数学必修(4)易错题集【人教A版】

合集下载

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。

第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。

人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。

人教版四年级数学上册期末试卷易错题附答案

人教版四年级数学上册期末试卷易错题附答案

人教版四年级数学上册4.易错题一、仔细审题,填一填。

(第7,9,10题每小题3分,其余每小题2分,共23分)1.亮亮在用量角器量角时看错了内外圈,一个锐角被他看成了130°的钝角,实际这个锐角是()。

2.我国2016年1月1日起全面实施二孩政策,据专家估算,二孩政策放开后,我国人口发展情况是:到2070年出生的人口约为510000000人,把横线上的数改写成用“万”作单位的数是(),死亡人口约94145万人,净减少人口约431450000人,把横线上的数“四舍五入”到亿位约是()。

3.2022年冬季奥运会,北京新建一个“国家速滑馆”。

该馆的规划用地范围约为20公顷,()个这样的“国家速滑馆”的规划用地范围约为1平方千米。

4.2019年10月1日北京天安门广场上举行了庆祝中华人民共和国成立70周年盛大阅兵式。

阅兵式在上午10时开始,此时钟面上时针和分针的夹角是(),阅兵式在11时20分结束,这段时间钟面上时针一共转了()。

5.要使65÷58的商是两位数,里最小填();要使34÷36的商是一位数,里最大填()。

6.如果△÷○=72,那么(△×1)÷(○×4)=(),(△÷3)÷(○×3)=()。

7.∠1=40°,∠2=()∠1=35°,∠2=(),∠3=() 8.妈妈每天早上起床后要做以下事情,她最少用()分钟才能完成。

刷牙3分钟吃早饭6分钟起床穿衣3分钟洗脸2分钟烤面包2分钟煮鸡蛋8分钟9.中最大能填几?573>×73×40<5605982≈5万10.每个足球62元,王老师带1800元,大约买()个,实际买()个,找回()元。

二、火眼金睛,判对错。

(对的在括号里打“√”,错的打“×”)(每小题1分,共5分)1.最高位是9的数一定比最高位是8的数大。

人教A版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷含答案解析(11)

人教A版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷含答案解析(11)

