简单的线性规划教案

合集下载

第七章第四节 简单的线性规划 教案

第七章第四节 简单的线性规划 教案

第七章第四节 简单的线性规划1.本节知识结构:2.学习目的要求(1)会用二元一次不等式(组)表示平面区域,能画出给定的不等式(组)表示的平面区域; (2)了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念; (3)了解线性规划问题的图解法,并能应用线性规划的方法解决一些简单的实际问题,以提高解决实际问题的能力.3.教学任务分析(1)本小节介绍了用二元一次不等式(组)表示平面区域和简单的线性规划问题. 重点是二元一次不等式(组)表示平面区域,相对困难的是把实际问题转化成线性规划问题,并给出解答,解决这一困难的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.(2)教科书首先借助于“献爱心活动”的具体例子,抽象出线性规划的模型:“在条件⎪⎩⎪⎨⎧≥≤+≤+-.1,3753,01x y x y x下,求y x z 35+=的最大值的问题”.在此基础上,提出了研究二元一次不等式的含义的必要性. 这样安排的目的,是使学生体会从具体问题到数学问题的过程,并由此明确所研究问题的基本模型.(3)在探求二元一次不等式所表示的平面区域时,图形计算器或计算机是一个十分有用的工具. 教科书先安排研究“献爱心活动”中的不等式01<+-y x 的含义,在得到它的几何意义是表示直线01=+-y x 的一侧的平面区域后,再给出了不等式01>+-y x 所表示的平面区域,并由此不加证明地给出了一般的二元一次不等式0<++C By Ax (或0>++C By Ax )表示平面区域的结论,说明了怎样确定不等式0<++C By Ax (或0>++C By Ax )表示直线Ax +By +C =0的哪一侧区域. 最后举例说明怎样用二元一次不等式(组)表示平面区域.在“二元一次不等式表示平面区域”中,教科书用点集的观点来分析直线,并提出点的集合}{01),(>-+y x y x表示什么图形的问题. 用集合的观点和语言来分析和描述几何图形问题,常能使问题更加清楚、准确,在教学中应注意运用这种观点和语言. 但是,集合语言有时会使叙述比较繁复,所以,使用时要注意适当性.(4)教学中,要使学生注意,Ax +By +C >0表示的平面区域是直线Ax +By +C =0的某一侧且不包括边界直线Ax +By +C =0;而Ax +By +C ≥0所表示的平面区域包括边界直线Ax +By +C =0.实际上,{),(y x | Ax +By +C ≥}0={),(y x | Ax +By +C >}0∪{),(y x | Ax +By +C=}0.由于对在直线Ax +By +C =0的同一侧的所有点(x ,y ),实数Ax +By +C 的符号相同,所以只需在此直线的某侧任取一点(x 0,y 0),把它的坐标代入Ax +By +C ,由其值的符号即可判断Ax +By +C >0表示直线的哪一侧. (5)教科书利用解决“献爱心活动”这个具体的线性规划问题,说明了线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等有关的基本概念,介绍了线性规划问题的图解方法,最后举例说明了线性规划在实际中的简单应用. 在实际问题的求解中,不必让学生去具体地扣这些概念的名称,只要求能找出线性约束条件,并画出线性约束条件表示的平面区域,然后求出线性目标函数的最优解即可.(6)简单的线性规划问题中的可行域,大多数情况下就是一个二元一次不等式(组)表示的平面区域,因而解决简单的线性规划问题,是以二元一次不等式(组)表示平面区域的知识为基础的. 在具体画二元一次不等式(组)表示的平面区域时,可充分利用图形计算器或计算机.(7)教科书在求“献爱心活动”这个线性规划问题中的线性目标函数y x z 35+=的最大值时,借助了一组直线5x +3y =z ,指出直线往右平移时z 随之增大,这一点未作严格说明,只是直观地承认它. 在教学中可以略作说明:当直线往右平移时,直线在x 轴上的截距随之增大. 而直线5x +3y =z 在x 轴上的截距为5z ,当5z 增大时,z 也随之增大. 当然也可以用直线在y 轴上的截距3z来说明. (8)教科书中安排的例8所反映的线性规划问题是:在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务,这是常见的一类线性规划问题. 例9是另一类常见的线性规划问题:给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源完成该项任务.例8所反映的线性规划问题的可行域是下图中的阴影部分:但例9所反映的线性规划问题的可行域,却是下图阴影部分中两个坐标都是整数的点(称为整点):因此,例9要求的最优解是整点)9,3(B 、)8,4(C ,而不是点)539,518(A ,这也是实际中常常用到的. 此外,对于最优解的近似值,要根据实际问题的具体情形取不足近似值或过剩近似值. (9)本小节安排的“数学实验”,不仅仅是让学生了解二元一次不等式0>++C By Ax (或0<++C By Ax )所表示的平面区域的另一种判定方法,更重要的是让学生通过解决这个问题,培养自己用运动的观点解决含参数的问题的基本方法. 在指导学生研究这一问题时,可启发学生利用图形计算器或计算机的测算与追踪功能去解决问题.4.信息技术在教学设计中的应用 (1)二元一次不等式表示的平面区域①用图形计算器或计算机画出直线l :01=+-y x .在直线l 上任取一点P ,测量出其坐标(x , y ),计算1+-y x 的值,我们发现,点P 的坐标是二元一次方程01=+-y x 的解(如下图(1)).(1) (2) (3)②在直线l 的右下方任取一点P ,测量出其坐标(x , y ),并计算1+-y x 的值,我们发现,点P 的坐标满足二元一次不等式01>+-y x (如上图(2)).③在直线l 的左上方时任取一点P ,测量其坐标(x , y ),并计算1+-y x 的值,我们发现,点P 的坐标满足二元一次不等式01<+-y x (如上图(3)).(2)探求最优解下面我们借助于信息技术工具,探求二元一次函数y x z 35+=在下述条件下的最优解:⎪⎩⎪⎨⎧≥≤+≤+-.1,3753,01x y x y x①用几何画板先作出上述不等式表示的平面区域,然后作出含参数z 的直线l :z y x =+35(如下图).②改变z 的值,观察直线l 的变化,我们发现: 当z 增大时,直线l 向右平移;当11<z 或35>z 时,直线l 与公共区域无公共点;当3511≤≤z 时,直线l 与公共区域有公共点,如35=z 时,直线l 在直线l 2的位置,此时l 经过点A (4,5);又如11=z 时,直线l 在直线l 1的位置,此时l 经过点B (1,2).③根据上述分析,我们可得当l 经过点A (4,5)时,二元一次函数y x z 35+=取最大值35;当l 经过点B (1,2)时,二元一次函数y x z 35+=取最小值11.。

