线性规划 精品公开课教案

合集下载

线性规划教案

线性规划教案

线性规划教案一、教学目标通过本教案的学习,学生将能够:1. 理解线性规划的基本概念和原理;2. 掌握线性规划的常见问题求解方法;3. 运用线性规划解决实际问题。

二、教学内容1. 线性规划的定义和基本概念;2. 线性规划模型的建立;3. 线性规划的图解法;4. 单纯形法求解线性规划问题;5. 整数规划的基本概念和求解方法;6. 线性规划在实际问题中的应用。

三、教学步骤第一步:导入1. 引入线性规划的概念和背景,让学生了解线性规划在现实生活中的应用;2. 引起学生对线性规划的兴趣,激发他们的学习动力。

第二步:讲解线性规划的基本概念和原理1. 介绍线性规划的定义和基本概念,如目标函数、约束条件、可行解等;2. 解释线性规划问题的普通形式,并通过实例进行说明。

第三步:讲解线性规划模型的建立1. 介绍线性规划模型的建立过程,包括确定决策变量、目标函数和约束条件;2. 通过实例演示线性规划模型的建立方法。

第四步:讲解线性规划的图解法1. 介绍线性规划的图解法,包括绘制目标函数的等高线图和约束条件的直线图;2. 演示如何通过图解法求解线性规划问题。

第五步:讲解单纯形法求解线性规划问题1. 介绍单纯形法的基本思想和步骤;2. 演示如何使用单纯形法求解线性规划问题。

第六步:讲解整数规划的基本概念和求解方法1. 介绍整数规划的定义和基本概念;2. 讲解整数规划问题的求解方法,包括分支定界法和割平面法。

第七步:讲解线性规划在实际问题中的应用1. 介绍线性规划在生产计划、资源分配、投资组合等领域的应用;2. 通过实例演示线性规划在实际问题中的求解过程。

四、教学方法1. 讲授法:通过讲解线性规划的基本概念和原理,匡助学生建立起对线性规划的整体认识;2. 演示法:通过实例演示线性规划的求解过程,让学生掌握具体的解题方法;3. 实践法:引导学生进行线性规划的实际问题求解,提高他们的应用能力。

五、教学评估1. 课堂练习:布置一些线性规划问题的练习题,让学生在课后进行解答;2. 作业评分:对学生的课堂练习和作业进行评分,及时反馈学生的学习情况。

线性规划的教案

线性规划的教案

线性规划的教案教案标题:线性规划的教案一、教学目标:1. 理解线性规划的概念和基本原理;2. 掌握线性规划的常见问题类型和解题方法;3. 能够运用线性规划解决实际问题。

二、教学内容:1. 线性规划的概念和基本原理a. 了解线性规划的定义和特点;b. 理解线性规划模型的构建过程;c. 掌握线性规划的基本术语和符号。

2. 线性规划的常见问题类型a. 单目标线性规划问题:最大化或最小化目标函数;b. 多目标线性规划问题:解决多个相互矛盾的目标;c. 混合整数线性规划问题:变量包含整数和实数部分。

3. 线性规划的解题方法a. 图解法:通过绘制约束条件和等高线图找到最优解;b. 单纯形法:通过迭代计算找到最优解;c. 整数规划法:对混合整数线性规划问题进行求解。

4. 实际问题的线性规划应用a. 生产计划问题:如何安排生产资源以达到最大利润;b. 资源分配问题:如何合理分配有限资源以满足需求;c. 运输问题:如何确定最佳运输方案以降低成本。

三、教学过程:1. 导入与激发兴趣:a. 引入线性规划的实际应用场景,如企业生产、物流配送等;b. 提出一个简单的线性规划问题,激发学生思考和讨论。

2. 知识讲解与示范:a. 介绍线性规划的基本概念和原理,引导学生理解;b. 通过示例演示线性规划问题的建模和解题过程。

3. 练习与巩固:a. 提供一些简单的线性规划练习题,让学生独立解答;b. 分组讨论解题思路和方法,并互相交流。

4. 深化与拓展:a. 给予学生一些复杂的线性规划问题,培养解决问题的能力;b. 引导学生思考线性规划在实际生活中的更广泛应用。

四、教学评估:1. 课堂练习:通过课堂练习检验学生对线性规划的理解和应用能力;2. 作业布置:布置一些线性规划相关的作业题,检验学生的独立解题能力;3. 个人报告:要求学生选择一个实际问题,运用线性规划进行求解,并进行个人报告。

