b. 3c. 4d. 28.已知xe 2是算符x Pˆ的本征函数,相应的本征值为( d ) a.i h 2b.ih 4 c. 4ih d.πi h9.已知2e 2x 是算符xi ∂∂-的本征函数,相应的本征值为( d ) a. -2 b. -4i c. -4ih d. -ih/π 10.下列条件不是品优函数必备条件的是( c ) a. 连续 b. 单值 c. 归一 d. 有限或平方可积11.一维谐振子的势能表达式为221kx V =,则该体系的定态Schrodinger 方程中的哈密顿算符为( d ) a.221kx b.222212kx m +∇ c.222212kx m -∇-d.222212kx m +∇- 二、多项选择题(每小题2分)1. 下列哪些条件并非品优波函数的必备条件( a c )a. 归一化b. 连续c.正交性d. 单值e. 平方可积 三、 填空题(每小题1分)1.德布罗意关系式为___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论一、填空题1、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为0.123A(保留三位有效数字)。

2、自由粒子的质量为m,能量为E,其德布罗意波长为h/p=h/√2mE(不考虑相对论效应)。

3、写出一个证明光的粒子性的:康普顿效应的发现,从实验上证实了光具有粒子性。

4、爱因斯坦在解释光电效应时,提出光的频率决定光子的能量,光的强度只决定光子的数目概念。

5、德布罗意关系为p=h/λ n(没有写为矢量也算正确)。

7、微观粒子具有波粒二象性。

8、德布罗意关系是粒子能量E、动量P与频率ν、波长λ之间的关系,其表达式为E=hv9、德布罗意波长为λ,质量为m的电子,其动能为已知。

10、量子力学是反映微观粒子运动规律的理论。

11、历史上量子论的提出是为了解释的能量分布问题。

用来解释光电效应的爱因斯坦公式为已知。

12、设电子能量为4电子伏,其德布罗意波长为待定nm。

13、索末菲的量子化条件为在量子理论中,角动量必须是h的整数倍,E待定。

应用这个量子化条件可以求得一维谐振子的能级=n14、德布罗意假说的正确性,在1927年为戴维孙和革末所做的电子衍射实验所证实,德布罗意关系(公式)为见P11。

15、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性。

根据其理论,质量为 ,动量为p的粒子所对应的物质波的频率为,波长为若对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为待定(保留三位有效数字)。

16、1923年,德布罗意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于经过电压为100伏加速的电子,其德布洛意波长为0.123A(保留三位有效数字)。

二、选择题1、利用爱因斯坦提出的光量子概念可以成功地解释光电效应。

A. 普朗克B. 爱因斯坦C. 玻尔D. 波恩2、1927年C和等人所做的电子衍射试验验证了德布洛意的物质波假设。

A. 夫兰克赫兹B. 特恩革拉赫C. 戴维逊盖末D. 康普顿吴有训3、能量为0.1eV的自由中子的德布罗意波长为BA. 0.92ÅB.1.23ÅC. 12.6ÅD.0.17 Å4、一自由电子具有能量150电子伏,则其德布罗意波长为可算A.1A B.15 A C.10 A D.150 A5、普朗克在解决黑体辐射时提出了 A。

A、能量子假设B、光量子假设C、定态假设D、自旋假设6、证实电子具有波动性的实验是 D 。

A、戴维孙——革末实验B、黑体辐射C、光电效应D、斯特恩—盖拉赫实验7、1900年12月A发表了他关于黑体辐射能量密度的研究结果,提出原子振动能量假设,第一个揭示了微观粒子运动的特殊规律:能量不连续。

A. 普朗克B.爱因斯坦 C. 波尔 D. 康普顿8、普朗克量子假说是为解释 C(A) 光电效应实验规律而提出来的(B) X射线散射的实验规律而提出来的(C) 黑体辐射的实验规律而提出来的(D) 原子光谱的规律性而提出来的9、康普顿效应的主要特点是(A) 散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质无关。

(B) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关。

(C) 散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的.这与散射体性质有关。

(D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同。

这都与散射体的性质无关。

10、光电效应和康普顿效应都包含有电子与光子的相互作用过程。

对此,在以下几种理解中,正确的是(A) 两种效应中电子与光子两者组成的系统都服从动量守恒定律和能量守恒定律。

(B) 两种效应都相当于电子与光子的弹性碰撞过程。

(C) 两种效应都属于电子吸收光子的过程。

(D) 光电效应是吸收光子的过程,而康普顿效应则相当于光子和电子的弹性碰撞过程。

(E) 康普顿效应是吸收光子的过程,而光电效应则相当于光子和电子的弹性碰撞过程。

11、下面四个图中,哪一个正确反映黑体单色辐出度M Bλ(T)随λ 和T的变化关系,已知T2 > T1。

(B)(C)12、所谓“黑体”是指的这样的一种物体,即(A) 不能反射任何可见光的物体(B) 不能发射任何电磁辐射的物体(C) 能够全部吸收外来的任何电磁辐射的物体(D) 完全不透明的物体.13、黑体辐射中的紫外灾难表明A. 黑体在紫外线部分辐射无限大的能量B. 黑体在紫外线部分不辐射能量C.经典电磁场理论不适用于黑体辐射公式D.黑体辐射在紫外线部分才适用于经典电磁场理论14、对于偏振光通过偏振片,量子论的解释是A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。