人教A版高一数学必修第一册第四章《指数函数与对数函数》单元练习题卷(共22题)一、选择题(共10题)1.设全集为R,函数f(x)=0√2−x的定义域为M,则∁RM=( )A.{x∣ x≥2}B.{x∣ x<2且x≠−1}C.{x∣ x≥2或x=−1}D.{x∣ x>2或x=−1}2.设α∈{−1,1,12,3},则使幂函数y=xα的定义域为R且为奇函数的所有α值为( ) A.1,3B.−1,1C.−1,3D.−1,1,33.若函数y=x2+bx+c(x∈[0,+∞))是单调函数,则实数b的取值范围是( )A.b≥0B.b≤0C.b>0D.b<04.如果函数f(x)=12(m−2)x2+(n−8)x+1(m≥0,n≥0)在区间[12,2]上单调递减,则mn的最大值为( )A.16B.18C.25D.8125.已知定义在(0,+∞)上的函数f(x)为增函数,且f(x)⋅f(f(x)+1x)=1,则f(1)等于( )A.1+√52B.1−√52C.1+√52或1−√52D.√56.定义在R上的函数f(x)满足:f(x−2)的对称轴为x=2,f(x+1)=4f(x)(f(x)≠0),且f(x)在区间(1,2)上单调递增,已知α,β是钝角三角形中的两锐角,则f(sinα)和f(cosβ)的大小关系是( )A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)=f(cosβ)D.以上情况均有可能7.已知函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,下列说法一定正确的是( )A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数D.f(x)+1为偶函数8.已知函数y=f(x)的定义域为[−6,1],则函数g(x)=f(2x+1)x+2的定义域是( ) A.(−∞,−2)∪(−2,3]B.[−11,3]C.[−72,−2]D.[−72,−2)∪(−2,0]9.已知R上的奇函数f(x)在区间(−∞,0)上单调递增,且f(−2)=0,则不等式f(x)≤0的解集为( )A.[−2,2]B.(−∞,−2]∪[0,2]C.(−∞,−2]∪[2,+∞)D.[−2,0]∪[2,+∞)10.已知函数f(x)=−x2+4x+a(x∈[0,1]),若f(x)有最小值−2,则f(x)的最大值为( )A.−1B.0C.1D.2二、填空题(共6题)11.在平面直角坐标系xOy中,对于点A(a,b),若函数y=f(x)满足:∀x∈[a−1,a+1],都有y∈[b−1,b+1],则称这个函数是点A的“界函数”.已知点B(m,n)在函数y=−12x2的图象上,若函数y=−12x2是点B的“界函数”,则m的取值范围是.12.已知f(x)=x3+3x,x∈R,且f(a−2)+f(a2)<0,则实数a的取值范围是.13.设函数f(x)={1,x>00,x=0−1,x<0,g(x)=x2⋅f(x−1),则函数g(x)的递减区间是.14.若函数f(x)在区间[a,b]上单调,且f(x)的图象连续不间断,则函数f(x)的最值必在处取得.15.已知函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上是增函数,若f(a+1)≤f(4),则实数a的取值范围是.16.若函数y=a∣x−b∣+2在区间(0,+∞)上是增函数,则实数a,b满足的条件为.三、解答题(共6题)17.如图,用长为1的铁丝弯成下部为矩形,上部为半圆形框架,若半圆的半径为x,求此框架围成的面积y与x的函数式y=f(x),并写出它的定义域.18.中国茶文化博大精深.小明在茶艺选修课中了解到,不同类型的茶叶由于在水中溶解性的差别,达到最佳口感的水温不同.为了方便控制水温,小明联想到牛顿提岀的物体在常温环境下温度变化的冷却模型;如果物体的初始温度是θ1,环境温度是θ0,则经过时间t(单位:分)后物体温度θ将满足:θ=θ0+(θ1−θ0)⋅e−kt,其中k为正的常数.小明与同学一起通过多次测量求平均值的方法得到200ml初始温度为98∘C的水在19∘C室温中温度下降到相应温度所需时间如下表所示:从98∘C到90∘C所用时间1分58秒从98∘C到85∘C所用时间3分24秒从98∘C到80∘C所用时间4分57秒(参考数据:ln79=4.369,ln71=4.263,ln66=4.190,ln61=4.111,ln56=4.025)(1) 请依照牛顿冷却模型写出冷却时间t(单位:分)关于冷却后水温θ(单位:∘C)的函数关系,并选取一组数据求出相应的k值.(精确到0.01)(2) “碧螺春”用75∘C左右的水冲泡可使茶汤清澈明亮,口感最佳.在(1)的条件下,200ml水煮沸后在19∘C室温下为获得最佳口感大约冷却分钟左右冲泡,请在下列选项中选择一个最接近的时间填在横线上,并说明理由.A.5B.7C.1019.解答下列问题:(1) 函数的积的定义:一般地,已知两个函数y=f(x)(x∈D1),y=g(x)(x∈D2),设D=D1∩D2,并且D不是空集,那么当x∈D时,y=f(x)与y=g(x)都有意义.于是把函数叫做函数y=f(x)与y=g(x)的积.(2) 如何研究和函数与积函数.20.函数f(x)=(m2−m−1)x m2+m−3是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.21.对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”,设函数f(x)的定义域为(0,+∞),且f(1)=3.(1) 若(a,b)是f(x)的一个“P数对”,且f(2)=6,f(4)=9,求常数a,b的值;(2) 若(1,1)是f(x)的一个“P数对”,且f(x)在[1,2]上单调递增,求函数f(x)在[1,8]上的最大值与最小值;(3) 若(−2,0)是f(x)的一个“P数对”,且当x∈[1,2)时,f(x)=k−∣2x−3∣,求k的值及f(x)在区间[1,2n)(n∈N+)上的最大值与最小值.22.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到(15−0.1x)万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1) 每套丛书售价定为100元时,书商所获得的总利润是多少万元?(2) 每套丛书售价定为多少元时,单套丛书的利润最大?答案一、选择题(共10题)1. 【答案】C【解析】由题意得{x+1≠0,2−x>0,解得x<2且x≠−1,所以M={x∣ x<2且x≠−1},故∁RM={x∣ x≥2或x=−1}.【知识点】函数的定义域的概念与求法2. 【答案】A【解析】当α=−1,1,3时幂函数为奇函数,当α=−1时定义域不是R,所以α=1,3.【知识点】幂函数及其性质3. 【答案】A【解析】因为y在[0,+∞)上为单调函数,所以x=−b2≤0,即b≥0.【知识点】函数的单调性4. 【答案】B【解析】m≠2时,抛物线的对称轴为x=−n−8m−2.据题意,当m>2时,−n−8m−2≥2即2m+n≤12.因为√2m⋅n≤2m+n2≤6,所以mn≤18.由2m=n且2m+n=12得m=3,n=6.当m<2时,抛物线开口向下,据题意得,−n−8m−2≤12即m+2n≤18.因为√2n⋅m≤2n+m2≤9,所以mn≤812.由2n=m且m+2n=18得m=9>2,故应舍去.要使得mn取得最大值,应有m+2n=18(m<2,n>8).所以mn=(18−2n)n<(18−2×8)×8=16,所以最大值为18.【知识点】函数的单调性、函数的最大(小)值5. 【答案】B【解析】令x=1,得f(1)f(f(1)+1)=1,令t=f(1),则tf(t+1)=1,所以 f (t +1)=1t .令 x =t +1,则 f (t +1)f (f (t +1)+1t+1)=1t ⋅f (1t +1t+1)=1, 所以 f (1t +1t+1)=t =f (1).因为函数 f (x ) 为定义在 (0,+∞) 上的增函数, 所以 1t +1t+1=1,变形可得 t 2−t −1=0, 解得 t =1+√52或 t =1−√52.所以 f (1)=1+√52或 f (1)=1−√52.令 x =2,得 f (2)f (f (2)+12)=1, 令 s =f (2),则 sf (s +12)=1, 所以 f (s +12)=1s , 令 x =s +12,则 f (s +12)⋅f (f (s +12)+1s+12)=1sf (1s+22s+1)=1,则 f (1s +22s+1)=s =f (2). 所以 1s +22s+1=2,所以 4s 2−2s −1=0, 解得 s =1−√54或 s =1+√54,所以 f (2)=1−√54或 f (2)=1+√54.因为 f (1)<f (2), 所以 f (1)=1−√52.【知识点】函数的解析式的概念与求法、函数的单调性6. 【答案】A【知识点】抽象函数、函数的单调性7. 【答案】C【解析】方法一:对任意的x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,取x1=x2=0得f(0)=−1,取x1=x,x2=−x得,f(0)=f(x)+f(−x)+1,所以f(x)+1=−f(−x)=−[f(−x)+1],所以f(x)+1为奇函数.方法二:由已知f(x1+x2)=f(x1)+f(x2)+1,设x1=x2=0,则f(0)=2f(0)+1,解得:f(0)=−1,又设x1=x,x2=−x,则x1+x2=x−x=0,所以f(0)=f(x)+f(−x)+1,所以f(x)+f(−x)+1+1=0,所以[f(x)+1]+[f(−x)+1]=0,由奇函数定义可知,f(x)+1为奇函数.【知识点】抽象函数、函数的奇偶性8. 【答案】D【解析】因为f(x)的定义域为[−6,1],所以−6≤x≤1,,因为g(x)=f(2x+1)x+2所以−6≤2x+1≤1且x≠−2,≤x≤0且x≠−2,所以−72,−2)∪(−2,0].所以x∈[−72【知识点】函数的定义域的概念与求法9. 【答案】B【解析】因为函数在(−∞,0)上单调递增,且f(−2)=0,所以当x∈(−∞,−2]时,f(x)≤0;当x∈(−2,0)时,f(x)>0.又函数是奇函数,奇函数的图象关于原点对称,f(0)=0,且f(2)=0,所以当x∈(0,2]时,f(x)≤0;当x∈(2,+∞)时,f(x)>0.所以f(x)≤0的解集是(−∞,−2]∪[0,2].故选B.【知识点】函数的奇偶性、函数的单调性10. 【答案】C【解析】函数f(x)=−x2+4x+a的图象开口向下,对称轴为直线x=2,于是函数f(x)在区间[0,1]上单调递增,从而f(0)=−2,即a=−2,于是最大值为f(1)=−1+4−2=1.【知识点】函数的最大(小)值二、填空题(共6题)11. 【答案】[−12,1 2 ]【解析】B(m,n)在y=−12x2上,所以n=−12m2,所以∀x∈[m−1,m+1],都有y∈[−12m2−1,12m2+1],即都有y max≤12m2+1,y min≥12m2−1,所以下面讨论13x∈[m−1,m+1]时,y的最值,① m≤−1时,m+1≤0,所以单调减,所以y max=−12(m+1)2,y min=−12(m−1)2,所以{−12(m+1)2≤12m2+1,−12(m−1)2≥12m2−1,无解.② −1<m≤0时,0<m+1≤1,−2<m−1≤−1,所以y max=0,y min=−12(m−1)2(取不到),所以{0≤12m2+1,−12(m−1)2≥12m2−1,所以−12≤m≤0.③ 0<m≤1时,1<m+1≤2,−1<m−1≤0,所以y max=0,y min=−12(m+1)2,所以 {0≤12m 2+1,−12(m +1)2≥12m 2−1,所以 0<m ≤12.④ m >1 时,m −1>0,所以 y max =−12(m −1)2 (取不到),y min =−12(m +1)2,所以 {−12(m −1)2≤12m 2+1,−12(m +1)2≥12m 2−1,无解.综上:−12≤m ≤12.【知识点】函数的最大(小)值12. 【答案】 (−2,1)【知识点】函数的奇偶性、函数的单调性13. 【答案】 [0,1)【解析】由题意知 g (x )={x 2,x >10,x =1−x 2,x <1,函数图象如图所示,其递减区间是 [0,1).【知识点】函数的单调性14. 【答案】端点【知识点】函数的最大(小)值15. 【答案】 [−5,3]【解析】函数 y =f (x ) 是定义在 R 上的偶函数,且在 [0,+∞) 上是增函数, 可得 f (x )=f (∣x ∣),则f(a+1)≤f(4),即为f(∣a+1∣)≤f(4),可得∣a+1∣≤4,即−4≤a+1≤4,解得−5≤a≤3,则实数a的取值范围是[−5,3].【知识点】函数的奇偶性、函数的单调性16. 【答案】a>0,b≤0【知识点】函数的单调性三、解答题(共6题)17. 【答案】AB=2x,CD⏜=πx,于是AD=1−2x−πx2,因此y=2x⋅1−2x−πx2+πx22,即y=−π+42x2+x,由{2x>0,1−2x−πx2>0,得0<x<1π+2,函数的定义域为(0,1π+2)【知识点】函数的解析式的概念与求法、函数的模型及其实际应用18. 【答案】(1) 由θ−θ0+(θ1−θ0)⋅e−kt得e−kt=θ−θ0θ1−θ0,即−kt=lnθ−θ0θ1−θ0,t=1klnθ1−θ0θ−θ0,在环境温度为θ0=19∘C,选取从θ=98∘C下降到θ=90∘C所用时间约为2分钟这组数据有2=1k ln7971,即k=ln79−ln712≈0.05;选取从θ=98∘C降到θ=85∘C期时间的为3.4分钟这组数据有3.4=1k ln7966,即k=ln79−ln663.4≈0.05;选取从们θ=98∘C得到θ=80∘C所期时的为5分钟这组数据有5=1k ln7961,即k=ln79−ln615≈0.05;故 k ≈0.05.(2) B200 ml 水煮沸后在 19∘C 室温下大约冷却 7 分钟左右冲泡口感最佳,故选B .理由如下:由(1)得 t =20ln 79θ−79,当 θ=75∘C 时,有 t =20×(ln79−ln56)≈6.88.所以 200 ml 水煮沸后在 19∘C 室温下大约冷却 7 分钟冲泡“碧螺春”口感最佳.【知识点】函数模型的综合应用19. 【答案】(1) y =f (x )⋅g (x )(x ∈D )(2) 首先要确定和函数与积函数的定义域,然后化简整理和(积)函数的解析式,结合解析式研究函数的性质.【知识点】函数的相关概念20. 【答案】根据幂函数的定义得 m 2−m −1=1,解得 m =2 或 m =−1.当 m =2 时,f (x )=x 3 在 (0,+∞) 上是增函数;当 m =−1 时,f (x )=x −3 在 (0,+∞) 上是减函数,不符合要求.故 f (x )=x 3.【知识点】幂函数及其性质21. 【答案】(1) 由题意知 {af (1)+b =f (2),af (2)+b =f (4).即 {3a +b =6,6a +b =9.解得 {a =1,b =3.(2) 因为 (1,1) 是 f (x ) 的一个“P 数对”,所以 f (2x )=f (x )+1,所以 f (2)=f (1)+1=4,f (4)=f (2)+1=5,f (8)=f (4)+1=6.因为 f (x ) 在 [1,2] 上单调递增,所以当 x ∈[1,2] 时,f (x )max =f (2)=4,f (x )min =f (1)=3,所以当 x ∈[1,2] 时,3≤f (x )≤4;当 x ∈[2,4] 时,x 2∈[1,2],3≤f (x 2)≤4,所以 4≤f (x )=f (x 2)+1≤5;当 x ∈[4,8] 时,x 2∈[2,4],4≤f (x 2)≤5, 所以 5≤f (x )=f (x 2)+1≤6.综上,当 x ∈[1,8] 时,3≤f (x )≤6.故 f (x ) 在 [1,8] 上的最大值为 6,最小值为 3.(3) 当 x ∈[1,2) 时,f (x )=k−∣2x −3∣,令 x =1,可得 f (1)=k −1=3,解得 k =4, 所以 x ∈[1,2) 时,f (x )=4−∣2x −3∣,故 f (x ) 在 [1,2) 上的取值范围是 [3,4].又 (−2,0) 是 f (x ) 的一个“P 数对”,所以 f (2x )=−2f (x ) 恒成立,当 x ∈[2k−1,2k )(k ∈N +) 时,x 2k−1∈[1,2),f (x )=−2f (x 2)=4f (x 4)=⋯=(−2)k−1⋅f (x 2k−1),故 k 为奇数时,f (x ) 在 [2k−1,2k ) 上的取值范围是 [3×2k−1,2k+1];当 k 为偶数时,f (x ) 在 [2k−1,2k ) 上的取值范围是 [−2k+1,−3×2k−1].所以当 n =1 时,f (x ) 在 [1,2n ) 上的最大值为 4,最小值为 3;当 n 为不小于 3 的奇数时,f (x ) 在 [1,2n ) 上的最大值为 2n+1,最小值为 −2n ;当 n 为不小于 2 的偶数时,f (x ) 在 [1,2n ) 上的最大值为 2n ,最小值为 −2n+1.【知识点】函数的最大(小)值、抽象函数22. 【答案】(1) 每套丛书售价定为 100 元时,销售量为 15−0.1×100=5 (万套),所以每套丛书的供货价格为 30+105=32 (元),故书商所获得的总利润为 5×(100−32)=340 (万元).(2) 每套丛书售价定为 x 元时,由 {15−0.1x >0,x >0,得 0<x <150 . 设单套丛书的利润为 P 元,则 P =x −(30+1015−0.1x )=x −100150−x −30,因为 0<x <150,所以 150−x >0,所以 P =−[(150−x )+100150−x ]+120, 又 (150−x )+100150−x ≥2√(150−x )⋅100150−x =2×10=20, 当且仅当 150−x =100150−x ,即 x =140 时等号成立,所以 P max =−20+120=100 .故每套丛书售价定为 140 元时,单套丛书的利润最大,为 100 元.【知识点】函数的模型及其实际应用、函数的最大(小)值、均值不等式的应用。