简单的线性规划教学设计

简单的线性规划教学设计

简单的线性规划教学设计简单的线性规划教学设计线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

下面是店铺为你带来的简单的线性规划教学设计,欢迎阅读。

一、教学内容分析线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题.简单的线性规划(涉及两个变量)关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成.突出体现了优化的思想.二、学生学情分析本节课学生在学习了不等式、直线方程的基础上,又通过实例,理解了平面区域的意义,并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问题转化为数学问题. 从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这都成了学生学习的困难.三、设计思想本课以学生为主体,应用“数形结合”的思想方法,培养学生的学会分析问题、解决问题的能力。

四、教学目标1.知识与技能:(1)了解线性规划的意义及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;能根据条件建立线性目标函数;(2)了解线性规划问题的图解法,并会用图解法求线性目标函数的最大值、最小值.2.过程与方法:培养学生观察、联想以及作图的能力,渗透化归数形结合的数学思想.3.情感、态度与价值观:进一步培养学生学习应用数学的意识及思维的创新性.五、教学重点与难点重点:线性规划问题的图解法.难点:图解法及寻求线性规划问题的最优解.六、学法对例题的处理可让学生思考,然后师生共同对解题思路进行概括,使学生更深刻地领会和掌握解题的方法。

七、教学设计(一)自主学习1. 二元一次不等式(组)表示的平面区域的画法.(由学生回答)如:画出不等式组表示的平面区域.2.设,式中变量满足条件,求的最大值和最小值.问题:能否用不等式的知识来解决以上问题?(否)那么,能不能用二元一次不等式表示的平面区域来求解呢?怎样求解?(二)知识解析在上述引例中,不等式组是一组对变量的约束条件,这组约束条件都是关于的一次不等式,所以又称为线性约束条件。