15、康普顿散射实验证实了A.电子具有波动性;B. 光具有波动性;C.光具有粒子性;D. 电子具有粒子性。

16、 在研究氢原子光谱时首先提出了定态这一概念。

A.普朗克B.爱因斯坦C.玻尔D.玻恩三、简答题1、简述德布罗意假设?答:具有能量E 和动量P 的自由粒子与一个频率为ν、波长为λ的平面波相联系。

λυhp h E ==,。

2、Bohr 的原子量子论中,两个极为重要的假定是什么?答:原子具有离散能量的定态概念;两个定态之间的量子跃迁和频率条件。

3、德布罗意提出物质波的假定,即具有一定能量E 和动量p 的实物粒子相联系的波的频率和波长分别为多少? 答:,h E h p νλ==4、德布罗意关系答:德布罗意关系:粒子的能量和动量与波的频率和波长之间的关系,正象光子和光波的关系一样。

,h E h p n k νωλ====。

5、简述德布洛意物质波假设的内容。

设目前肉眼能够看到的最小粒子(设其直径d =10-4厘米)的质量μ=10-12克,速度v =0.1厘米/秒,试计算该粒子的物质波波长(保留三位有效数字),并以此为例说明实物粒子的波动性为何一直未被发现(物理学常数:3410626.6-⨯=h 焦耳·秒)。

答:1923年,德布洛意根据物质世界普遍存在的对称性,认为既然光具有波粒二象性,那么对有质量的粒子也有类似的性质,于是提出了物质波的假设:以能量E ,动量p 运动的实物粒子表现为频率h E =ν,波长p h =λ的波。

对质量μ=10-12克、速度v =0.1厘米/秒的实物粒子,其物质波波长m m v h p h 162312341063.6101.010101063.6-----⨯=⨯⨯⨯⨯===μλ。

光作为波的主要特征表现在衍射和干涉上。

但是光的衍射和干涉却是有条件的,如果光的波长远远小于小孔的直径或双窄缝的间距,则光的小孔衍射和双窄缝干涉现象就不会发生,波的特征就显示不出来。

对物质波来说,也应该如此如果。

由上面的计算可知,对实物粒子,由于它的物质波波长总是远远小于它的直径,它的波动性显示不出来,在实际中也很难发现实物粒子的波动性。

6、简述德布洛意物质波假设的内容。

对电子(直径d ≈10-13厘米)其质量μ=9.1×10-28克,若电子经100伏电压加速,试计算此时电子的物质波波长(保留三位有效数字),并以此为例说明,相对于实物粒子,微观粒子为何能表现出明显的波动性。

(物理学常数3410626.6-⨯=h 焦耳·秒)。

答:1923年,德布洛意根据物质世界普遍存在的对称性,认为既然光具有波粒二象性,那么对有质量的粒子也有类似的性质,于是提出了物质波的假设:以能量E ,动量p 于东的实物粒子表现为频率h E =ν,波长p h =λ的波。

对于被加速的电子,其物质波波长m m eV h p h 101931341023.11001060.11011.921063.62----⨯=⨯⨯⨯⨯⨯⨯===μλ。

光作为波的主要特征表现在衍射和干涉上。

但是光的衍射和干涉却是有条件的,如果光的波长远远小于小孔的直径或双窄缝的间距,则光的小孔衍射和双窄缝干涉现象就不会发生,波的特征就显示不出来。

对物质波来说,也应该如此如果。

由上面的计算可知,这时电子的物质波波长远大于它的直径,它的波动性是可以通过实验显示出来的,在实际中实验结果也证明了电子的波动性。

四、计算题1、计算一下几种粒子的德布洛意波长:(1)质量为1克,速度为1米/秒的自由粒子;(2)动能为200eV 的自由电子;(3)动能为200eV 的自由质子;(4)动能为50GeV (1 GeV=109 eV )的自由电子;提示:对自由粒子,其动能即为其总能量;对于(4),考虑用相对论能量公式:()212242c p c E +=μ.2、在0K 附近钠的价电子能量约为3eV ,求其德布罗意波长。

3、氦原子的动能是T k E B 23=(k B 为玻耳兹曼常数),求T =1K 时,氦原子的德布罗意波长。

相关文档
最新文档