五、教学资源:1. 教材:选择一本适合本教学内容的线性规划教材;2. 多媒体设备:使用投影仪展示线性规划的图像和解题过程;3. 练习题集:准备一些练习题供学生练习和巩固知识。

线性规划教案

线性规划教案

线性规划教案一、教学目标1. 了解线性规划的基本概念和应用领域。

2. 掌握线性规划的数学模型和求解方法。

3. 能够运用线性规划解决实际问题。

二、教学内容1. 线性规划的基本概念1.1 线性规划的定义和特点1.2 线性规划的应用领域1.3 线性规划的基本术语和符号2. 线性规划的数学模型2.1 目标函数的确定2.2 约束条件的建立2.3 决策变量的定义2.4 线性规划的标准形式3. 线性规划的求解方法3.1 图形法3.2 单纯形法3.3 对偶理论4. 线性规划的应用案例分析4.1 生产计划问题4.2 资源分配问题4.3 运输问题三、教学过程1. 导入与激发兴趣(10分钟)引入线性规划的基本概念,介绍线性规划在实际生活中的应用案例,激发学生的学习兴趣。

2. 知识讲解与示范(30分钟)详细讲解线性规划的基本概念、数学模型和求解方法,并通过示范案例演示线性规划的具体步骤和计算过程。

3. 练习与巩固(40分钟)学生进行线性规划的练习题,通过计算和分析实际问题,巩固所学的知识和方法。

4. 案例分析与讨论(30分钟)学生分组进行线性规划的应用案例分析,讨论解决方案的合理性和优化策略。

5. 总结与拓展(10分钟)教师对本节课的内容进行总结,并引导学生思考线性规划的拓展应用和未来发展趋势。

四、教学资源1. 教材:线性规划教材2. 计算工具:计算器、电脑等3. 实例案例:生产计划、资源分配、运输等案例五、教学评估1. 课堂练习在课堂上进行线性规划的练习题,检查学生对知识的理解和应用能力。

2. 案例分析报告要求学生以小组形式完成线性规划的应用案例分析报告,评估学生的问题解决能力和团队合作能力。

六、教学反思本节课通过引入实际案例、讲解基本概念、示范计算步骤和案例分析等多种教学方法,旨在提高学生对线性规划的理解和应用能力。

通过课堂练习和案例分析,学生能够掌握线性规划的基本原理和求解方法,并能够运用线性规划解决实际问题。

在今后的教学中,可以加强实际案例的引入,提高学生对线性规划的兴趣和参与度。

线性规划教案

线性规划教案

线性规划教案一、教学目标通过本教案的学习,学生将能够:1. 理解线性规划的基本概念和原理;2. 掌握线性规划模型的建立和求解方法;3. 能够在实际问题中应用线性规划进行决策和优化。

