【全国百强校】山东省日照第一中学人教版高中数学必修五3.3简单线性规划学案
人教版高中数学必修⑤3.3.2简单的线性规划问题教学设计

课题:必修⑤3.3.2简单的线性规划问题三维目标:1、知识与技能(1)使学生进一步了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;;(2)了解线性规划问题的图解法,并能应用它解决相关问题及一些简单的实际问题。
2、过程与方法(1)通过引导学生合作探究,将实际生活问题转化为数学中的线性规划问题来解决,提高数学建模能力。
同时,可借助计算机的直观演示可使教学更富趣味性和生动性;(2)将实际问题中错综复杂的条件列出目标函数和约束条件对学生而言既是重点又是难点,在此,教师要根据学生的认知、理解情况,引导学生自己动手建立数学模型,自我不断体验、感受、总结;同时,要给学生正确的示范,利用精确的图形并结合推理计算求解3、情态与价值观(1)培养学生数形结合、等价转化、等与不等辩证的数学思想;(2) 通过对不等式知识的进一步学习,不断培养自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神;(3)通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
体验在学习中获得成功的成就感,为远大的志向而不懈奋斗。
教学重点:(1)把实际问题转化成线性规划问题,即建立数学模型;(2)用图解法解决简单的线性规划问题。
教学难点:准确求得线性规划问题的最优解(尤其是整数解的求解思想)教具:多媒体、实物投影仪教学方法:合作探究、分层推进教学法教学过程:一、双基回眸科学导入:★前面,我们学习了二元一次不等式(组)及其表示的区域……并且体会到在实际问题中的应用前景,感受到其重要性。
下面,首先我1.二元一次不等式.:我们把含有两个未知数,并且未知数的次数是1的不等式称为二元一次不等式.2.二元一次不等式组.:我们把由几个二元一次不等式组成的不等式组称为二元一次不等式组.3.二元一次不等式组的解集:满足二元一次不等式组的 x 和y的取值构成有序数对(,)x y,所有这样的有序数对(,)x y构成的集合称为二元一次不等式组的解集.1.二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)而不等式0By+CAx表示区域时则包括边界,把边界+≥画成实线.2.二元一次不等式表示哪个平面区域的判断方法:由于对在直线Ax+By+C=0同一侧的所有点(yx,),把它的坐标(yx,)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C >0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点)★在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,如某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?根据我们上节课所学知识,大家不难列出相应的量的约束条件,但我们列出(或画出)后,应该要解决生产中的必需的问题,这就是我们今天要探究的问题……二、创设情境合作探究:【引领学生合作探究,通过上述问题的进一步所求总结线性规划问题】上面的问题应该到达下面的位置:解:设甲、乙两种产品分别生产x 、y 件,由已知条件可的二元一次不等式组:28,416,412,00x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ (Ⅰ)将上述不等式组表示成平面上的区域,如图中阴影部分的整点。
高中数学(3.3 简单的线性规划问题(1))教案 新人教版必修5 教案

简单的线性规划问题(1)
教学目标:了解线性规划的意义、了解可行域的意义;掌握简单的二元线性规划问题的解法. 教学重点、难点:二元线性规划问题的解法的掌握. 教学过程: 一.问题情境
1.问题:在约束条件410432000
x y x y x y +≤⎧⎪+≤⎪
⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?
二.学生活动
探究:1.作出约束条件410432000
x y x y x y +≤⎧⎪+≤⎪
⎨≥⎪⎪≥⎩所表示的平面区域:
2. 将目标函数2P x y =+变形为2y x P =-+的形式,它表示一条直线,斜率为_____________________,在y 轴上的截距为_________________________;
3.作出直线0l :2y x =-,并平移; 因此,
三.建构数学 1.可行域:
2.线性规划: 说明:
四.数学运用
例1.设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-⎧⎪
+≤⎨⎪≥⎩
,求z 的最大值和最小值.
例2.设z=6x-10y ,式中,x y 满足条件4335251x y x y x -≤-⎧⎪
+≤⎨⎪≥⎩
,求z 的最大值.
说明:1.线性目标函数的最大值、最小值一般在可行域的顶点处取得;
2.线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数多个.