人教A版高中数学必修四1-4-3 正切函数的性质与图象

人教A版高中数学必修四1-4-3 正切函数的性质与图象

[解析] (1)∵定义域[-π4,π4)不关于原点对称, ∴它既不是奇函数也不是偶函数. (2)定义域为{x|x≠k2π+4π,k∈Z},关于原点对称, ∵f(-x)=(-x)tan2(-x)+(-x)4=xtan2x+x4=f(x),∴它 是偶函数.
(3)定义域为{x|x≠kπ+2π,k∈Z},关于原点对称, ∵f(-x)=sin(-x)+tan(-x)=-sinx-tanx=-f(x),∴它 是奇函数.
规律总结:不在同一单调区间内的角应该先用诱导公式 化到同一个单调区间内.
不求值,比较下列每组中两个正切值的大小,用不等号 “<”、“>”连接起来.
(1)tan32°________tan215°. (2)tan185π________tan-298π.
[答案] (1)< (2)<
[解析] (1)∵tan215°=tan(180°+35°)=tan35°, y=tanx 在(-90°,90°)上单调增,-90°<32°<35°<90°, ∴tan32°<tan35°,即 tan32°<tan215°. (2)∵tan185π=tan4π-25π=tan-25π, tan-298π=tan-3π-π9=tan-9π, 而-π2<-25π<-π9<π2,
.
令 kπ-π2<3x-3π<kπ+π2(k∈Z),
即k3π-1π8<x<k3π+51π8(k∈Z).
∴函数的单调递增区间为k3π-1π8,k3π+51π8(k∈Z),不存在 单调递减区间.
规律总结:求函数 y=Atan(ωx+φ),A≠0,ω>0 的单调 区间,可以通过解不等式的方法去解答.列不等式的原则是把 “ωx+φ(ω>0)”看作一个整体.令 ωx+φ≠kπ+2π(k∈Z)可解得 该函数的定义域.