二、教学重点1. 线性规划的基本概念和原理;2. 线性规划模型的建立和求解方法;3. 线性规划在实际问题中的应用。

三、教学难点线性规划模型的建立和求解方法。

四、教学过程1. 导入引入线性规划的概念和背景,与学生分享线性规划的应用案例,激发学生的学习兴趣。

2. 理论讲解(1)线性规划的基本概念- 线性规划的定义:线性规划是一种用于求解最优化问题的数学方法,其目标函数和约束条件都是线性的。

- 最优解的定义:线性规划的最优解是使目标函数达到最大(或最小)值的变量取值。

(2)线性规划模型的建立- 决策变量的定义:根据实际问题,确定需要优化的变量,表示为决策变量。

- 目标函数的定义:确定需要最大化(或最小化)的目标,在实际问题中通常是利润、成本等。

- 约束条件的定义:确定影响决策变量的限制条件,包括等式约束和不等式约束。

(3)线性规划模型的求解方法- 图形法:通过画出约束条件和目标函数所表示的直线或面,找到最优解所在的区域,从而确定最优解。

- 单纯形法:通过运用单纯形表格法,逐步迭代求解线性规划模型,直到得到最优解。

- 整数规划:当决策变量只能取整数值时,需要使用整数规划方法进行求解。

3. 实例演练选择一个简单的线性规划实例,带领学生一起完成模型的建立和求解过程,让学生通过实际操作,进一步理解线性规划的求解方法。

4. 拓展应用从实际生活或工作中的问题出发,引导学生运用线性规划进行决策和优化,培养学生的实际应用能力。

五、教学评价1. 在实例演练中,教师可以针对学生的解题过程和答案,进行实时评价,及时纠正错误。

2. 可以组织小组或个人探究性学习活动,让学生自主构建线性规划模型并求解,评价学生的表现和学习成果。

六、教学延伸可以引导学生进一步深入学习线性规划的应用方法、算法和模型扩展,培养学生在实际问题中的建模和求解能力。

线性规划教案

线性规划教案

线性规划教案【教案名称】:线性规划教案【教学目标】:1. 了解线性规划的基本概念和应用领域;2. 掌握线性规划模型的建立方法;3. 理解线性规划的求解过程和最优解的意义;4. 能够运用线性规划方法解决实际问题。

【教学内容】:一、线性规划的基本概念1. 线性规划的定义及其应用领域;2. 线性规划模型的一般形式;3. 线性规划问题的基本假设。

二、线性规划模型的建立方法1. 确定决策变量和目标函数;2. 制定约束条件;3. 构建线性规划模型。

三、线性规划的求解过程1. 图解法求解线性规划问题;2. 单纯形法求解线性规划问题;3. 整数规划问题的求解方法。

四、线性规划的最优解及其意义1. 最优解的定义和判定条件;2. 最优解的意义和应用。

五、线性规划的实际应用1. 生产计划问题的线性规划建模;2. 运输问题的线性规划建模;3. 投资组合问题的线性规划建模。

【教学步骤】:一、导入环节1. 引入线性规划的应用背景,激发学生的学习兴趣;2. 提出线性规划的重要性和实际应用价值。

二、理论讲解1. 介绍线性规划的基本概念和应用领域;2. 详细解释线性规划模型的建立方法;3. 分步讲解线性规划的求解过程和最优解的意义;4. 给出线性规划实际应用的案例分析。

三、案例分析1. 选择一个生产计划问题的案例,引导学生进行线性规划建模;2. 使用图解法和单纯形法求解该案例,并比较两种方法的优缺点;3. 分析最优解的意义和对决策的指导作用。

四、练习与讨论1. 提供多个线性规划问题的练习题,让学生进行解答;2. 小组讨论解题思路和方法,分享解题经验;3. 教师进行答疑和点评,引导学生深入理解线性规划的应用。

五、拓展延伸1. 引导学生思考线性规划在其他领域的应用,如金融、物流等;2. 鼓励学生自主学习相关拓展知识,深化对线性规划的理解。

【教学手段】:1. 板书:重点概念、公式和解题步骤;2. 多媒体演示:案例分析、图解法和单纯形法的示意图;3. 小组讨论:解题思路和方法的交流与分享;4. 练习题:巩固学生的解题能力和应用能力。

《线性规划》教学设计

《线性规划》教学设计

《线性规划》教学设计黄丽霞一、教学目标(一)知识和技能:了解线性约束条件,目标函数,线性规划可行域及最优解等概念。

掌握目标函数Z=Ax+By的几何意义,图解法找线性规划问题最优解的方法步骤。

(二)过程与方法:本节课是以二元一次不等式表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决。

考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性。

同时,可借助计算机的直观演示可使教学更富趣味性和生动性(三)情感与价值:通过实际问题的探讨,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。