练习:课本第89页 练习 第1,2,3题. 五.回顾反思:
六.作业布置:
书P87 习题3.3 3(1),5,7 ,8。
人教版高中数学必修5简单的线性规划问题教案

请学生读题,引导阅读理解后,列表
→ 建立数学关系式 → 画平面区域,学生就
近既分工又合作,教师关注有多少学生写出了线性数学关系式,有多少学生画出了相应
的平面区域,在巡视中并发现代表性的练习进行展示,强调这是同一事物的两种表达形
式数与形 .
【问题情景使学生感到数学是自然的、 有用的, 学生已初步学会了建立线性规划模型 的三个过程: 列表 →建立数学关系式→ 画平面区域, 可放手让学生去做, 再次经历从 实际问题中抽象出数学问题的过程, 教师则在数据的分析整理、 表格的设计上加以指导 】
教师打开几何画板,作出平面区域 .
( 2)问题 师:进一步提出问题, 若生产一件甲产品获利
采用哪种生产安排利润最大?
2 万元,生产一件乙产品获利 3 万元,
学生不难列出函数关系式 z 2 x 3 y .
师:这是关于变量 x、 y 的一次解析式,从函数的观点看 x、 y 的变化引起 z 的变 化,而 x 、 y 是区域内的动点的坐标,对于每一组 x、 y 的值都有唯一的 z 值与之对应,
来源于生活,服务于生活,体验数学在建设节约型社会中的作用
.
五、教学重点和难点
求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问
题转化为经过可行域的直线在 y 轴上的截距的最值问题?以及如何想到要这样转化?存在一定疑
虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点.
轴上的截距的最值问题”来解决,实现其图解的目的
.
2
z
x 在y
33
【 借助计算机技术用运动变化的方法,创设实验环境,形成多元联系,展示数
学关系式、平面区域、表格等各种形态的表现形式,在数、图、表的关联中进
人教版高中数学必修五 3.3.2简单的线性规划问题(导学案)

必修 第三章
简单的线性规划问题
【课前预习】阅读教材
. 线性规划的有关概念:
①线性约束条件:在上述问题中,不等式组是一组变量、的约束条件,这组约束条件都是关于、的一次不等式,故又称线性约束条件.
②线性目标函数:关于、的一次式是欲达到最大值或最小值所涉及的变量、的解析式,叫线性目标函数.
③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:满足线性约束条件的解叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. . 用图解法解决简单的线性规划问题的基本步骤:
()寻找线性约束条件,线性目标函数;
()由二元一次不等式表示的平面区域做出可行域;
()在可行域内求目标函数的最优解
【课初分钟】课前完成下列练习,课前分钟回答下列问题
. 目标函数,将其看成直线方程时,的意义是( ).
.该直线的横截距
.该直线的纵截距
.该直线的纵截距的一半的相反数
.该直线的纵截距的两倍的相反数
. 已知、满足约束条件,则
的最小值为( ).
. . . .
.
在如图所示的可行域内,目标函数
取得最小值的最优解有无数个,则的一个可能值是( ).
.求的最大值,其中、满足约束条件
强调(笔记):
【课中分钟】边听边练边落实
.若实数,满足,求的取值范围.
