高一数学复习学案:第6课时 简单的线性规划问题(1)
高中数学简单线性规划教案

高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
人教新课标版数学高一-数学必修5导学案 简单的线性规划问题(一)

3.3.2 简单的线性规划问题(一)学习目标了解线性规划的意义;会求简单的线性目标函数的最值及一些简单的非线性函数的最值. 预习篇1.二元一次不等式组是一组对变量x 、y 的约束条件,这组约束条件都是关于x 、y 的 不等式,所以又称为线性约束条件.2.z =ax +by (a 、b 是实常数)是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫做 函数.由于z =ax +by 又是x 、y 的一次解析式,所以又叫做 目标函数.3.求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解(x ,y)叫做 ,由所有可行解组成的集合叫做 .分别使目标函数z =ax +by 取得最大值或最小值的可行解叫做这个问题的最优解.课堂篇探究点一 线性目标函数的最值问题问题 若x≥0,y≥0,且x +y≤1,则目标函数z =x +2y 的最大值是________.探究点二 非线性目标函数的最值问题问题 一些非线性目标函数的最值可以赋予几何意义,利用数形结合的思想加以解决,例如: ①z =x 2+y 2表示可行域中的点(x ,y) _______;②z =(x -a)2+(y -b)2表示可行域中的点(x ,y) _____________;③z =y -b x -a表示可行域内的点(x ,y) _______; ④z =ay +b cx +d (ac≠0),可以先变形为z =a c ·y -⎝⎛⎭⎫-b a x -⎝⎛⎭⎫-d c ,可知z 表示可行域内的点(x ,y) ; ⑤z =|ax +by +c| (a 2+b 2≠0),可以化为z =a 2+b 2·|ax +by +c|a 2+b2的形式,可知z 表示可行域内的点(x ,y)__________________________________.典型例题例1 已知1≤x +y≤5,-1≤x -y≤3,求2x -3y 的取值范围.跟踪训练1 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y≥3,x -y≥-1,2x -y≤3,则目标函数z =2x +3y 的最小值为( ) A .6B .7C .8D .23例2 已知实数x ,y 满足⎩⎪⎨⎪⎧ 2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,(1)试求z =y +1x +1的最大值和最小值; (2)试求z =x 2+y 2的最大值和最小值. 跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧ 2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,求下列函数z 的最值:(1)z =y +1x +2; (2)z =|x +2y -4|.巩固篇1.已知实数x 、y 满足约束条件⎩⎪⎨⎪⎧ x≥0,y≥0,x +y≤2,则z =2x +4y 的最大值为________. 2.若x 、y 满足⎩⎪⎨⎪⎧ x +y≥6,x≤4,y≤4,则z =y -1x -1的最大值是________. 3.已知实数x ,y 满足⎩⎪⎨⎪⎧ y≤1,x≤1,x +y≥1,则z =x 2+y 2的最小值为________.。
高中数学说课稿简单线性规划问题

高中数学说课稿《简单线性规划问题》一.说教材至此,我们将一个具体的事物"温度计"经过抽象而概括为一个数学概念"数轴",使学生初步体验到一个从实践到理论的认识过程.1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。
应用线性规划的图解法解决一些实际问题。
2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。
简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。
通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。
3.教学目标圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的只是、方法、体验是那个方面进行归纳,我设计了这么三个问题:(1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。
了解并初步应用线性规划的图解法解决一些实际问题。
(2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。
(3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。
4.重点与难点重点:理解和用好图解法难点:如何用图解法寻找线性规划的最优解。
高中数学 (简单的线性规划问题)学案 大纲人教版 学案

简单的线性规划问题
一、学习目标:
1.了解线性约束条件、线性目标函数、可行解、可行域、最优解等概念.
2.让学生掌握线性规划的图解法,并会用图解法求线性目标函数的最大值与最小值.
二、预习指导
1.目标函数:
2.线性规划问题:
3.可行解:可行域:最优解:
4.判断可行域的方法:
⎩
⎨⎧≤<-≤<-1111y x 所表示的平面区域内的整点坐标 三、例题选讲
例1 已知x 、y 满足不等式⎪⎩
⎪⎨⎧≥≥≥+≥+0,01222y x y x y x ,求z =3x +y 的最小值
例2求z =2x +y 的最大值,使式中的x 、y 满足约束条件⎪⎩
⎪⎨⎧-≥≤+≤.1,1,y y x x y
四、课堂练习
≥0,y ≥0,且x+y ≤1,则z =x-y 的最大值是
≤x ≤1,0≤y ≤2,且2y-x ≥1,则z=2y-x+4的最小值为
≥0,y ≥0,2x+3y ≤100, 2x+y ≤60,则z=6x+4y 的最大值是
z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩
⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x
5.已知13a b ≤+≤,24b a ≤-≤,求3a b +的取值X 围
五、小结与作业: 教材P 75 4, 5。
高中数学五第三章3.3.2 简单的线性规划问题(第1课时)【教案】

