材料力学总结Ⅱ(乱序,建议最后阶段复习)
材料力学期末总结

材料力学期末总结材料力学是研究材料受力、变形和破坏行为的一门学科,它是材料科学与工程中的基础学科之一,在工程材料的选用、设计和制造过程中起着重要的作用。
通过学习材料力学,我对材料的力学性能和应用有了更深入的了解,同时也掌握了一些重要的力学分析方法和计算技巧。
在本学期的学习中,我首先学习了材料的基本力学性质,包括拉伸、压缩、剪切、扭转等力学现象的描述和分析方法。
我了解了材料在受力作用下发生的变形行为和力学性能的定义,比如杨氏模量、屈服强度、延伸率等。
在学习这些理论知识的同时,我也进行了一些实验来验证这些性质的实际表现,加深了对材料力学的理解。
接着,我学习了材料的破坏行为和破坏机理。
了解了常见的破坏模式,如拉伸断裂、压缩破碎、剪切失稳等,以及破坏过程中的变形和能量吸收情况。
通过学习材料的破坏行为,我可以针对不同情况下的工程应用,选择更合适的材料和加工工艺,提高产品的可靠性和安全性。
进一步地,我学习了应变能与材料的应力-应变关系,在这方面我学到了弹性模量、屈服强度、抗拉极限等与材料本身力学性能相关的重要物理量。
我学习了应力-应变曲线的绘制和分析方法,以及材料的变形机制和形变过程。
除了这些基础知识,我还学习了一些力学分析的方法和计算技巧,包括静力学平衡条件、动力学平衡条件等,可以用来分析复杂的力学问题。
我学习了弹性力学、塑性力学等基本的力学理论,并通过习题的练习巩固了这些知识。
通过这门课程的学习,我深切体会到了材料力学作为工程材料领域的一门基础学科的重要性。
掌握材料力学对于材料科学与工程的学习和研究具有很强的指导作用,可以帮助工程师选用合适的材料、设计合理的结构,提高产品的性能和可靠性,减少工程事故的发生。
在学习的过程中,我也遇到了一些困难和挑战。
比如,某些概念的理解较为抽象,需要通过大量的实例来加深理解;某些计算方法和公式的推导过程繁琐,需要耐心和细心去处理。
但是,我通过课堂的学习和课后的练习,逐渐克服了这些困难,提高了自己的学习能力和分析问题的能力。
(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
(完整版)材料力学重点总结(2)

(完整版)材料力学重点总结(2)材料力学阶段总结一。
材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2。
材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3. 材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力.应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定.正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4。
物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5。
材料的力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=12(2)6。
安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07。
材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力".运用力学原理分析计算。
材料力学复习总结

M x
EI
dxdx
Cx
D
()
式中,C,D 为积分常数,它们可由梁的边界条件确定。当梁分为若干段积分时,积分常数的确定除需利用边
界条件外,还需要利用连续条件。
3,梁的刚度条件
限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即
,
max
max
()
3,轴向拉伸或压缩杆件的应变能
切应力沿腹板高度的分布亦为二次曲线。计算公式为
Q Izb
B
8
H 2 h2
b 2
h2 4
y2
(3-23)
F 近似计算腹板上的最大切应力: max
s d 为腹板宽度 h1 为上下两翼缘内侧距
dh1
3.3.3 圆形截面梁
横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化。
挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力
bs
P Abs
bs
(3-30)
1, 变形计算
圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角。相距为 l 的两个横截面的相对扭转角为
l T dx (rad)
0GI P
若等截面圆轴两截面之间的扭矩为常数,则上式化为
Tl (rad) GI P
(3-16)
式中, 是变形后梁轴线的曲率半径;E 是材料的弹性模量; IE 是横截面对中性轴 Z 轴的惯性矩。
3.1.2 横截面上各点弯曲正应力计算公式 M y IZ
(3-17)
式中,M 是横截面上的弯矩; IZ 的意义同上;y 是欲求正应力的点到中性轴的距离
最大正应力出现在距中性轴最远点处
(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;
材料力学知识点总结免费版

材料力学知识点总结材料力学是研究物质内部力学行为以及材料的变形和破坏的学科。
它是工程领域中非常重要的基础学科,涉及材料的结构、性能和应用等方面。