.求的最大值和最小值,其中、满足约束条件.。
2019-2020年高中数学必修五教案:3-3-2简单的线性规划问题

2019-2020年高中数学必修五教案: 3-3-2 简单的线性规划问题简单的线性规划问题一、教学背景1.本节课是《普通高中课程标准实验教科书数学》人教A 版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时。
主要内容是线性规划的相关概念和简单的线性规划问题的解法。
2.本节课的教学对象是河北省秦皇岛市抚宁区第一中学高一文班学生。
二、教学目标 (一)知识与技能1. 了解约束条件、目标函数、可行解、可行域、最优解等基本概念。
2. 会用图解法解决简单线性规划问题,即求目标函数的最大值或最小值。
(二)过程与方法在线性规划问题的探究过程中,引导学生通过观察、分析、操作、归纳、概括的基本环节,达到知识的建构。
增强学生的观察、联想、细心作图的能力,把握化归思想和数形结合两大数学思想。
注重培养学生积极主动、勇于探索的学习方式,整节课着重创造师生互动、生生互动的良好学习环境,学生在老师的引导下亲身经历动手实践、动脑思考等方法探究线性规划的简单问题获取直接结题经验。
(三)情感态度与价值观学习中渗透函数、数形结合、化归等重要数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣。
结合本节教学内容,让学生成为课堂活动的主导,体验探究学习、合作学习的乐趣,并从中获得成功的体验,增强学生学习数学知识的自信心。
培养实事求是、理论与实际相结合的科学态度和科学道德。
三、教学重点和难点教学重点:图解法解线性规划问题。
教学难点:准确求得线性规划问题的最优解。
四、教学过程 (一)复习回顾在同一坐标系上作出下列直线:xy 2-=;12+-=x y ;32--=x y ;42+-=x y ;72+-=x y 。
投影展示学生的画图作业,引导学生观察5条直线的特征:平行。
得出结论:形如)0(2¹+-=t t x y 的直线与x y 2-=平行。
直线b kx y +=中的b 叫做纵截距:直线与y 轴交点的纵坐标。
人教版高中数学必修五学案 3.3.2 简单的线性规划问题

3.3.2 简单的线性规划问题学习目标 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念(重点);2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题(重、难点).知识点1线性规划中的基本概念名称意义约束条件关于变量x,y的一次不等式(组) 线性约束条件关于x,y的一次不等式(组)目标函数欲求最大值或最小值的关于变量x,y的函数解析式线性目标函数关于变量x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题【预习评价】1.线性约束条件的特征是什么?提示一是关于变量x,y的不等式;二是次数为1.2.可行解、可行域和最优解之间是什么关系?提示可行解是满足约束条件的解(x,y);可行域是由所有可行解组成的集合;最优解是使目标函数取得最大值或最小值的可行解.知识点2线性规划问题1.目标函数的最值线性目标函数z=ax+by (b≠0)对应的斜截式直线方程是y=-ab x+zb,在y轴上的截距是zb,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.【预习评价】1.最优解一般会在可行域的哪些地方取到?提示若目标函数存在一个最优解,则最优解通常在可行域的顶点处取得;若目标函数存在多个最优解,则最优解一般在可行域的边界上取得.2.在线性目标函数z=x-y中,目标函数z的最大、最小值与截距的对应关系又是怎样的?提示z的最大值对应截距的最小值,z的最小值对应截距的最大值.方向1 求线性目标函数的最值问题【例1-1】 设x ,y 满足约束条件⎩⎨⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( ) A.-15 B.-9 C.1D.9解析 作出不等式组表示的可行域,结合目标函数的几何意义可得函数在点B (-6,-3)处取得最小值z min =-12-3=-15.故选A.答案 A方向2 非线性目标函数的最值【例1-2】 (1)变量x ,y 满足条件⎩⎨⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为( ) A.322 B. 5 C.5D.92(2)已知x ,y 满足约束条件⎩⎨⎧x -2≥0,x +y ≤6,2x -y ≤6,则目标函数z =4y +4x +2的最大值为()A.6B.5C.2D.-1解析 (1)作出不等式组对应的平面区域,设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图象知CD 的距离最小,此时z 最小. 由⎩⎪⎨⎪⎧y =1,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,即C (0,1), 此时z =(x -2)2+y 2=4+1=5, 故选C.(2)x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≥0,x +y ≤6,2x -y ≤6表示的可行域如图:目标函数z =4y +4x +2=4×y +1x +2,目标函数的几何意义是可行域的点与(-2,-1)连线斜率的4倍,由题意可知:DA 的斜率最大. 由⎩⎪⎨⎪⎧x =2,x +y =6,可得A (2,4), 则目标函数z =4y +4x +2的最大值为:4×4+42×2=5.故选B.