简单的线性计划教案

简单的线性计划教案

简单的线性计划教案●教学目标(一)教学知识点1.线性计划问题,线性计划的意义.2.线性约束条件、线性目标函数、可行解、可行域、最优解等大体概念.3.线性计划问题的图解方式.(二)能力训练要求1.了解简单的线性计划问题.2.了解线性计划的意义.3.会用图解法解决简单的线性计划问题.(三)德育渗透目标让学生树立数形结合思想.●教学重点用图解法解决简单的线性计划问题.●教学难点准确求得线性计划问题的最优解.●教学方式讲练结合法教师可结合一些典型例题进行讲解,学生再通过练习来掌握用图解法解决一些较简单的线性计划问题.●教具预备多媒体课件(或幻灯片)内容:讲义P60图7—23记作§ A进程:先别离作出x=1,x-4y+3=0,3x+5y-25=0三条直线,再找出不等式组所表示的平面区域(即三直线所围成的封锁区域).再作直线l0:2x+y=0.然后,作一组与直线的平行的直线:l:2x+y=t,t∈R(或平行移动直线l0),从而观察t值的转变.●教学进程Ⅰ.课题导入上节课,咱们一路探讨了二元一次不等式表示平面区域,下面,咱们再来探讨一下如何应用其解决一些问题.Ⅱ.教学新课第一,请同窗们来看如此一个问题.设z =2x +y ,式中变量x 、y 知足下列条件⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x求z 的最大值和最小值.分析:从变量x 、y 所知足的条件来看,变量x 、y 所知足的每一个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域.(打出投影片§ A)[师](结合投影片或借助多媒体课件)从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,z =2x +y =0. 点(0,0)在直线l 0:2x +y =0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l :2x +y =t ,t ∈R .可知,当t 在l 0的右上方时,直线l 上的点(x ,y )知足2x +y >0,即t >0.而且,直线l 往右平移时,t 随之增大.(引导学生一路观察此规律)在通过不等式组所表示的公共区域内的点且平行于l 的直线中,以通过点A (5,2)的直线l 2所对应的t 最大,以通过点B (1,1)的直线l 1所对应的t 最小.所以:z m ax =2×5+2=12,z m in =2×1+3=3.诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,咱们把它称为目标函数.由于z =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性计划问题.例如:咱们适才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性计划问题.那么,知足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部份表示的三角形区域.其中可行解(5,2)和(1,1)别离使目标函数取得最大值和最小值,它们都叫做那个问题的最优解.Ⅲ.课堂练习[师]请同窗们结合讲义P 64练习1来掌握图解法解决简单的线性计划问题.(1)求z =2x +y 的最大值,使式中的x 、y 知足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如图所示:当x =0,y =0时,z =2x +y =0点(0,0)在直线l 0:2x +y =0上.作一组与直线l 0平行的直线l :2x +y =t ,t ∈R .可知,在通过不等式组所表示的公共区域内的点且平行于l的直线中,以通过点A (2,-1)的直线所对应的t 最大.所以z m ax =2×2-1=3.(2)求z =3x +5y 的最大值和最小值,使式中的x 、y 知足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如图所示:从图示可知,直线3x +5y =t 在通过不等式组所表示的公共区域内的点时,以通过点(-2,-1)的直线所对应的t 最小,以通过点(817,89)的直线所对应的t 最大. 所以z m in =3×(-2)+5×(-1)=-11. z m ax =3×89+5×817=14. Ⅳ.课时小结通过本节学习,要掌握用图解法解决简单的线性计划问题的大体步骤:1.第一,要按照线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值.Ⅴ.课后作业(一)讲义P 65习题(二)1.预习内容:讲义P 61~64.2.预习提纲:如何用线性计划的方式解决一些简单的实际问题.课 题有关概念 复习回顾约束条件 二元一次不等式表示平面区域 线性约束条件目标函数线性目标函数 例题讲解 课时小结线性规划问题 图解法解决线性规划问题的基本步骤 可行域最优解。