本文将从基本概念、力学性质、变形与破坏等方面对材料力学的知识点进行总结。
1.弹性力学弹性力学是材料力学的基础,研究材料在外力作用下的变形与恢复过程。
弹性力学主要关注材料的弹性性质,即材料在外力作用下是否能够发生恢复性变形。
弹性力学的基本理论包括胡克定律、泊松比等。
2.塑性力学塑性力学研究材料的塑性行为,即材料在外力作用下会发生永久性变形的能力。
塑性力学主要关注材料的塑性应变、塑性流动规律等。
常见的塑性变形方式包括屈服、硬化、流变等。
3.破裂力学破裂力学研究材料的破裂行为,即材料在外力作用下发生破裂的过程。
破裂力学主要关注材料的断裂韧性、断口形貌等。
常见的破裂失效方式包括断裂、断裂韧性减小、疲劳等。
4.疲劳力学疲劳力学研究材料在交变应力作用下的疲劳失效行为。
疲劳力学主要关注材料的疲劳寿命、疲劳强度等。
材料在交变应力作用下会逐渐积累微小损伤,最终导致疲劳失效。
5.断裂力学断裂力学研究材料在应力集中区域的破裂行为。
断裂力学主要关注材料的应力集中系数、应力集中因子等。
在材料中存在裂纹等缺陷时,应力集中会导致裂纹扩展,最终引发断裂失效。
6.成形加工力学成形加工力学研究材料在加工过程中的变形行为。
成形加工力学主要关注材料的流变性质、加工硬化等。
常见的成形加工方式包括挤压、拉伸、压缩等。
7.热力学力学热力学力学研究材料在高温条件下的力学行为。
热力学力学主要关注材料的热膨胀、热应力等。
材料在高温条件下,由于热膨胀不均匀等因素,会产生热应力,从而影响材料的力学性能。
通过以上对材料力学的知识点的总结,我们可以了解到材料力学对工程领域的重要性。
在工程实践中,需要根据材料的力学性质来设计和制造材料的结构,以保证其性能和安全性。
因此,掌握材料力学的基本概念和原理对于工程师和科研人员来说是至关重要的。
材料力学小结

。
目录
第七章 小 结
1.压杆的稳定性 保持原有直线平衡状态的能力。 压杆临界稳定时所承受的压力。 2.压杆的临界压力 FCr
欧拉公式
μ:长度系数
Fcr
EI
2
( l )
2
压杆两端固定 0.5 压杆两端铰支
压杆一端铰支,一端固定 0.7 压杆一端固定,一端自由 惯性半径 i
b
2. 塑性材料的弹性范围
σ≤σe
3. 塑性材料的塑性指标 断后伸长率 ;断面收缩率 。 4.脆性材料的强度特征值 抗拉强度 b;抗压强度 b c 。 5. 极限应力的确定 塑性材料
0
s p 0.2 。
0
0 脆性材料拉伸 b ;脆性材料压缩
bc 。
建立补充方程
11 21 ... n1
12 22 n2
...
... ... ... ...
1n X 1 2n X 2
1F 2 F ... ... 0 ... nn X n nF
I A
1
2
3. 柔度(长细比) 4.临界应力
l
i
大柔度杆 P 中柔度杆 P s 小柔度杆 s
cr
E
2
cr a b
欧拉公式 直线公式 强度问题
目录
2
cr s
第八章 小结
一、强度条件 最大应力小于或等于许用值 强度校核; 截面设计; 确定许用载荷。 三类强度计算问题: (一)基本变形 1.拉压
材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆::拉为“+”,压为“-” :使单元体顺时针转动为“+”:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ, E tg ==σα七.组合变形ε滑移线与轴线45,剪只有s ,无八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,cr <σp ,>p柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓>p ——大柔度杆:22λπσE cr=o <<p ——中柔度杆:cr=a-b<0——小柔度杆:cr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
完整版材料力学各章重点内容总结

完整版材料力学各章重点内容总结材料力学各章重点内容总结第一章绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章轴向拉压、轴力图:注意要标明轴力的大小、单位和正负号。
、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
、轴向拉压时横截面上正应力的计算公式: F N注意正应力有正负号,A拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:注意角度是指斜截面与横截面的夹角七、线应变一-没有量纲、泊松比一没有量纲且只与材料有关、l胡克定律的两种表达形式: E , I 出注意当杆件伸长时I 为正,EA缩短时I 为负。
八、低碳钢的轴向拉伸实验:会画过程的应力一应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p,弹性极限e )、屈服阶段(屈服极限s )、强化阶段(强度极限 b )和局部变形阶段会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力一应变曲线cos 2 ,sin2五、轴向拉压时横截面上正应力的强度条件F N,maxmaxA六、利用正应力强度条件可解决的三种问题: 1?强度校核maxF N ,maxA定要有结论 2.设计截面A F N,max3.确定许可荷载F^max A180八、圆轴在扭转时的刚度条件maxT maxGI p(注意单位:给出的许用单九、衡量材料塑性的两个指标:伸长率耳100 及断面收缩率 A-A 1100,工程上把 5 的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