3.3.2简单线性规划问题(第1课时)一、教学目标及目标分析1.教学目标;(1)了解约束条件、目标函数、可行解、可行域、最优解等基本概念;(2)掌握解决线性规划问题的基本步骤;(3)会用图解法求线性目标函数的最大值、最小值.2.目标解析;(1)了解线性规划模型的特征:约束条件、目标函数、求目标函数的最大值或最小值等.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.(2)能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,掌握解题的基本步骤.(3)在线性规划问题的探究过程中,使学生经历观察、分析、操作、确认的认知过程,培养解决运用已有知识解决新问题的能力,体会数学知识形成过程中所蕴涵的数学思想和方法,引发学生对现实世界中的一些数学模式进行思考.二、教学重点与难点:重点:线性规划问题的基本概念及解决问题的步骤。
难点: 把目标函数转化为斜截式方程时,对含“z”的项的几何意义与“z”最值之间关系的理解三、教学模式与教法、学法教学模式:采用探究教学法,通过“猜想,验证,证明”来探究二元一次不等式(组)表示的平面区域,并通过讲练结合巩固所学的知识。
使用多媒体辅助教学.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.学法设计:引导学生通过主动参与、合作探讨学习知。
来源:学_科_网Z_X_X_K]四、教学过程设计二、知识探究:问题1. 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。
例如,某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A产品耗时1小时,每生产一件乙产品使用4个B产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x 师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3。
简单的线性规划问题(第1课时)课件2

x+2y 8
x 2 y 8
4 4y x
16 12
x y
4 3
x 0
x
0
y 0
y 0
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数)就代表所有可能的日生产安排。
若生产一件甲产品获利2万元,生产一件乙产品获 利3万元,采用那种生产安排利润最大?
0.06 0.06
174xx174
y y
6 6
x 0
x 0
y 0
y 0
目标函数为:z=28x+21y
作出二元一次不等式组所表示的平面区域,即可行域
把目标函数z=28x+21y 变形为 y 4 x z
它表示斜率为 4
3 28
3
随z变化的一组平行直
线系
6/7 y
z 28 是直线在y轴上 5/7 M
为它是关于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值
问题,统称为线性规划问题。y
满足线性约可束行的域解 4 3
最优解
(x,y)叫做可行解。
由所有可可行行解解组成
的集合叫做可行域。
o
4
8x
使目标函数取得最大值或最小值的可行解叫
做这个问题的最优解。
三、例题
设工厂获得的利润为z,则z=2x+3y
把z=2x+3y变形为
y
y 2 x z
4
3
3
3
它表示斜率为
2 3
的
M
直线系,z与这条直线
的截距有关。
o
4
8x
如图可见,当直线经过可行域上的点M时,截距
最大,即z最大。
高中数学 必修5 26.简单的线性规划问题(一)