简单的线性规划教学设计

简单的线性规划教学设计

简单的线性规划教学设计简介:线性规划是运筹学中的一种数学优化方法,通过构建数学模型,以线性函数为目标函数及约束条件,寻找最优解决方案。

本教学设计旨在向学生介绍线性规划的基本概念、模型构建和求解方法,培养学生的数学思维和问题解决能力。

一、教学目标:1. 理解线性规划的基本概念和原理;2. 掌握线性规划模型的构建方法;3. 学会使用单纯形法求解线性规划问题。

二、教学内容:1. 线性规划的基本概念:1.1 优化问题和目标函数;1.2 约束条件;1.3 解的定义和存在性。

2. 线性规划模型的构建方法:2.1 变量设定和定义;2.2 目标函数的确定;2.3 约束条件的建立。

3. 单纯形法的基本原理和步骤:3.1 基变量和非基变量的定义;3.2 初始基可行解的求解;3.3 单纯形表的构建;3.4 单纯形表的优化和迭代。

三、教学过程:1. 导入(5分钟):通过引入一个生活实例,例如购买不同食材制作蛋糕的问题,让学生意识到优化问题的存在性和实际应用。

2. 概念讲解(15分钟):介绍线性规划的基本概念,包括优化问题和目标函数、约束条件以及解的定义和存在性。

通过具体例子,让学生理解各个概念的含义和关系。

3. 模型构建(20分钟):以一个简单的生产问题为例,引导学生设定变量、定义目标函数和建立约束条件。

让学生通过思考和实践,掌握线性规划模型的构建方法。

4. 单纯形法介绍(15分钟):简要介绍单纯形法的基本原理和步骤,包括基变量和非基变量的定义、初始基可行解的求解、单纯形表的构建以及优化和迭代的过程。

5. 求解实例演示(20分钟):随堂演示一个具体的线性规划问题,运用单纯形法进行求解。

过程中,详细解释每一步的计算和判断,让学生了解单纯形法的具体应用过程。

6. 练习与讨论(20分钟):给学生几个简单的线性规划问题,让他们在小组内进行讨论和尝试求解。

鼓励学生主动思考和提问,解决问题中的难点和疑惑。

7. 总结与拓展(5分钟):对本节课的内容进行总结,并展示线性规划在实际问题中的更广泛应用。

人教版高中必修5(B版)3.5.2简单的线性规划教学设计

人教版高中必修5(B版)3.5.2简单的线性规划教学设计

人教版高中必修5(B版)3.5.2简单的线性规划教学设计一、教学目标1.了解线性规划的基本概念和常用格式。

2.学会使用图形法解决线性规划问题。

3.培养学生的分析问题和解决问题的能力。

二、教学内容1.线性规划的定义和特点。

2.线性规划的常用格式。

3.线性规划的图形法。

三、教学方法本节课程采用多种教学法相结合的方式。

1.讲解法。

通过教师讲解线性规划的定义和特点,以及线性规划的常用格式等基础知识,为学生打下知识基础。

2.实例法。

通过具体实例的讲解,引导学生理解线性规划的概念和解题方法,激发学生的兴趣和主动学习的能力。

3.演示法。

通过图解问题解决过程,浅显易懂地引导学生掌握线性规划的图形解法。

4.讨论法。

通过小组讨论,培养学生的思维能力,促进学生合作学习,提高解决问题的效率。

5.练习法。

通过针对性的练习,巩固学生对于线性规划图形法的掌握和运用。

四、教学重难点本节课程的教学重点是线性规划的图形解法。

同时,本节课程的难点是线性规划问题的实际应用。

五、教学过程5.1 课前预习要求学生自行阅读教材3.5.2节的内容,了解线性规划的基本概念和常用格式。

5.2 概念阐述1.讲解线性规划的定义和特点。

2.讲解线性规划的常用格式。

5.3 实例讲解以某公司如何利润最大化为例,以图形法进行解答。

具体步骤为:1.确定自变量和因变量。

2.确定约束条件。

3.确定最大值或最小值目标,即目标函数。

4.作出约束条件的图形,并找出目标函数在图形内的可行域。

5.在可行域内确定目标函数的最大值或最小值。

6.求解最优解的坐标。

5.4 练习对学生进行线性规划图形法的练习,巩固学生对线性规划的掌握和运用。

5.5 课堂总结对本节课的重点、难点及易错点进行总结,并对学生提供一些解题的思路和方法,对学生进行线性规划知识的巩固和深化。

六、教学评价1.学生知识掌握情况的评价。

2.学生思维和解题能力的评价。

3.学生合作学习能力的评价。

七、教学建议本节课的重点是线性规划的图形解法,教师在讲解时应采用图解的方式,注重实例的讲解,帮助学生更好地理解和掌握知识。

高中数学简单线性规划教案

高中数学简单线性规划教案

高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。

2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。

2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。

3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。

三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。

2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。

四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。

2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。

五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。

2. 提醒学生在做作业时要注意思考问题的建模和求解方法。

六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。

2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。

简单的线性规划教案一

简单的线性规划教案一

简单的线性规划教案一【教学目标】1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。

【教学重点】用图解法解决简单的线性规划问题 【教学难点】准确求得线性规划问题的最优解 【教学过程】[复习提问]1、二元一次不等式0>++C By Ax 在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵。

在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。

1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ ……………………………………………………………….(1) (2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。