对没有明显屈服极限的塑性材料,如何来确定其屈服指标?见课本第24页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学阶段总结一.材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾。
研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3. 材力与理力的关系,内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、 作用方向、和符号规定。
变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:拉压虎克定律:线段的拉伸或压缩。
E ——I 巴EA剪切虎克定律:两线段 夹角的变化。
Gr适用条件:应力〜应变是线性关系:材料比例极限以内。
5. 材料的力学性能(拉压):一张C - &图,两个塑性指标3、书,三个应力特征点:p、 s 、 b ,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G,泊松比v, GE 2(1 V )正应力压应力拉应力应变:反映杆件的变形程度线应变角应变6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
脆性材料7. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理 论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
运用力学原理分析计算。
8. 材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。
1) 拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
2) 圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。
横截面 上正应力为零。
3) 纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维; 正应力成线性分布规律。
9小变形和叠加原理 小变形:① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理叠加原理:① 叠加法求内力 ② 叠加法求变形。
10材料力学中引入和使用的的工程名称及其意义(概念)1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力, 集中力偶,极限荷载。
2) 单元体,应力单元体,主应力单元体。
3) 名义剪应力,名义挤压力,单剪切,双剪切。
4) 自由扭转,约束扭转,抗扭截面模量,剪力流。
塑性材料n sn b5)纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度,斜弯曲,截面核心,折算弯矩,抗弯截面模量。
6)相当应力,广义虎克定律,应力圆,极限应力圆。
7)欧拉临界力,稳定性,压杆稳定性。
8)动荷载,交变应力,疲劳破坏。
杆件四种基本变形的公式及应用2.四种基本变形的刚度,都可以写成:刚度=材料的物理常数X截面的几何性质1)物理常数:某种变形引起的正应力:抗拉(压)弹性模量E;某种变形引起的剪应力:抗剪(扭)弹性模量Gb 2)截面几何性质:拉压和剪切:变形是截面的平移:取截面面积A ; 扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩I ;梁弯曲:各截面绕轴转动一角度:取对轴的惯性矩I Z3.四种基本变形应力公式都可写成:、内力应力=截面几何性质I对扭转的最大应力:截面几何性质取抗扭截面模量W p -----------------------------max对弯曲的最大应力:截面几何性质取抗弯截面模量W Zy max4.四种基本变形的变形公式,都可写成:内力长度变形=—刚刚度—因剪切变形为实用计算方法,不考虑计算变形。
驚,一段长为l的纯弯曲梁有:弯曲变形的曲率l M x l(x)El z补充与说明:1、关于“拉伸与压缩”指简单拉伸与简单压缩,即拉力或压力与杆的轴线重合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲的组合变形问题;杆的压缩问题,要注意它的长细比(柔度)。
这里的简单压缩是指“小柔度压缩问题”。
2.关于“剪切”实用性的强度计算法,作了剪应力在受剪截面上均匀分布的假设。
要注意有不同的受剪截面:a.单面受剪:受剪面积是铆钉杆的横截面积;b.双面受剪:受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截面积;运用截面法, 外力一分为二,受剪面积为销钉截面积。
c.圆柱面受剪:受剪面积以冲头直径d为直径,冲板厚度t为高的圆柱面面积。
3.关于扭转表中公式只实用于圆形截面的直杆和空心圆轴。
等直圆杆扭转的应力和变形计算公式可近似分析螺旋弹簧的应力和变形问题是应用杆件基本变形理论解决实际问题的很好例子。
4.关于纯弯曲纯弯曲,在梁某段剪力Q=0时才发生,平面假设成立。