26.简单的线性规划问题(一)教学目标 班级______ 姓名____________1.了解线性规划的基本概念.2.掌握简单的线性规划问题的一般解法.教学过程一、线性规划的相关概念.1.线性规划的相关概念.(1)约束条件:关于变量x ,y 的不等式组.(2)线性约束条件:关于x ,y 的一次不等式组.(3)目标函数:要求最值的关于x ,y 的函数解析式.(4)线性目标函数:关于x ,y 的一次解析式.(5)可行解:满足线性约束条件的解),(y x . (6)可行域:由所有可行解组成的集合.(7)最优解:使目标函数取最值的可行解.(8)线性规划问题:在线性约束条件下求线性目标函数的最值问题.2.注意事项.(1)线性约束条件必须是关于x ,y 的二元一次不等式(或等式).(2)在线性约束条件下,最优解可能不唯一.(3)最优解一定是可行解,但可行解不一定是最优解.(4)线性规划问题不一定存在可行解.二、线性规划问题.1.用线性规划求最值的一般步骤:(1)画可行域;(2)分析几何意义;(3)找最优解,求最值.2.常用几何公式:(1)截距:直线b kx y +=(斜截式)与y 轴交点的纵坐标,即当0=x 时,y 的值b .(2)斜率:2121x x y y k --=,表示),(11y x ,),(22y x 两点连线的斜率. (3)两点间的距离:221221)()(y y x x d -+-=,表示),(11y x ,),(22y x 两点间的距离. (4)点到直线的距离:2200||B A C By Ax d +++=,点),(00y x 到直线0=++C By Ax 的距离.三、例题分析:1.用线性规划求最值.32≤+y x ,例1:设变量x ,y 的线性约束条件为 32≤+y x ,求分别目标函数y x z +=1, 0≥x ,0≥y .12+=x y z ,322223+-++=y x y x z 的最大值.02≥-+y x , 作业:若实数x ,y 满足 4≤x , 求x y S -=的最小值.5≤y ,。
《简单的线性规划问题》(第一课时)经典版

问题:求利润z=2x+3y的最大值.
x 2y 8
4 4
x y
16 12
x
0
y 0
y
4 3
0
M(4,2)
4
8
x
1
y x4
2
y2x z 33
Z ma 4 x22314
相关概念
目标函数:欲求最大值或求最小值的的函数。若目标函 数是关于变量x、y的一次解析式,则
05 04 001
性目标函数的最大值或最小值问题。
线性约束条件:变量x、y所满足的一次不等式组或一次 方程。
C
最优解:使目标函数取得最大值或最小值的可行解
B
可行域:由所有可行解组成的集合
A
可行解:满足线性约束条件的解(x,y)
变式:求利润z=x+3y的最大值.
x 2y 8
4 4
x y
x y
16 12
y 6
x 0 y 0
y=6
Y
8
6
C
D
目标函数: Z=3x+y
x-y=7
B(9,2)
当目标函数
O
Z=3x+
y经过点B(9,2)
-7
A7
12 X
2x+3y=24 l1
时,此时Z取最大, Zmax=3*9+2=2 9
l0:3x+y=0
小结
本节主要学习了线性约束下如何求目
标函数的最值问题 1. 正确列出变量的不等关系式, 准确作
都是有意义的.
问题:求利润2x+3y的最大值.
把z=2x+3y变形为y=-2x+z,这是斜率为-2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【学习目标】
1. 巩固二元一次不等式和二元一次不等式组所表示的平面区域;
2. 体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题。
【学习重点】体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题。
【学习难点】培养学生问题转化的能力。
【预习内容】
1、判断下列求法是否正确
若实数 x, y 满足 ① 求2x+y 的取值范围. ② 解:由①、②同向相加可得:6≤2x ≤10 ③
由②得:-4≤y-x ≤-2
将上式与①式同向相加得 0≤y ≤2 ④
③+④得 6≤2x+y ≤12
如果错误错在哪?
如何来解决这个问题呢?
【新知学习】 本题即求在满足 的前提下,求2x+y 的最大和最小值 问:求2x+y 的最大、最小值x 、y 要满足什么条件?
问题1:在坐标系中代表哪部分平面区域?
问题2:在这个区域中,如何取到2x+y 的最大最小值?
令Z=2x+y ,得到y=-2x+Z,斜率是 ,纵坐标上截距是 要求Z 的最大(最小)值就是使直线y=-2x+Z 的 最大(最小)
问题:3:如何作出这条直线?
【新知深化】
1.方法总结:在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤概括为:
2.概念剖析:
⑴线性目标函数:
关于 x 、y 的一次式 z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.
⑵线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ⑶可行解、可行域和最优解:
①满足线性约束条件的解(x , y ) 叫可行解.
②由所有可行解组成的集合叫做可行域.
③使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.
⎩⎨⎧≤-≤≤+≤
.
42,64y x y x ⎩⎨⎧≤-≤≤+≤.
42,64y x y x
练习 1.:求 z = 2 x + y 的最大值,其中x 、 y 满足约束条件11y x x y y ≤⎧⎪-≤⎨⎪≥-⎩
变式训练:已知实数x 、y 满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩
,求2Z x y =-的取值范围
【新知巩固】
1、 已知x 、 y 满足约束条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩
求z = 2x + 4 y 的最小值
2、 已知31<+<-b a 且42<+<b a ,求b a 32+的取值范围。