答案 (1)C (2)B方向3 由目标函数的最值求参数的值【例1-3】已知实数x ,y 满足⎩⎨⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m 等于( ) A.3 B.4 C.5D.7解析 作出不等式组对应的平面区域如图: 由目标函数为z =x -y ,得y =x -z ,当z =-1时,函数为y =x +1,此时对应的平面区域在直线y =x +1的下方,由⎩⎪⎨⎪⎧y =x +1,y =2x -1,解得⎩⎪⎨⎪⎧x =2,y =3,即A (2,3),同时A 也在直线x +y =m 上,即m =2+3=5,故选C.答案 C规律方法 1.给定约束条件的情况下,求目标函数的最优解主要用图解法,其主要思路为:(1)根据约束条件作出可行域;(2)将目标函数看作经过可行域内点的直线,并将目标函数值与该直线在y轴(或x轴)上的截距建立联系;(3)平移直线确定截距最大(最小)时所对应点的位置;(4)解有关方程组求出对应点坐标,再代入目标函数求目标函数最值.2.(1)若目标函数为形如z=y-bx-a,可考虑(a,b)与(x,y)两点连线的斜率.(2)若目标函数为形如z=(x-a)2+(y-b)2,可考虑(x,y)与(a,b)两点距离的平方.题型二线性规划的实际应用【例题】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(1)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?解 (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,y ≥0,该二元一次不等式组所表示的平面区域为图1中的阴影部分:(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125随z 变化的一簇平行直线,z 25为直线在y 轴上的截距,当z25取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎨⎧7x +6y =60,x -2y =0,得点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多. 规律方法 解答线性规划应用题的一般步骤(1)审题——仔细阅读,对关键部分进行“精读”,准确理解题意,明确有哪些限制条件,起关键作用的变量有哪些,由于线性规划应用题中的量较多,为了理顺题目中量与量之间的关系,有时可借助表格来理顺.(2)转化——设元.写出约束条件和目标函数,从而将实际问题转化为数学上的线性规划问题.(3)求解——解这个纯数学的线性规划问题. (4)作答——对应用题提出的问题作出回答.【训练】 某公司计划2019年在甲、乙两个电视台做总时间不超过300 min 的广告,广告费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/min 和200元/min.已知甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元,问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大?最大收益是多少万元? 解 设公司在甲、乙两个电视台做广告的时间分别为 x min 和y min ,总收益为z 元.由题意,得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0,目标函数z =3 000x +2 000y .二元一次不等式组等价于⎩⎪⎨⎪⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0,作出可行域如图阴影部分所示,当直线z =3 000x +2 000y 过点M 时,z 最大. 由⎩⎪⎨⎪⎧x +y =300,5x +2y =900得M (100,200). 所以z max =3 000×100+2 000×200=700 000(元)=70(万元).所以该公司在甲电视台做100 min 广告,在乙电视台做200 min 广告,公司收益最大,最大值为70万元.【训练】 某人有一幢房子,室内面积共180 m 2,拟分隔成两类房间作为游客住房.大房间每间面积为18 m 2,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15 m 2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1 000元,装修小房间每间需600元.如果他只能筹款8 000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,才能获得最大收益?解 设他应隔出大房间x 间,小房间y 间,能获得收益为z 元,则由题意可知⎩⎪⎨⎪⎧18x +15y ≤180,1 000x +600y ≤8 000,x ≥0,y ≥0,x ,y ∈N , 目标函数z =200x +150y .约束条件化简为⎩⎪⎨⎪⎧6x +5y ≤60,5x +3y ≤40,x ≥0,y ≥0,x ,y ∈N ,可行域如图阴影部分所示.根据目标函数作一族平行直线:4x +3y =t ,这些直线中经过点B ⎝ ⎛⎭⎪⎫207,607的直线在y 轴上的截距最大.此时z =200x +150y 取最大值,但此时x ,y 均不为整数,故不是最优解,因此要进行调整.将直线4x +3y =2607向左下方平移至4x +3y =37,则 y =37-4x3,将其代入的约束条件,得⎩⎨⎧6x +5×37-4x3≤60,5x +3×37-4x3≤40,可得52≤x ≤3.∵x 为整数,∴x =3,此时y 为非整数,故在直线4x +3y =37上无最优整数解. 将直线再向左下方平移一个单位,得直线4x +3y =36.则y =36-4x3,将其代入约束条件,得⎩⎨⎧6x +5×36-4x3≤60,5x +3×36-4x3≤40,可得0≤x ≤4.