人教A版数学必修四2.1 平面向量的实际背景及基本概念同步检测

人教A版数学必修四2.1 平面向量的实际背景及基本概念同步检测

高中数学学习材料(灿若寒星精心整理制作)2.1 平面向量的实际背景及基本概念同步检测一、选择题1. 下列说法中错误的是( )A. 零向量是没有方向的B. 零向量的长度为0C. 零向量与任一向量平D. 零向量的方向是任意的答案:A解析:解答:本题主要考查零向量的概念,对于选项A,零向量的方向是任意的,故错误;零向量的方向是任意的;零向量与任一向量平行;故A是错误的.分析:由题根据零向量的概念进行分析即可.2. 下列各量中不是向量的是( )A.浮力B.风速C.位移D.密度答案:D解析:解答:密度只有大小没有方向.分析:由题根据所给物理量结合向量的定义进行分析即可.3. 如图,点O是正六边形ABCDEF的中心,则以图中点A、B、C、D、E、F、O中的任一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA外,与向量OA共线的向量共有( )A.6B.7C.8D.9解析:解答:本题主要考查向量的表示 与向量OA 共线的向量有,,,,,,,,AO OD DO AD DA EF FE BC CB 共9个,故选D.分析:由题结合所给图形,根据共线向量的定义进行观察即可.4. 设12,e e 是两个单位向量,则下列结论中正确的是( )A. 12e e =B.12e e >C.12e e =-D.12e e =答案:D解析:解答:由题根据单位向量长度为1,方向不定,不难得到所有单位向量的模相等,故选D.分析:本题主要考查了单位向量的定义,根据定义集合选项不难解决问题.5. 下列命题正确的是( )A.a 与b,b 与c共线,则a 与c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a 与b 不共线,则a 与b 都是非零向量D.有相同起点的两个非零向量不平行答案:C解析:解答:题主要考查向量的概念,由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a 与b不都是非零向量,即a 与b至少有一个是零向量,而由零向量与任一向量都共线,可有a 与b共线,不符合已知条件,所以有a 与b都是非零向量,所以应选C.分析:有关平行向量与共线向量、相等向量与相反向量的定义属于平时练习和考试的常考知识点,一定要认真理解,准确运用,难度不大.6. 某人先向正东方向走了x km ,然后他向右转90°,向新的方向走了3 km ,结果他离出发点恰好为33km ,那么x 的值为( ) A.3 B.32 C.3 D.23或3解析:解答:本题主要考查向量的概念,依题意,由勾股定理可得()222333,32x x+=∴=,故选B.分析:本题主要考查了向量的基本概念的物理背景,难度不大,主要是根据所学余弦定理计算路程,然后得到位移即可.7. 下列命题中正确的是( )A.若两个向量相等,则它们的起点和终点分别重合.B.模相等的两个平行向量是相等向量.C.若a和b都是单位向量,则a b=.D.两个相等向量的模相等.答案:D解析:解答:本题主要考查向量的概念,根据向量相等的定义易知两个相等向量的模相等,故选D;对于选项A,若两个向量相等,则它们的起点和终点不一定相等的;选项B:模相等的两个平行向量是相等向量是错误的,可以是方向相反的向量;C. 若a⃗和b⃗⃗都是单位向量,则模是相等的,但是两个向量不一定相等;D. 两个相等向量的模相等是正确的.分析:本题主要考查了相等向量,解决问题的根据是根据相等向量的定义就发现解决即可.8. 与AB反向的单位向量是( )A ABABB. ABC.ABAB- D.BA答案:C解析:解答:本题主要考查单位向量的概念,与AB反向的单位向量AB AB -.分析:本题主要考查了单位向量与相反向量,解决问题的关键是首先计算出所求向量的单位向量,然后根据方向相反得到结果.9. 如图,D、E、F分别是△ABC边AB,BC,CA上的中点,有下列4个结论:①,DA FE AF DE == ;②||DF CB ;③CF DE =;④FD BE =.其中正确的为( ) A. ①②④ B. ①②③ C. ②③ D. ①④答案:B解析:解答:由题根据所给图形满足条件结合对应向量的关系不难得到,DA FE AF DE == ,||DF CB ,CF DE = , -FD BE = ,所以①②③正确,故选B. 分析:本题主要考查了向量的模、相等向量、平行向量,解决问题的根据是结合所给图形对应的向量满足的几何关系结合向量的有关对应进行分析解决.10. 如图所示,等腰梯形ABCD 中,对角线AC 与BD 交于点P,点E,F 分别在两腰AD,BC 上,EF 过点P,且EF ∥AB,则下列等式成立的是( )A.AD BC =B.AC BD =C.PE PF =D.EP PF =答案:D解析:解答:根据相等向量的定义,分析可得:A 中,AD 与BC 的方向不同,故AD BC =错误;B 中,AC 与BD 的方向不同,故AC BD =错误;C 中,PE 与PF 的方向相反,故PE PF = 错误;D 中, EP 与PF 的方向相同,且长度都等于线段EF 长度的一半,故EP PF = 正确分析:本题主要考查了相等向量与相反向量,解决问题的关键是根据所给图形对应向量满足的条件结合相等向量与相反向量的定义进行发现解决即可.11. 下列命题中正确的个数是( )①向量AB 与CD 是共线向量,则A 、B 、C 、D 必在同一直线上;②向量a 与向量b 平行,则,a b 方向相同或相反;③若下列向量AB 、CD 满足AB CD > ,且AB 与CD 同向,则AB CD > ; ④若a b = ,则,a b 的长度相等且方向相同或相反;⑤由于零向量方向不确定,故不能与任何向量平行.A.0B.1C.2D.3答案:A解析:解答:本题主要考查向量的概念①错误,把共线向量与平面几何中的共线“混淆”; ②错误,忽视了如果其中有一个是零向量,则其方向不确定; ③错误,把向量与实数混为一谈,事实上向量不能比较大小; ④错误,由a b =,只能说明,a b 的长度相等,确定不了方向;⑤错误,不清楚零向量的概念.规定零向量与任一向量平行.故选A.分析:本题主要考查了零向量、单位向量、平行向量与共线向量、相等向量与相反向量,解决问题的关键是根据所给向量满足条件结合定义进行分析解决.12. 下列说法正确的个数是( )①若向量a,b 共线,向量b,c 共线,则a 与c 也共线;②任意两个相等的非零向量的起点与终点是一平行四边形的四个顶点;③向量a 与b 不共线,则a 与b 都是非零向量;④若a=b,b=c,则a=c.A.1B.2C.3D.4答案:B解析:解答:由于零向量与任意向量都共线,故当b 为零向量时,a,c 不一定共线,所以①不正确;两个相等的非零向量可以在同一直线上,故②不正确;向量a 与b 不共线,则a 与b 都是非零向量,否则不妨设a 为零向量,则a 与b 共线,与a 与b 不共线矛盾,故③正确;a=b,则a,b 的长度相等且方向相同;b=c,则b,c 的长度相等且方向相同,所以a,c 的长度相等且方向相同,故a=c,④正确.分析:本题主要考查了平行向量与共线向量、相等向量与相反向量,解决问题的关键是根据所给向量满足条件结合向量有关的定义进行发现解决即可.13. 已知O点固定,且OA=2,则符合题意的A点构成的图形是( )A.一个点B.一条直线C.一个圆D.不能确定答案:C解析:解答:∵OA= 2,∴终点A到起点O的距离为2,又O点固定,∴A点的轨迹是以O为圆心,2为半径的圆,故选C.分析:本题主要考查了向量的模、向量的几何表示,解决问题的关键是根据向量的模结合向量的模的几何意义进行分析即可.14. 若a为任一非零向量,b的模为1,下列各式:①|a|>|b|;②a∥b;③|a|>0;④|b|=±1.其中正确的是( )A.①④B.③C.①②③D.②③答案:B解析:解答:①中,|a|的大小不能确定,故①错误;②中,两个非零向量是否平行取决于两个向量的方向,故②错误;④中,向量的模是一个非负实数,故④错误;③正确.选B分析:本题主要考查了向量的模,解决问题的关键是根据向量不能比较大小,向量的模可以比较大小,向量是有方向和长度的量.15. 有下列四个命题:①时间、速度、加速度都是向量;②向量的模是一个正实数;③所有单位圆上以圆心为起点以终点为在圆上向量都相等;④共线向量一定在同一直线上,其中真命题的个数是( )A.0B.1C.2D.3答案:A解析:解答:本题主要考查向量的概念,时间不是向量;向量的模是非实数;单位向量的模相等但方向不一定相同;共线向量可以在一条直线上,也可用分别在互相平行的直线上.故选A.分析:本题主要考查了向量的物理背景与概念、向量的模、向量的几何表示、平行向量与共线向量,解决问题的关键是根据向量的有关定义进行分析即可.二、填空题16. 有下面命题;①平行向量的方向一定相同;②共线向量一定是相等向量;③相等向量一定是共线向量,不相等向量一定不共线;④起点不同,但方向相同且模相等的几个向量是相等向量;⑤相等向量、若起点不同,则终点一定不同;⑥不相等的向量一定不平行;_____.其中正确命题的序号是答案:⑤④解析:解答:主要考查向量的概念①错,两向量方向相同或相反都是共线向量;②③⑥均错,共线向量也叫平行向量,对向量的长度没有要求,共线向量不一定是相等,相等向量一定共线,不相等向量可以是共线向量,如两个向量的共线,但是可以不相等的向量.分析:本题主要考查了平行向量与共线向量、相等向量与相反向量,解决问题的关键是根据定义进行分析即可.17. 某A地位于B地正西方向5 km处,C地位于A地正北方向5 km处,则C地相对于B 地的位移是________.答案:西北方向52km解析:解答:由题根据A,B,C三地的位置关系结合勾股定理不难得到52BC=,结合方位角不难得到C地相对于B地的位移是西北方向52km.分析:本题主要考查了向量的物理背景与概念,解决问题的关键是根据实际情况进行计算,然后写出对应位移即可.18. 把平面上所有单位向量都移动到共同的起点,那么这些向量的终点所构成的图形是.答案:以单位长度为半径的圆解析:解答:由题根据所给问题所有向量组成了以单位长度为半径的圆.分析:本题主要考查了单位向量、向量的几何表示,解决问题的关键是根据所给向量满足条件结合向量的几何意义进行分析即可.19. 在四边形ABCD中, DC AB=,则这个四边形的形状是.答案:平行四边形解析:解答:由DC AB=,可得DC与AB平行且相等,所以四边形ABCD是平行四边形分析:本题主要考查了相等向量,解决问题的关键是根据相等向量定义结合向量的几何意义进行分析即可.20. 如图所示,O 是正三角形ABC 的中心;四边形AOCD 和AOBE 均为平行四边形,则与向量AD 相等的向量有 ;与向量OA 共线的向量有 ;与向量OA 的模相等的向量有 .(填图中所画出的向量)答案:OC |,DC EB |,,,,OB OC DC EB AD解析:解答:∵O 是正三角形ABC 的中心,∴OA=OB=OC,∴结合相等向量及共线向量定义可知:与AD 相等的向量有OC ;与OA 共线的向量有,DC EB ;与OA 的模相等的向量有,,,,OB OC DC EB AD .分析:本题主要考查了向量的模、相等向量与相反向量、平行向量与共线向量,解决问题的关键是根据所给向量满足的几何关系结合图形及向量的有关定义进行发现解决即可.三、解答题 21. 用向量表示小船的下列位移(用1∶500 000的比例尺)(1)由A 地向东北方向航行15 km 到达B 地;答案:解:B 地在A 地的东北方向,即 B 地在A 地北偏东45°方向,线段AB 的长度画为3 cm 即可.如图所示.(2)由A 地向西偏北60°方向航行20 km 到达C 地,再由C 地向正南方向航行25 km 到达D 地.答案:解:由于C 地在A 地的西偏北60°方向,则线段AC 与表示正北方向的线的夹角为30°,且线段AC 的长度画为4 cm;D 地在C 地的正南方向,则画竖直向下的线段,长度为5 cm 即可,连接AD,即为所求位移.如图所示.解析:分析:本题主要考查了向量的物理背景与概念,解决问题的关键是根据有关方位角的知识进行发现计算即可.22. 如图所示的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A,B,AC点C为小正方形的顶点,且5(1)画出所有的向量AC;答案:解:画出所有的向量AC如图所示.(2)求| BC |的最大值与最小值.答案:解:由(1)所画的图知,①当点C 位于点C 1或C 2时,|BC |取得最小值22125+= ;②当点C 位于点C 5和C 6时,|BC ⃗⃗⃗⃗⃗⃗|取得最大值224541+= . ∴|BC |的最大值为41,最小值为5 .解析:分析:本题主要考查了向量的模、向量的几何表示,解决问题的关键是根据所给向量满足的几何关系进行作图计算即可. 23. 已知O 是正方形ABCD 对角线的交点,在以O,A,B,C,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC 相等的向量;答案:解:画出图形,如图所示.易知BC ∥AD,BC=AD,所以与BC 相等的向量为AD(2)与OB 长度相等的向量;答案:解:由(1)图像得:O 是正方形ABCD 对角线的交点知OB=OD=OA=OC,所以与OB 长度相等的向量为,,,,,,BO OC CO OA AO OD DO .(3)与DA 共线的向量.答案:解:由(1)图像得:与DA 共线的向量为,,AD BC CB .解析:分析:本题主要考查了平共线向量、相等向量的有关概念,解决问题的关键是根据所给向量满足的条件进行正确作图,然后观察所求向量即可.24. 如图所示,O 是正六边形ABCDEF 的中心,且,,OA OB OC ===a b c .O F ED C BA(1)与a 的模相等的向量有多少?答案:解:与a 的模相等的向量有23个 (2)与a 的长度相等,方向相反的向量有哪些?答案:解:与a 的长度相等,方向相反的向量有,,,OD BC AO FE(3)与a 共线的向量有哪些?答案:解:与a 共线的向量有,,,,,,,,EF BC OD FE CB DO AO DA AD(4)请一一列出与,,a b c 相等的向量.答案:解:与a 相等的向量有:,,EF DO CB ;与a 相等的向量有:,,DO EO FA ;与c 向量相等的向量有:,,FO ED AB .解析:分析:本题主要考查了共线向量、相等向量,解决问题的关键是根据所给图形,结合有关向量的定义进行观察分析即可. 25. 在平行四边形ABCD 中,E,F 分别是AD ,BC 的中点,如图所示 EFD CBA(1)写出与向量FC 共线的向量; 答案:解:共线向量满足的条件与向量FC 共线的向量有:,,.CF AE EA(2)求证:BE FD .答案:证明:在平行四边形ABCD中,AD∥BC,AD=BC,又分别是AD,BC的中点,所以ED∥BF且ED=BF,所以四边形BFDE是平行四边形,故BE FD解析:分析:本题主要考查了共线向量、相等向量,解决问题的关键是根据所给几何图形满足的条件结合有关向量的知识进行观察,计算,证明即可.。