树立“数学与我有关,数学是有用的,我要用数学,我能用数学” 的理念。

二、教学内容及重难点分析教学内容:本节给出:Z = 2x + y ,变量x、y满足条件:rx —4y < —3Y 3x + 5y < 25I x> 1求Z的最大值,最小值。

以数形结合思想为指导,通过图解法求Z最大、最小值引出线性规划问题及线性约束条件,目标函数、可行域,最优解相关概念和目标函数几何意义并求出Z最值。

教学重难点:目标函数Z = Ax + By的几何意义的探究。

根据目标函数几何意义确定最优解。

三、教学对象分析授课班级虽是高一实验班,但学生的学习兴趣不高,老师在授课时有一定的难度,并且学生数形结合的意识和技能还很低,需要以直观形象感性经验为支撑。

学生学生虽能进行简单的探讨,补充,交流,但还需要培养自主、合作、探究的学习能力。

四、教学策略和教学方法设计(一)教学策略:教师以实际社会经济生活问题创设情景,激发学生内在积极性、创造性、主动性为目的。

以探究线性规划图解法的实质依据为主线,既抓住重点,又突出学生的主体地位。

(二)教学方法:本节课将线性规划问题的可行域,图解法以信息技术的形式展现,降低了理解上难度,便于学生掌握理解,易于操作,加快了作图速度;提高课堂效率改变学生传统的数学学习方式。

简单的线性规划(教案)

简单的线性规划(教案)

§3.3.2简单的线性规划(教案)---一节校际公开课的设计,实施,反思【教学目标】1.知识与技能:掌握线性规划问题的图解法,培养学生数形结合水平,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际问题中抽象出简单的线性规划问题的过程,学会用数学语言去表达实际问题,通过经历图解法解决问题的过程掌握图解法;3.情态与价值:通过对现实中优化问题的解决,让学生体会数学知识在解决资源分配,生产安排,人力布局等方面的强大作用.培养学生的理性精神。

【教学重点】利用图解法求得线性规划问题的最优解;【教学难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。

【教学流程】【教学过程】一.复习引入:1.二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)代点确定,通常代如下几点(0,0),(1,0),(0,1)2.二元一次不等式组表示的几何意义是什么?二.问题情景:例 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t 硝酸盐18t ;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t 、硝酸盐66t .若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润? 三 建立模型解:设x,y 分别为计划生产甲乙两种混合肥料的车皮数,设利润为Z,于是满足以下条件:41018156600x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩(1) Z=x+0.5y (2)四 分析Z 随x 和y 的变化是如何变化:把(2)式等价变形为y=-2x+2Z,联系前面学过的一次函数:y=kx+b 可知,b=2Z,又因为一次函数的图象是直线如下图从图中分析可知:当直线与y 轴交点越向上时,b 的值越大,越向下是时,b 的值越小.取z=0,z=1,z=2等等可得到一系列平行直线得到的结论是:y=-2x+z表示一簇直线,z 的值随着直线y=-2x平行移动时与y 轴交点不同而变化,所以我们能够由(1)确定的区域内在平行移动直线y=-2x就可找到z 的最大值点和最小值点五 解决问题 1.在直角坐标系中可表示成如图的平面区域(阴影部分)通过平移参照直线可知使目标函数最大值点在M(2,2)所以Zmax=3万元 2 问题变式 在(1)的约束条件下,求目标函数Z=5x+y,Z=x+2y,Z=4x+y 的最大值3.随堂练习y=-2xy=-2x+1y=-2x+4Z=x+2yy=-2x+zZ=5x+yZ=4x+y1、求y x z -=的最大值、最小值,使x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤+002y x y x2、设y x z +=2,式中变量x 、y 满足 ⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x六 形成一般规律解决线性规划问题的一般方法: ⑴ 建立约束条件和目标函数 ⑵ 画出可行域与参照直线 ⑶ 平行移动参考直线寻找最值点 ⑷ 求交点和最值结论1线性目标函数的最大值、最小值一般在可行域的顶点处取得.结论2线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个.现摘录如下(1)对于一次函数y=kx+b 中当交点在y 轴上越高时b 值越大,但是在有些线性规划问题中,并不一定是交点越高,z 的值越大,有时能够相反,这点未给学生交待清楚,造成学生误认为只要交点越高,z 就越大的理解(2)在作图不是很严格情况下出现不确定最值点在何处时,最好是把各个交点代入检验以确保答案准确,要教给学会防止出错的方法,不能仅依赖作图来找答案 (3)开始阶段要着重向学生强调作图规范和准确以给学生做好示范,强调图解法就是靠准确作图找到最优点 八 教学反思(1) 在教学设计中,我考虑到湖北省必修教材教学顺是14523的顺序,不是12345的顺序,这样就给线性规划教学带来一定的困难,因为斜率未学,导致不能用斜率和截距知识来说明目标函数的变化趋势.所以只能从前面学过的一次函数角度来突破,从教学实际看,学生基本听懂了目标函数的变化趋势.(2) 考虑到本节课的重点是建模和解模两个环节,所以在建模开始时着重强调了列表法分析题中各个数据,对于初学线性规划问题的学生来讲,养成用表格方法去分析,对以后解题有很大作用(3)在解决了基本问题后设置了3个变式,用来强调目标函数最值点取决于目标函数系数和可行域的形状,特别是对于无穷解的设计,以为学生以后解题做好铺垫.。