横力弯曲(剪切弯曲)可以视作剪切与纯弯曲的组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出的正应力公式可以在剪切弯曲中使用。
5.关于横力弯曲时梁截面上剪应力的计算问题为计算剪应力,作为初等理论的材料力学方法作了一些巧妙的假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:1)无论作用于梁上的是集中力还是分布力,在梁的宽度上都是均匀分布的。
故剪应力在宽度上不变,方向与荷载(剪力)平行。
2)分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有n(h )bdh Q ,因(h )的函数形式未知,无法积分。
但由剪应力互等定理,考虑微梁段左、右内力的平衡,可以得出:*QS Z I z b剪应力公式及其假设:a.矩形截面假设1:横截面上剪应力T 与矩形截面边界平行,与剪应力 Q 勺方向一致;方向与剪力的方向 假设2:同一层上的剪应力在剪力C 方向上的分量 y 相等。
剪应力公式:*QS z (y) b(y)i zS ;(y) |(R 2 y 2)2假设2:横截面上同一层高上的剪应力相等。
剪应力公式:(y)* QS z (y) I z bs ;(y )b( y )2 2 2 2y3 Q3max2 bh2平均b.非矩形截面积剪应力在横截面上沿高度的变化规律就体现在静矩S z 上, S z 总是正的作用线通过这层两端边界的切线交点,剪应力的 y(y)由: dMdxdQ辰qdM dx 设坐标原点在左端,则有:Q (x)Eld4ydx4q (x)q: EI d ydx4q,q为常值EI d3yAQ :dx3qxM : EI d2y q x2 Ax Bdx22••EI dy q 3 x A 2 x Bxdx62y: EIq 4 A 3By x4x—2462x2 Cx D 平均c.薄壁截面假设1:剪应力与边界平行,与剪应力谐调。
假设2:沿薄壁t , 均匀分布。
剪应力公式:*QS ztI学会运用“剪应力流”概念确定截面上剪应力的方向。
三.梁的内力方程,内力图,挠度,转角遵守材料力学中对剪力Q和弯矩M的符号规定。
在梁的横截面上,总是假定内力方向与规定方向一致,从统一的坐标原点出发划分梁的区间,且把梁的坐标原点放在梁的左端(或右端)使后一段的弯矩方程中总包括前面各段。
均布荷载q、剪力Q弯矩M转角B、挠度y间的关系:max4其中A 、B 、C 、D 四个积分常数由边界条件确定 例如,如图示悬臂梁:则边界条件为:Q l x 0 0A 0M l x 00 B 0l x 1 0 C 詈 I 3 yl x i 0 D qi 4 8ql4 8EI截面法求内力方程: 内力是梁截面位置的函数,内力方程是分段函数,它们以集中力偶的作用点, 分布的起始、终止点为分段点;1) 在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变; 2) 在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;3) 剪力等于脱离梁段上外力的代数和。
脱离体截面以外另一端,外力的符号同 剪力符号规定,其他外力与其同向则同号,反向则异号;4) 弯矩等于脱离体上的外力、外力偶对截面形心截面形心的力矩的代数和。
外 力矩及外力偶的符号依弯矩符号规则确定。
梁内力及内力图的解题步骤: 1) 建立坐标,求约束反力; 2) 划分内力方程区段;3) 依内力方程规律写出内力方程;4) 运用分布荷载q 、剪力Q 弯矩M 的关系作内力图;d 2M dQdM 小2q x , Q xdx 2 dx dx关系:d d Q D Q C q x d xM D M CQ x d xcc规定:①荷载的符号规定:分布荷载集度 q 向上为正;② 坐标轴指向规定:梁左端为原点,x 轴向右为正剪力图和弯矩图的规定:剪力图的 Q 轴向上为正,弯矩图的 M 轴向下为正 5)作剪力图和弯矩图:El y— 24①无分布荷载的梁段,剪力为常数,弯矩为斜直线;Q>0, M图有正斜率(\); C K0,有负斜率(/);②有分布荷载的梁段(设为常数),剪力图为一斜直线,弯矩图为抛物线;q v0, C图有负斜率(\),M图下凹(V ; q>0, C图有正斜率(/),M图上凸(J ;③Q=0的截面,弯矩可为极值;④集中力作用处,剪力图有突变,突变值为集中力之值,此处弯矩图的斜率也突变,弯矩图有尖角;⑤集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;⑥在剪力为零,剪力改变符号,和集中力偶作用的截面(包括梁固定端截面),确定最大弯矩(M max);⑦指定截面上的剪力等于前一截面的剪力与该两截面间分布荷载图面积值的和;指定截面积上的弯矩等于前一截面的弯矩与该两截面间剪力图面积值的和共轭梁法求梁的转角和挠度:要领和注意事项:1)首先根据实梁的支承情况,确定虚梁的支承情况2)绘出实梁的弯矩图,作为虚梁的分布荷载图。
特别注意:实梁的弯矩为正时,虚分布荷载方向向上;反之,则向下。
3)虚分布荷载qx 的单位与实梁弯矩Mx 单位相同若为KN m,虚剪力的单位则为KN m2,虚弯矩的单位是KN m34)由于实梁弯矩图多为三角形、矩形、二次抛物线和三次抛物线等。
计算时需要这些图形的面积和形心位置。
叠加法求梁的转角和挠度:各荷载对梁的变形的影响是独立的。
当梁同时受n种荷载作用时,任一截面的转角和挠度可根据线性关系的叠加原理,等于荷载单独作用时该截面的转角或挠度的代数和。
四•应力状态分析 1.单向拉伸和压缩应力状态划分为单向、二向和三向应力状态。
是根据一点的三个主应力的情 况而确定的。