人教版四年级数学易错题集锦(附答案)

人教版四年级数学易错题集锦(附答案)

【巧战期末】人教版四年级数学易错题集锦(附答案)人教版四年级数学易错题复习(1)01填空题。

1、与最小的八位数相邻的两个数是()和()。

2、10个鸟蛋重50克,100万个鸟蛋约重()吨。

3、用两根一样长的铁丝分别围成一个长方形和一个正方形,()的面积大。

4、100张纸厚1厘米,1亿张纸厚约()千米。

5、用"万"作单位写出下面各数的近似数:945000≈()万305100≈()万996043≈()万6、用"亿"作单位写出下面各数的近似数。

420000000≈()亿650000000≈()亿6990000000≈()亿7、写出□里的数。

□□□÷26=7......6298÷□□=9 (1)□□□÷35=8......3197÷□□=5 (2)8、把下面的每一组算式,合并成综合算式73+27=100100÷25=4________________________________________52-36=1645×16=720________________________________________42×13=546102+546=646________________________________________9、用5个3和3个0按要求写出下面各数(1)一个"零"都不读出来;________(2)只读出一个"零";________(3)读出两个"零";________(4)读出三个"零"。

________8、每列上下为一组,第32组是()。

从小爱数学从小爱数学……A B C D E A B C D E……9、□里最大能填几(填整数)?□÷35<8□÷27<510、填上合适的运算符号。

(易错题)高中数学必修四第三章《三角恒等变形》检测题(含答案解析)(1)

(易错题)高中数学必修四第三章《三角恒等变形》检测题(含答案解析)(1)