(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z 的直线。

简单的线性规划教学设计

简单的线性规划教学设计

简单的线性规划教学设计教学目标:1.了解线性规划的概念和基本思想;2.能够通过建立数学模型,解决简单的线性规划问题;3.能够运用线性规划方法进行决策和优化。

教学重点:1.线性规划的概念和基本思想;2.线性规划的数学模型建立;3.线性规划的解法和应用。

教学准备:1.教材《线性规划》;2. PowerPoint 简介线性规划的概念和基本思想;3.实例练习题和答案;4.计算器。

教学过程:Step 1:导入导入线性规划的概念和基本思想,解释线性规划在实际生活中的应用,例如生产计划、投资决策、资源分配等等。

Step 2:讲解线性规划的基本概念通过 PowerPoint 展示线性规划的定义和基本特点,包括决策变量、目标函数、约束条件等。

帮助学生了解线性规划的基本结构。

Step 3:建立线性规划模型通过实例进行演示,分步骤引导学生建立线性规划数学模型。

首先将实际问题转化为决策变量、目标函数和约束条件,然后对这些元素进行量化,建立数学表达式。

Step 4:解决线性规划问题介绍线性规划的解法,包括图解法和单纯形法。

通过实例进行演示,分析不同解法的优缺点,并引导学生理解解的意义和应用。

Step 5:练习和讨论提供一些简单的线性规划练习题,让学生进行练习并讨论解法。

鼓励学生之间的互动和思维碰撞,帮助他们更好地理解和应用线性规划方法。

Step 6:拓展应用介绍线性规划在实际应用中的一些拓展,例如混合整数规划、多目标规划等。

帮助学生了解不同规划方法的适用范围和应用场景。

Step 7:总结与评价对本节课的内容进行总结,复习要点,并进行课堂评价,检查学生对线性规划的理解程度和应用能力。

Step 8:课后延伸布置线性规划的作业,要求学生通过建立数学模型,解决一个实际问题,并鼓励他们在日常生活中寻找和应用线性规划的机会和场景。

教学评价和建议:1.引导学生将线性规划的概念和基本思想与实际问题相结合,加深他们对线性规划的认识和兴趣;2.注重实例分析和练习,帮助学生通过实际操作加深对线性规划的理解和应用;3.鼓励学生积极思考和讨论,培养他们的问题解决能力和团队合作精神;4.提供相关资源和案例,让学生在课后深入学习和进一步拓展应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单的线性规划教案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
简单的线性规划
【教学目标】
1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;
2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;
3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。

【教学重点】用图解法解决简单的线性规划问题
【教学难点】准确求得线性规划问题的最优解
【教学过程】
1.课题导入
[复习提问]
1、二元一次不等式0
Ax在平面直角坐标系中表示什么图形
By
+
>
+C
2、怎样画二元一次不等式(组)所表示的平面区域应注意哪些事项
3、熟记“直线定界、特殊点定域”方法的内涵。

2.讲授新课
在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。

1、下面我们就来看有关与生产安排的一个问题:
引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从
配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么
(1)用不等式组表示问题中的限制条件:
设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:
2841641200
x y x y x y +≤⎧⎪≤⎪⎪
≤⎨⎪≥⎪≥⎪⎩ (1)
(2)画出不等式组所表示的平面区域:
如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。

(3)提出新问题:
进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大 (4)尝试解答:
设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:
当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少
把z=2x+3y 变形为23
3
z y x =-+,这是斜率为23
-,在y 轴上的截距为3
z 的直线。

当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2
83
3
y x =-+),这说明,截距3z 可以由平面内的一个点的坐标唯一确
定。

可以看到,直线233
z y x =-+与不等式组(1)的区域的交点满足不等式组(1),而且当截距3
z 最大时,z 取得最大值。

因此,问题可以转化为当直线
233
z
y x =-+与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P ,
使直线经过点P 时截距3
z
最大。

(5)获得结果:
由上图可以看出,当实现23
3
z y x =-+金国直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3
z 的值最大,最大值为
14
3
,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。

2、线性规划的有关概念:
①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.
②线性目标函数:
关于x 、y 的一次式z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:
满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.
使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.
3.随堂练习
1.请同学们结合课本P 103练习1来掌握图解法解决简单的线性规划问题.
(1)求z =2x +y 的最大值,使式中的x 、y 满足约束条件⎪⎩

⎨⎧-≥≤+≤.1,1,y y x x y
解:不等式组表示的平面区域如图所示: 当x =0,y =0时,z =2x +y =0 点(0,0)在直线0l :2x +y =0上. 作一组与直线0l 平行的直线
l :2x +y =t ,t ∈R .
可知,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大.
所以z m ax =2×2-1=3.
(2)求z =3x +5y 的最大值和最小值,使式中的x 、y
满足约束条件⎪⎩

⎨⎧≥-+≤≤+.35,1,1535y x x y y x
解:不等式组所表示的平面区域如图所示:
从图示可知,直线3x +5y =t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(8
17
,89)的直线所对应的t 最大.
所以z m in =3×(-2)+5×(-1)=-11.
z m ax =3×89+5×8
17
=14 4.课时小结
用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。

相关文档
最新文档