线性规划教案

线性规划教案

线性规划教案一、教案概述本教案旨在引导学生了解线性规划的基本概念、解法以及应用。

通过教学,学生将掌握线性规划的基本原理和方法,能够运用线性规划解决实际问题。

二、教学目标1. 知识目标:a. 理解线性规划的基本概念和特点;b. 掌握线性规划的基本模型和解法;c. 了解线性规划在实际问题中的应用。

2. 能力目标:a. 能够分析和建立线性规划模型;b. 能够运用单纯形法和对偶理论解决线性规划问题;c. 能够将线性规划应用于实际问题的求解。

三、教学内容1. 线性规划的基本概念a. 线性规划的定义和特点;b. 线性规划的基本术语和符号。

2. 线性规划的基本模型a. 目标函数的建立;b. 约束条件的建立;c. 变量的定义和范围。

3. 线性规划的解法a. 单纯形法的基本原理和步骤;b. 单纯形表的构建和运算;c. 对偶理论的基本原理和应用。

4. 线性规划的应用a. 生产计划问题;b. 运输问题;c. 投资组合问题。

四、教学过程1. 导入(10分钟)a. 利用一个实际问题引入线性规划的概念和应用,激发学生的学习兴趣。

2. 知识讲解(30分钟)a. 通过讲解线性规划的基本概念和特点,让学生了解线性规划的基本原理;b. 介绍线性规划的基本模型和解法,引导学生掌握线性规划的基本方法。