一、选择题1.已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα-=,则cos α的值为( )A .15B C D 2.已知,(0,2)αβπ∈,且满足1sin cos 2αα-=,1cos sin 2ββ-=,则sin()αβ+=( )A .1B .2-或1 C .34-或1D .1或-1 3.函数()2cos ||cos 2f x x x =-在[,]x ππ∈-上的单调增区间为( )A .,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦B .,03π⎡⎤-⎢⎥⎣⎦和,3ππ⎡⎤⎢⎥⎣⎦C .,06π⎡⎤-⎢⎥⎣⎦和,6ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦和06,π⎡⎤⎢⎥⎣⎦4.若()π,2πα∈,πcos sin 042αα⎛⎫+-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭( )A .B .0CD .或05.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =2,则有( ) A .c <a <b B .b <c <a C .a <b <cD .b <a <c6.函数12log (sin cos )y x x =的单调增区间是( )A .(,)()44k k k Z ππππ-+∈ B .3(,)()44k k k Z ππππ++∈ C .(,)()4k k k Z πππ+∈D .(,)()42k k k Z ππππ++∈ 7.已知3(,)4παβπ∈,,3sin()5αβ+=-,12sin()413πβ-=,则cos()4πα+=( ) A .5665-B .3365-C .5665D .33658.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos 63πα⎛⎫+=⎪⎝⎭,则sin α的值等于( )A .6B .6C .16D .16-9.函数2()3sin cos f x x x x =+的最大值为( )A B .C .D .3+10.已知αβ、均为锐角,满足sin cos αβ==,则αβ+=( ) A .6πB .4π C .3π D .34π11.已知cos()63πα+=sin(2)6πα-的值为( )A .3B .13C .13-D .3-12.已知A 是函数()3sin(2020))263f x x x ππ=++-的最大值,若存在实数1x ,2x 使得对任意实数x ,总有12()()()f x f x f x ≤≤成立,则12A x x 的最小值为( )A .2020πB .1010π C .32020πD 二、填空题13.在区间,22ππ⎛⎫- ⎪⎝⎭范围内,函数tan y x =与函数sin y x =的图象交点有_______个.14.已知tan 2α=,则2sin 2cos αα+=________. 15.已知4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,则tan 4πθ⎛⎫+= ⎪⎝⎭____________. 16.已知函数()sin cos ,,22f x x x x ππ⎡⎤=+∈-⎢⎥⎣⎦,有以下结论: ①()f x 的图象关于y 轴对称; ②()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上单调递增; ③()f x 图象的一条对称轴方程是4x π=; ④()f x 的最大值为2.则上述说法中正确的是__________(填序号) 17.若函数()()()sin cos 2f x x x πϕϕϕ⎛⎫=+++<⎪⎝⎭为偶函数,则ϕ=______.18.已知2tan 3tan 5πα=,则2sin 59cos 10παπα⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭________. 19.设)sin17cos172a =︒+︒,22cos 131b =︒-,2c =,则a ,b ,c 的大小关系是______.20.在半径为2的半圆形钢板上截取一块面积最大的矩形,则最大面积是________.三、解答题21.已知函数2()cos 2cos 1(0)f x x x x ωωωω=-+>,且()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π. (1)求函数()f x 的最小正周期和单调递减区间; (2)将函数()f x 图象上的所有点向左平移6π个单位,得到函数()g x 的图象,当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于x 的方程()g x a =有两个不相等的实数根,求实数a 的取值范围. 22.已知310,2,tan ,sin 223ππαβπαβ<<<<==. (1)求cos()αβ-的值; (2)求αβ+的值. 23.已知函数()2cos 2f x x x =-,[,]34x ππ∈-.(1)求函数()f x 的周期和值域; (2)设()3a g x x x =+,若对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,求实数a 的取值范围.24.已知向量()21,cos 1a x =-,(sin 21,b x =+,()()f x a b x R =⋅∈.(1)求函数()f x 的对称中心及单调减区间; (2)若,43x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域. 25.已知函数2()2sin cos f x x x x =--. (1)求函数()f x 的最小正周期;(2)当,04x π⎡⎤∈-⎢⎥⎣⎦时,不等式()3f x m <+恒成立,求实数m 的取值范围. 26.在①64f π⎛⎫-=- ⎪⎝⎭,②()f x 的最大值在12x π=处取到,③当()()121f x f x -=,则12min 2x x π-=这三个条件中任选一个,补充并解答下面问题.问题:已知函数()sin cos 3f x x x πωω⎛⎫=+ ⎪⎝⎭,(]0,3ω∈.若_______,求实数ω的值.注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二倍角公式化简得到2sin cos ,αα=再利用同角的平方关系求解. 【详解】由题得24sin cos 12cos 1,ααα+-= 所以24sin cos 2cos ,ααα= 因为0,2πα⎛⎫∈ ⎪⎝⎭, 所以2sin cos ,αα=因为22221sin cos 1,cos cos 14αααα+=∴+=,所以24cos ,(0,),cos 52πααα=∈∴= 故选:D 【点睛】方法点睛:三角函数求值常用的方法有:三看(看角、看名、看式)三变(变角、变名、变式).2.C解析:C 【分析】由两角与差的正弦、余弦公式变形由已知求得sin()4πα-和cos()4πβ+,用平方关系求得cos()4πα-和sin()4πα+,而sin()sin ()()44ππαβαβ⎡⎤+=-++⎢⎥⎣⎦,展开后计算,注意分类讨论. 【详解】∵1sin cos 2αα-=,∴sin 224αα-=sin()44πα-=,1cos sin 2ββ-=ββ-=,cos()4πβ+=,∴cos()44πα-=±,sin()44πα+=±, sin()sin ()()sin()cos()cos()sin()444444ππππππαβαβαβαβ⎡⎤+=-++=-++-+⎢⎥⎣⎦,当7cos()sin()448ππαβ-+=时,17sin()188αβ+=+=, 当7cos()sin()448ππαβ-+=-时,173sin()884αβ+=-=-, 故选:C . 【点睛】关键点点睛:本题考查两角和与差正弦、余弦公式.解题关键是确定已知角和未知角之间的关系,本题中已知等式变形得出4πα-和4πβ+,未知角有()()44ππαβαβ+=-++,这样易确定使用的公式与顺序.3.A解析:A 【分析】先把函数解析式化简,然后令cos t x =,利用复合函数单调性求解即可 【详解】 当[]0,x π∈时,22()2cos ||cos 2=2cos (2cos 1)2cos 2cos 1f x x x x x x x =---=-++,令cos [1,1]t x t =∈-,,则cos t x =在[]0,x π∈上为减函数;而2221y t t =-++ 对称轴为12t =, ∴2221y t t =-++在1[1,]2t ∈-上单增,在1[,1]2t ∈上单减, ∴()y f x =在0,3x π⎡⎤∈⎢⎥⎣⎦上为增函数,在,3x ππ⎡⎤∈⎢⎥⎣⎦上为减函数. 又()2cos ||cos 2f x x x =-为偶函数,其图像关于y 轴对称, ∴()y f x =在,3ππ⎡⎤--⎢⎥⎣⎦上为增函数,在,03π⎡⎤-⎢⎥⎣⎦上为减函数.故()y f x =的单调增区间为,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦. 故选:A 【点睛】复合函数的单调性口诀:同增异减,其具体含义为: 内外函数的单调性相同(同),则复合函数为增函数(增); 内外函数的单调性相反(异),则复合函数为减函数(减).4.B解析:B 【分析】根据题意,化简得到cossin22αα+=,所以3,24αππ⎛⎫∈⎪⎝⎭,取得1sin 2α=-,再利用三角函数的基本关系式和两角和的正弦函数公式,即可求解. 【详解】由cos sin 042παα⎛⎫+-= ⎪⎝⎭,可得22cos sin cos sin 022222αααα⎫-+-=⎪⎝⎭,即cos sin cos sin 022222αααα⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭, 因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,所以cos sin 022αα-≠,解得cos sin 222αα+=-,所以3,24αππ⎛⎫∈ ⎪⎝⎭,所以11sin 2α+=,所以1sin 2α=-,又3,22παπ⎛⎫∈⎪⎝⎭,所以cos 2α==,所以π11sin 0622α⎛⎫+=-= ⎪⎝⎭. 【点睛】三角函数的化简求值的规律总结:1、给角求值:一般给出的角是非特殊角,要观察所给角与特殊角的关系,利用三角变换转化为求特殊角的三角函数值问题;2、给值求值:即给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使相关角相同或具有某种关系;3、给值求角:实质上可转化为“给值求值”即通过求角的某个三角函数值来求角(注意角的范围).5.A解析:A 【分析】利用两角和的正弦函数公式化简a ,利用二倍角的余弦公式及诱导公式化简b ,再利用特殊角的三角函数值化简c ,根据正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,甶角度的大小,得到正弦值的大小,进而得到,a b 及c 的大小关系. 【详解】化简得()17cos45cos1745174562a sin sin sin sin =+=+=,()22cos 131cos26cos 906464b sin =-==-=,60c sin ==,正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,606264sin sin sin ∴<<,即c a b <<,故选A. 【点睛】本题考查了二倍角的余弦公式,两角和与差的正弦公式,诱导公式,以及特殊角的三角函数,正弦函数的单调性,属于中档题. 比较大小主要有四种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.6.D解析:D 【分析】先利用二倍角公式化简整理,再根据对数函数的定义域及复合函数单调性的性质求解单调递增区间即可. 【详解】由11221log (sin cos )log (sin 2)2y x x x ==, 得1sin 2022222x k x k k x k ππππππ>⇒<<+⇒<<+, 故函数的定义域为(,)()2k k k z πππ+∈,又求函数12log (sin cos )y x x =的单调增区间,利用复合函数单调性的性质, 可得222242k x k k x k ππππππππ+<<+⇒+<<+.故选:D. 【点睛】本题主要考查了复合函数单调性的性质及应用,对数函数定义域的特殊要求.属于中档题.7.A解析:A 【分析】由角的变换可知()()44ππααββ+=+--,利用同角三角基本关系及两角差的余弦公式求解即可. 【详解】3(,)4παβπ∈,, 3(,2)2παβπ∴+∈,3(,)424πππβ-∈,4cos()5αβ∴+=,5cos()413πβ-=-,cos()cos[()()cos ()]cos (()s )sin ()444in 4πππααβαβαπββββ∴+=+-++-=-+-453125651351365=-⨯-⨯=-,故选:A 【点睛】本题主要考查了角的变换,同角三角函数的基本关系,两角差的余弦公式,属于中档题.8.C解析:C 【分析】 求出sin 6απ⎛⎫+⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+== ⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1132=-⨯=故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.9.A解析:A 【分析】利用降次公式、二倍角公式和辅助角公式化简()f x ,由此求得()f x 的最大值. 【详解】依题意()1cos 233sin 2sin 2222222x f x x x x -=+=-+12cos 2222262x x x π⎫⎛⎫=-+=-+⎪ ⎪⎪⎝⎭⎭,所以()f x =. 故选:A 【点睛】本小题主要考查降次公式、二倍角公式和辅助角公式,考查三角函数的最值的求法,属于中档题.10.B解析:B 【分析】依题意,求cos (α+β),结合角的范围可求得α+β的值. 【详解】由已知α、β均为锐角,sin αβ==,cos αβ∴==又cos (α+β)=cosαcosβ﹣sinαsinβ=2, ∵0<α+β<π,∴α+β=4π. 故选B . 【点睛】解答给值求角问题的一般思路:①求角的某一个三角函数值,此时要根据角的范围合理地选择一种三角函数;②确定角的范围,此时注意范围越精确越好;③根据角的范围写出所求的角.11.B解析:B 【解析】∵cos 63πα⎛⎫+= ⎪⎝⎭,则5sin 2sin 2sin 26662ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦][221cos 2[2cos 11]6633ππαα⎛⎫⎛⎫=-+=-+-=--= ⎪ ⎪⎝⎭⎝⎭,故选B.12.C解析:C 【分析】利用三角恒等变换化()f x 为正弦型函数,由此求出A 、T 以及12x x -的最小值,可得解. 【详解】()3sin(2020))2623f x x x ππ=++-,392020cos 2020cos 2020202044x x x x =+-,320220cos 2020x x=-3sin(2020)6x π=-, ∴max ()3A f x ==,又存在实数1x ,2x ,对任意实数x 总有12()()()f x f x f x ≤≤成立, ∴2max ()()2f x f x ==,1min ()()2f x f x ==-, 则12x x -的最小值为函数()f x 的半个最小正周期长度,12min 1122220202020x x T ππ∴-==⨯=∴()12min32020A x x π⋅-=, 故选:C. 【点睛】本题考查三角函数的最值,着重考查两角和与差的正弦与余弦,考查三角恒等变换,突出正弦函数的周期性的考查,属于中档题.二、填空题13.1【分析】将函数图象交点个数等价于方程在根的个数即可得答案【详解】∵函数图象交点个数等价于方程在根的个数∴解得:∴方程只有一解∴函数与函数的图象交点有1个故答案为:1【点睛】本题考查函数图象交点个数解析:1 【分析】将函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数,即可得答案. 【详解】∵函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数, ∴sin 1tan sin sin 0sin (1)0cos cos x x x x x x x=⇔-=⇔-=,解得:0x =, ∴方程只有一解,∴函数tan y x =与函数sin y x =的图象交点有1个. 故答案为:1. 【点睛】本题考查函数图象交点个数与方程根个数的等价性,考查函数与方程思想,考查逻辑推理能力和运算求解能力.14.1【分析】本题先求出再化简代入求值即可【详解】解:∵∴或①当且时;②当且时故答案为:1【点睛】本题考查了同角三角函数关系二倍角公式是基础题解析:1 【分析】本题先求出sin α、cos α,再化简2sin 2cos αα+代入求值即可. 