∵x 为整数,∴x =0,1,2,3,4,代入求得它们对应的y =12,323,283,8,203. 故可得最优解为(0,12)和(3,8),此时z max =1 800.即他应该隔出小房间12间或隔出大房间3间,小房间8间,才能获得最大收益.课堂达标1.设变量x ,y 满足约束条件⎩⎨⎧2x +y ≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z =x +y 的最大值为( ) A.23 B.1 C.32D.3解析 目标函数为四边形ABCD 及其内部,其中A (0,1),B (0,3),C ⎝ ⎛⎭⎪⎫-32,3,D ⎝ ⎛⎭⎪⎫-23,43,所以直线z =x +y 过点B 时取最大值3,选D. 答案 D2.实数x ,y 满足⎩⎨⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x 的取值范围是()A.[-1,0]B.(-∞,0]C.[-1,+∞)D.[-1,1) 解析 作出可行域,如图所示,y -1x 的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1). 答案 D3.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值为( )A.-3B.3C.-1D.1解析 若最优解有无数个,则y =-1a x +z a 与其中一条边平行,三边斜率分别为13,-1,0与-1a 对照知a =-3或a =1.又因为z =x +ay 取最小值,则a =-3. 答案 A4.若x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解析由题意,画出可行域如图阴影部分所示:由z=3x-4y,得y=34x-z4,作出直线y=34x,平移使之经过可行域,观察可知,当直线经过点A(1,1)处取最小值,故z min=3×1-4×1=-1.答案-1课堂小结1.用图解法解决线性或非线性规划问题的基本步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.4.在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等),而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,应具体情况具体分析.。
人教高中数学必修五 《3.3.2简单的线性规划问题》教案-教育文档

课题名称:简单的线性规划问题 (教案)
三维教学目标
知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;
②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。
过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;
③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。
情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。
教学重点及应对策略
1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;
教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。
教学过程设计。
高中数学 3.3 简单的线性规划问题教案 新人教版必修5 教案

简单的线性规划问题一、教学内容分析普通高中课程标准教科书数学5(必修)第三章第3课时 这是一堂关于简单的线性规划的“问题教学”.线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题.简单的线性规划(涉及两个变量)关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成.突出体现了优化的思想.教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等的概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.二、学生学习情况分析本节课学生在学习了不等式、直线方程的基础上,又通过实例,理解了平面区域的意义,并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问题转化为数学问题. 从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这都成了学生学习的困难. 三、设计思想本课以问题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,以几何画板作为平台,激发他们动手操作、观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,“从具体到一般”的抽象思维过程,应用“数形结合”的思想方法,培养学生的学会分析问题、解决问题的能力。