3. 案例分析(40分钟)a. 选择一个实际问题,引导学生进行线性规划的建模和求解;b. 分组讨论,让学生运用所学知识解决问题,并展示解决过程和结果。

4. 拓展应用(20分钟)a. 给学生提供其他实际问题,让他们尝试运用线性规划解决;b. 学生展示解决过程和结果,进行讨论和评价。

5. 总结归纳(10分钟)a. 对本节课的内容进行总结,强调线性规划的重要性和应用领域;b. 鼓励学生继续深入学习线性规划,拓展应用领域。

五、教学评价1. 学生课堂表现评价:a. 学生对线性规划基本概念的理解程度;b. 学生对线性规划模型和解法的掌握程度;c. 学生在案例分析和拓展应用中的表现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题 3:指数函数 y ax ( a >0 且 a ≠1),当底数越大时,函数图象间有什么样的关系.
图象特征
a >1
0< a <1
向 x 轴正负方向无限延伸
图象关于原点和 y 轴不对称
函数图象都在 x 轴上方
函数图象都过定点(0,1)
自左向右, 图象逐渐上升 在第一象限内的
图 象纵坐标都大于 1 在第二象限内的
小结:一般地,函数 y ax ( a >0 且 a ≠1)叫做指数函数,其中 x 是自变量,函数的
定义域为 R. 3.探究性质 ①我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研
究. 下面我们通过列表、描点、连线的步骤,用描点法画出函数 y 2x 和 y (1)x 的图象 2
图 象纵坐标都小于 1
自左向右, 图象逐渐下降 在第一象限内的
图 象纵坐标都小于 1 在第二象限内的
图 象纵坐标都大于 1
函数性质
a >1
0< a <1
函数的定义域为 R
非奇非偶函数
函数的值域为 R+
a0 =1
增函数
减函数
x >0, ax >1
x >0, ax <1
x <0, ax <1
x <0, ax >1
4.例题 例 1:(P66 例 7)比较下列各题中的个值的大小 (1)1.72.5 与 1.73
( 2 ) 0.80.1 与 0.80.2 ( 3 ) 1.70.3 与 0.93.1 归纳小结:本节课研究了指数函数性质的应用,关键是要记住 a >1 或 0< a <时 y ax
的图象,
5、探究作业: 用清水漂洗衣服,若每次能洗去污垢的 3 ,写出存留污垢 y 与漂洗次数 x 的函数关系
②利用电脑软件画出 y 5x , y 3x , y (1)x , y (1)x 的函数图象.
3
5
问题 1:从画出的图象中,你能发现函数的图象与底数间Байду номын сангаас什么样的规律.
从图上看 y ax ( a >1)与 y ax (0< a <1)两函数图象的特征.
问题 2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶 性.
二.重、难点 重点:指数函数的概念和性质及其应用. 难点:指数函数性质的归纳,概括及其应用.
三.学法与教具: ①学法:观察法、讲授法及讨论法. ②教具:多媒体.
[教学设想]
1. 情境设计
在本章的开头,问题(1)中时间 x 与 GDP 值中的 y 1.073x (x N *, x 20) 和问题
4 式,若要使存留的污垢,不超过原有的 1%,则少要漂洗几次(此题为人教社 B 版 101 页第 6 题).
t
(2)时间
t

C-14
含量
P
的对应关系
P

(
1 )
5730
(t

R*
)
,请问这两个函数有什么共同
2
特征.
t
1
把 P (1)5730 (t R*) 化成 P [(1)5730 ]t (t R*) ,从而得出这两个关系式中的底
2
2
数是一个正数,自变量为指数,即都可以用 y ax 来表示,其中 x 是自变量,可取全体实
x 3.00 2.50 2.00 1.50 1.00 0.00 0.50 1.00 1.50 2.00
y 2x
1
1
1
1
2
4
8
4
2
y y=2x
-
-
-
-
-
-
-
-
0
x
-
-
-
-
-
-
x
2.50 2.00 1.50 1.00 0.00 1.00 1.50 2.00 2.50
y (1)x 2
2.1.2 指数函数及其性质(第 1 课时)教学设计
一.教学目标: 1.知识与技能 ①通过实际问题了解指数函数的实际背景; ②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质. ③体会特殊到一般的数学讨论方式及数形结合的思想; 2.情感、态度、价值观 ①让学生了解数学来自生活,数学又服务于生活的哲理. ②培养学生观察问题,分析问题的能力. 3.过程与方法 展示函数图象,让学生通过观察,进而研究指数函数的性质.
1
1
4
21
2
4
y (1)x
y
2
-
-
-
-
-
-
-
0
x
-
-
我们看出 y 2x与y的图(1象)x有什么关系? 2
通过图象看出 y 2x与y的图(1象)x关于轴对称,y 2
与y=( 1) 上x 点( - x, y) 关于轴y对称. 2
实质是 y 2x 上的点( - x, y)
数. 2.探究底数 a
若a

0,
当x时, 0 当x时, 0
等于ax 无a意x 义
0
若 a <0,如 y (2)x ,先时,对于x=等1等, x, 1 68
在实数范围内的函数值不存在.
若 a =1, y 1x 1, 是一个常量,没有研究的意义;
只有满足 y ax (a 0, 且a 1) 的形式才能称为指数函数。
相关文档
最新文档