【详解】解:∵ tan 2α=,sin tan cos ααα=,22sin cos 1αα+=, ∴sin cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩①当sin α=cos 5α=时,222sin 2cos 2sin cos cos 21555ααααα⎛+=⋅+=⨯+= ⎝⎭; ②当sin α=且cos α=时,222sin 2cos 2sin cos cos 21ααααα⎛⎛⎛+=⋅+=⨯⨯+= ⎝⎭⎝⎭⎝⎭. 故答案为:1. 【点睛】本题考查了同角三角函数关系,二倍角公式,是基础题.15.【分析】由且求得得到再结合两角和的正切公式即可求解【详解】因为且可得所以又由故答案为:【点睛】本题主要考查了三角函数的基本关系式以及两角和的正切公式的化简求证其中解答中熟记三角函数的基本关系式和两角解析:17【分析】 由4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,求得3sin 5θ=-,得到3tan 4θ=-,再结合两角和的正切公式,即可求解. 【详解】 因为4cos 5θ=,且,02πθ⎛⎫∈- ⎪⎝⎭,可得3sin 5θ===-,所以sin 3tan cos 4θθθ==-, 又由311tan 14tan 341tan 714πθθθ-+⎛⎫+=== ⎪-⎝⎭+. 故答案为:17.【点睛】本题主要考查了三角函数的基本关系式,以及两角和的正切公式的化简、求证,其中解答中熟记三角函数的基本关系式和两角和的正切公式,准确运算是解答的关键,着重考查运算与求解能力.16.①【分析】去掉绝对值利用辅助角公式化简函数解析式利用函数的奇偶性单调性对称性以及函数的最值对选项进行判断即可【详解】当时当时即函数为偶函数图象关于y 轴对称①正确;函数在区间上单调递增在区间上单调递减解析:① 【分析】去掉绝对值,利用辅助角公式化简函数解析式,利用函数的奇偶性,单调性,对称性以及函数的最值对选项进行判断即可. 【详解】(),,042sin cos ,0,42x x f x x x x x ππππ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦=+=⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦,当,02x ⎡⎤∈-⎢⎥⎣⎦π时,()()44f x x x f x ππ⎛⎫⎛⎫-=--=+= ⎪ ⎪⎝⎭⎝⎭, 当0,2x π⎛⎤∈ ⎥⎝⎦时,()()44f x x x f x ππ⎛⎫⎛⎫-=-+=-= ⎪ ⎪⎝⎭⎝⎭,即函数()f x 为偶函数,图象关于y 轴对称,①正确; 函数()f x 在区间,24ππ⎡⎤--⎢⎥⎣⎦上单调递增,在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减,②错误;因为函数()f x 的定义域为,22ππ⎡⎤-⎢⎥⎣⎦,不关于直线4x π=对称,所以直线4x π=不是一条对称轴,③错误;()f x,④错误.故答案为:①. 【点睛】本题考查余弦函数的性质,考查余弦函数的奇偶性,单调性,对称性以及最值,考查辅助角公式的应用,考查学生的分析推理能力,属于中档题.17.【分析】先用辅助角公式函数化简为由偶函数的条件可知是函数的对称轴则又由求得的值【详解】由得因为是偶函数故为其对称轴则又因为所以故答案为:【点睛】本题考查了三角函数的恒等变换三角函数的奇偶性对称性属于解析:4π【分析】先用辅助角公式函数化简为())4f x x πϕ=++,由偶函数的条件可知,0x =是函数的对称轴,则()42k k Z ππϕπ+=+∈,又由2πϕ<求得ϕ的值.【详解】由()()()sin cos ()2f x x x πϕϕϕ=+++<得())4f x x πϕ=++,因为()f x 是偶函数,故0x =为其对称轴,()42k k Z ππϕπ+=+∈,则()4k k ϕπ=π+∈Z , 又因为2πϕ<,所以4πϕ=.故答案为:4π. 【点睛】本题考查了三角函数的恒等变换,三角函数的奇偶性,对称性,属于中档题.18.【分析】由可得然后用正弦的和差公式展开然后将条件代入即可求出原式的值【详解】因为所以故答案为:【点睛】本题考查的三角恒等变换解决此类问题时要善于发现角之间的关系解析:12【分析】由259210πππαα+=++可得22sin sin 5592cos sin 105ππααππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭,然后用正弦的和差公式展开,然后将条件代入即可求出原式的值 【详解】 因为2tan 3tan5πα= 所以222sin sin sin 555922cos cos sin 10255πππαααππππααα⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫+++-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭2222sincos cos sin tan tan 2tan 1555522222sin cos cos sin tan tan 4tan5555ππππαααππππααα---====----- 故答案为:12【点睛】本题考查的三角恒等变换,解决此类问题时要善于发现角之间的关系.19.【分析】根据两角和的正弦公式二倍角公式诱导公式即可将化简再根据正弦函数的单调性即可比较出大小关系【详解】所以故答案为:【点睛】本题主要考查两角和的正弦公式二倍角公式诱导公式的应用以及正弦函数的单调性 解析:c a b <<【分析】根据两角和的正弦公式,二倍角公式,诱导公式,即可将,a b 化简,再根据正弦函数的单调性即可比较出大小关系. 【详解】)sin17cos17sin17cos 45cos17sin 45sin 622a =︒+︒=︒+︒=, 22cos 131cos 26sin 64b =︒-==,sin 60c ==, 所以,c a b <<.故答案为:c a b <<. 【点睛】本题主要考查两角和的正弦公式,二倍角公式,诱导公式的应用,以及正弦函数的单调性的应用,属于基础题.20.4【分析】做出图像由三角函数定义设其中一个顶点坐标从而表示矩形的长与宽进而表示面积求出最大值【详解】由题可构建图像根据三角函数的定义可知所以矩形的面积当时故答案为:4【点睛】本题考查三角函数定义的实解析:4 【分析】做出图像,由三角函数定义设其中一个顶点坐标,从而表示矩形的长与宽,进而表示面积,求出最大值. 【详解】 由题可构建图像根据三角函数的定义,可知()2cos ,2sin A αα 所以矩形的面积4cos 2sin 4sin2S ααα=⋅= 当4πα=时,max 4sin 244S π⎛⎫=⋅= ⎪⎝⎭故答案为:4 【点睛】本题考查三角函数定义的实际应用,注意建模,再借助三角函数求最值,属于中档题.三、解答题21.(1)最小正周期为π,单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)1,12⎡⎫⎪⎢⎣⎭【分析】(1)化简可得()2sin 26f x x πω⎛⎫=-⎪⎝⎭,由题可得T π=,则可解出1ω=,令3222,262k x k k Z πππππ+≤-≤+∈可求出单调递减区间; (2)可得()2sin 26g x x π⎛⎫=+⎪⎝⎭,题目等价于找出()g x 有两个点相等的区间,即可求出a 的范围.【详解】(1)()2cos 22sin 26f x x x x πωωω⎛⎫=-=- ⎪⎝⎭,()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π,T π∴=,则22ππω=,解得1ω=, ()2sin 26f x x π⎛⎫∴=- ⎪⎝⎭,令3222,262k x k k Z πππππ+≤-≤+∈, 解得5,36k x k k Z ππππ+≤≤+∈, 故()f x 的单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)可得()2sin 22sin 26666g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,672,66x πππ⎡⎤⎢⎥⎣⎦-∈,()1,12g x ⎡⎤∈-⎢⎥⎣⎦, 要使关于x 的方程()g x a =有两个不相等的实数根, 只需找出()g x 有两个点相等的区间即可, 当2,662x πππ⎡⎫-∈⎪⎢⎣⎭和52,626x πππ⎛⎤-∈ ⎥⎝⎦时满足题意,此时()1,12g x ⎡⎫∈⎪⎢⎣⎭,1,12a ⎡⎫∴∈⎪⎢⎣⎭.【点睛】本题考查三角函数与方程的应用,解题的关键是得出题目等价于找出()g x 有两个点相等的区间.22.(1)10;(2)74π. 【分析】(1)由tan α求得sin ,cos αα,由sin β求得cos β,然后由两角差的余弦公式计算; (2)由两角和的正弦公式求得sin()αβ+后,由3522ππαβ<+<可得αβ+ 【详解】 因为1tan 3α=,所以sin 1cos 3αα=,又因为22sin cos 1αα+=,02πα<<,所以sin α=cos α=sin β=322πβπ<<,所以cos β===.(1)cos()cos cos sin sin αβαβαβ-=+⎛=⎝⎭=(2)因为sin()sin cos cos sin αβαβαβ+=+⎛= ⎝⎭2=-. 因为02πα<<,322πβπ<<,所以3522ππαβ<+<,所以74αβπ+=. 【点睛】方法点睛:本题考查两角和与差的正弦、余弦公式,考查同角间的三角函数关系,求角求值.解题关键是确定“已知角”和“未知角”的关系,以便选用恰当的公式求值.在求角,一般先确定出这个角的范围,在这个范围内选三角函数值是一对一的函数求得这个三角函数值,然后得角,如果不能直接得出一对一的函数,常常需要由已知或已求出的三角函数值缩小角的范围,从而得出角.23.(1)T π=,[-;(2)14a ≥. 【分析】(1)利用辅助角公式化简可得()2sin(2)6f x x π=-,代入周期公式,可求得周期T ,根据x 的范围,求得26x π-的范围,根据正弦型函数的性质,即可求得答案.(2)根据题意可得min max ()()g x f x ≥,由(1)可得max ()f x =0a <,0a =,0a >三种,()3ag x x x=+的最小值,结合对勾函数的性质,即可求得答案. 【详解】(1)1()2cos 2)2sin(2)26f x x x x π=-=-, 周期22T ππ== 由[,]34x ππ∈-,则52[,]663x πππ-∈-, 所以当262x ππ-=-,即6x π=-时,()2sin(2)6f x x π=-有最小值-1当263x ππ-=,即4x π=时,()2sin(2)6f x x π=-所以1sin(2)62x π-≤-≤,所以22sin(2)6x π-≤-≤即()f x 的值域为[-(2)对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,只需当min max ()()g x f x ≥由(1)知,max ()f x =当0a <,()3ag x x x=+为(0,)+∞上增函数,值域为R ,不满足题意; 当0a =,()3g x x =为(0,)+∞上增函数,值域为(0,)+∞,不满足题意;当0a >,()3ag x x x=+为对勾函数,所以()3a g x x x =+≥=min ()g x =,当且仅当3ax x=,即x =.由题意,即可,所以14a ≥. 【点睛】解题的关键是将题干条件等价为min max ()()g x f x ≥,分别根据12,x x 的范围,求得两函数的最值,再进行求解,考查分析计算的能力,属中档题. 24.(1)对称中心为,126k ππ⎛⎫-⎪⎝⎭,k Z ∈,单调递减区间是71212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,;(2)[]0,3. 【分析】(1)由()f x a b =⋅可得()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,然后由正弦函数的对称中心和单调递减区间可得答案; (2)根据x 的范围得到23x π+的范围,可以得sin 23x π⎛⎫+ ⎪⎝⎭的范围,从而得到答案. 【详解】(1)∵()21,cos 1a x =-,(sin 21,b x =,∴()f x a b =⋅22sin 21sin 21x x x x =++-=+)2sin 22cos 11sin 2212sin 213x x x x x π⎛⎫=+-+=+=++ ⎪⎝⎭.∴()2sin 213f x x π⎛⎫=++ ⎪⎝⎭, 由2,3x k k Z ππ+=∈得,26k x k Z ππ=-∈, ∴对称中心为,126k ππ⎛⎫-⎪⎝⎭,k Z ∈, 令3222232k x k πππππ+≤+≤+,则71212k x k ππππ+≤≤+,即函数()f x 单调递减区间是71212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, (2)∵()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,∵43x ππ-≤≤, ∴2223x ππ-≤≤,∴263x πππ-≤+≤,∴当236x ππ+=-,即4πx =-时,min 1()2102f x ⎛⎫=⋅-+= ⎪⎝⎭, ∴当232x ππ+=,即12x π=时,max ()213f x =+=,∴当43x ππ-≤≤时,()f x 的值域为[]0,3.【点睛】本题考查了三角函数的化简与性质,关键点是化简为()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,要熟练掌握三角函数的性质,考查了学生的基本运算. 25.(1)π;(2)1m >- 【分析】(1)利用二倍角公式和辅助角公式将()f x 化简,再利用周期公式即可求解; (2)不等式()3f x m <+对于,04x π⎡⎤∈-⎢⎥⎣⎦恒成立,转化为()max 3m f x +>,利用正弦函数的性质求()f x 在,04π⎡⎤-⎢⎥⎣⎦的最大值即可求解. 【详解】2()2sin cos f x x x x =--1cos 2sin 22sin 22sin 223x x x x x π+⎛⎫=-=-=- ⎪⎝⎭所以()f x 的最小正周期22T ππ==-, (2)不等式()3f x m <+对于,04x π⎡⎤∈-⎢⎥⎣⎦恒成立,则()max 3m f x +>, 因为,04x π⎡⎤∈-⎢⎥⎣⎦时,所以20,2x π⎡⎤-∈⎢⎥⎣⎦,52,336x πππ⎡⎤-∈⎢⎥⎣⎦,所以1sin 2,132x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,可得()[]2sin 21,23f x x π⎛⎫=-∈ ⎪⎝⎭, 所以()max 2f x =,即 32m +>,解得:1m >- 所以实数m 的取值范围是1m >- 【点睛】关键点点睛:对于恒成立问题求参数,常采用分离参数的方法,不等式()3f x m <+对于,04x π⎡⎤∈-⎢⎥⎣⎦恒成立,等价于()max 3m f x +>,,04x π⎡⎤∈-⎢⎥⎣⎦,只需要求()f x 在,04π⎡⎤-⎢⎥⎣⎦的最大值即可.26.①6f π⎛⎫-= ⎪⎝⎭,1ω=; ②()f x 的最大值在12x π=处取到,1ω=;③当()()121f x f x -=,则12min2x x π-=,1ω=.【分析】可先利用倍角公式将()f x 化简为()sin A x B ωϕ++的形式,再利用其性质逐一求解. 【详解】()sin cos 3f x x x πωω⎛⎫=+ ⎪⎝⎭1sin cos 2x x x ωωω⎛⎫=- ⎪ ⎪⎝⎭21sin cos sin 22x x x ωωω=⋅-11cos 2sin 2422x x ωω-=-11sin 2222x x ωω⎛⎫=+- ⎪ ⎪⎝⎭1sin 223x πω⎛⎫=+ ⎪⎝⎭.选①64f π⎛⎫-=- ⎪⎝⎭,则sin 033ωππ-⎛⎫+= ⎪⎝⎭,()33k k Z ωπππ-+=∈ 解得13k ω=-,(]0,3ω∈,1ω∴= 选②()f x 的最大值在12x π=处取到,则有sin 163ωππ⎛⎫+=⎪⎝⎭()2632k k Z ωππππ+=+∈112k ω=+,(]0,3ω∈,1ω∴=选③当()()121f x f x -=,则12min 2x x π-= 代入可得1211sin 2sin 212323x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭ 12sin 2sin 2233x x ππωω⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,12min 2x x π-= 意味着函数()sin 23g x x πω⎛⎫=+⎪⎝⎭的相邻两条对称轴距离为2π T π∴=22T πππωω∴=== 1ω∴=【点睛】方法点睛:对于三角函数,解决最小正周期和最值,单调区间,对称轴等问题时,可先把所给三角函数式化为()sin A x B ωϕ++或()cos A x B ωϕ++的形式,再利用其性质求解.它们的最小正周期为2T πω=,最大值为A B +,最小值为A B -+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修四易错题汇编
1、 已知α为第三象限的角,则
2
α
在( ) A .第一、二象限 B.第一、三象限 C .第二、四象限 D.第二、三象限 2
、作出函数y =
3、函数12
y =log tanx 的单调递减区间为 。