四、教学目标1.了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最优解.2.在实验探究的过程中,让学生体验数学活动充满着探索与创造,培养学生的数据分析能力、探索能力、合情推理能力及动手操作、勇于探索的精神;3、在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力和化归能力,体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用. 五、教学重点和难点求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问题转化为经过可行域的直线在y 轴上的截距的最值问题?以及如何想到要这样转化?存在一定疑虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点. 六、教学过程设计(一)引入 (1)情景某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h.该产每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是什么?请学生读题,引导阅读理解后,列表 →建立数学关系式 → 画平面区域,学生就近既分工又合作,教师关注有多少学生写出了线性数学关系式,有多少学生画出了相应的平面区域,在巡视中并发现代表性的练习进行展示,强调这是同一事物的两种表达形式数与形.【问题情景使学生感到数学是自然的、有用的,学生已初步学会了建立线性规划模型的三个过程:列表 →建立数学关系式→ 画平面区域,可放手让学生去做,再次经历从实际问题中抽象出数学问题的过程,教师则在数据的分析整理、表格的设计上加以指导】 教师打开几何画板,作出平面区域. (2)问题师:进一步提出问题,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?学生不难列出函数关系式y x z 32+=.师:这是关于变量y x 、的一次解析式,从函数的观点看y x 、的变化引起z 的变化,而y x 、是区域内的动点的坐标,对于每一组y x 、的值都有唯一的z 值与之对应,请算出几个z 的值. 填入课前发下的实验探究报告单中的第2—4列进行观察,看看你有什么发现?学生会选择比较好算的点,比如整点、边界点等.【学生思维的最近发现区是上节的相关知识,因此教师有目的引导学生利用几何直观解决问题,虽然这个过程计算比较繁琐,操作起来有难度,但是教学是一个过程,从中让学生体会科学探索的艰辛,这样引导出教科书给出的数形结合的合理性,也为引入信息技术埋下伏笔】 (二)实验教师打开画板,当堂作出右图,在区域内任意取点,进行计算,请学生与自己的数据对比,继续在实验探究报告单上补充填写画板上的新数据.教师引导学生提出猜想:点M 的坐标为(4,2)时,z =y x 32+取得最大值14.【在信息技术与课程整合过程中,为改变老师单机的演示学生被动观看的现状,让学生参与进来,老师(可以根据学生要求)操作,学生记录,共同提出猜想,在当前技术条件受限时不失为一个好方法】师:这有限次的实验得来的结论可靠吗?我们毕竟无法取遍所有点,因为区域内的点是无数的!况且没有计算机怎么办,数据复杂手工无法计算怎么办? 因此,有必要寻找操作性强的可靠的求最优解的方法.【形成认知冲突,激发求知欲望,调整探究思路,寻找解决问题的新方法】继续观察实验报告单,聚焦每一行的点坐标和对应的度量值,比如M (3.2, 1.2)时方程是1032=+y x ,填写表中的第6—7列,引导学生先在点与直线之间建立起联系 ------点M 的坐标是方程1032=+y x 的解,那么点M 就应该在直线1032=+y x 上,反过来直线1032=+y x 经过点M ,当然也就经过平面区域,所以点M 的运动就可转化为直线的平移运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【自学】
对于题目:已知实数,x y 满足:12,x y ≤+≤11x y -≤-≤,求2x y +的取值范围.
有个同学的解法如下: 解:由已知,得不等式组:12(1)
11(2)x y x y ≤+≤ ⎧⎨
-≤-≤ ⎩
,
两个同向不等式作加法,得: 原不等式组化为
两个同向不等式作加法,得023(4)y ≤≤
即 0 1.5y ≤≤ (5). 两个同向不等式(3)和(5)作加法,得 从而2x y +的取值范围是[0,4.5]. 思考:上题合适的解法该是怎样的呢???
【对话】
【精讲点拨】
例1、已知2z x y =+,其中实数,x y 满足:12
11
x y x y ≤+≤⎧⎨-≤-≤⎩,求z 的最大值和最
小值.
小结:
1、线性规划中的几个相关概念:
2、解决简单线性规划的方法:
3.解简单线性规划问题的步骤:
【对话】
【合作探究与展示分享】
例2、设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-⎧⎪
+≤⎨⎪≥⎩
,求z 的最大值和最小值.
变式1、在例2中将2z x y =+改为610z x y =+,求z 的最大值和最小值. 变式2、在例2中将2z x y =+改为2z x y =-,求z 的最大值和最小值.
例3、设变量,x y 满足条件1035371x y x y x -+≤⎧⎪
+≤⎨⎪≥⎩
,
(1) 找出,x y 均为正整数的可行解; (2) 求出目标函数53z x y =+的最大值;
(3) 若,x y 均为正整数,求目标函数53z x y =+的最大值.
【评价】
【自我评价】
1. 右图中阴影部分的点满足不等式组52600
x y x y x y +≤⎧⎪+≤⎪
⎨≥⎪⎪≥⎩在这些点中,使目标函数68z x y
=+取得最大值的点的坐标是______________.
2. 求函数23z x y =+的最大值,式中的,x y 满足约束条件2324700
x y x y x y +-≤
⎧⎪-≤⎪
⎨≥⎪⎪≥⎩
*3、在例2中将2z x y =+改为y
z x
=,求z 的最大值和最小值.
*4、在例2中将2z x y =+改为2
2
z x y =+,求z 的最大值和最小值. **5.已知变量,x y 满足约束条件14
22x y x y ≤+≤⎧⎨
-≤-≤⎩
,若目标函数
(0)z ax y a =+>其中仅在点(3,1)处取得最大值,则a 的取值范围为____________.。