4、已知角θ终边上一点P (a ,3)(a 0≠
)且cos a 10
θ=,求tan θ的值。

5、若角α的终边落在直线x+y=0
cos α的值为 。

()(
)()()()()336sin cos ,321sin cos 2sin 2cos 2ππαπααπαααπαπα⎫
---=
<<⎪⎝⎭
--+-、已知求:
(
)33537sin 5sin sin cos 2222πππθθθθ⎛⎫⎛⎫⎛⎫
-+-=+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
、已知的值。

824y =cos x -y =sin2x π⎛
⎫ ⎪⎝
⎭、要得到的图像,只要将函数的图像( )
A .向左平移8π个单位
B .向右平移8π
个单位 C .向左平移4π个单位 D .向右平移4
π
个单位
9、如果函数y=sin2x+acos2x 的图像关于直线x=8
π
-对称,求a 的值。

10、已知函数f (x )=cos ωx (ω>0),其图像关于点M (
34π,0)对称,且在区间02π⎡⎤
⎢⎥⎣⎦
,上是单调函数,求ω的值。

11、已知函数y=2cosx (0≤x ≤1000π)的图像和直线y=2围成一个封闭的平面图形,则这
个封闭图形的面积是 。

12、下列结论正确的有( )
①若两个向量相等,则它们的起点和终点分别重合;②两个相等的向量的模相等;③在四边形ABCD 中,若AB =CD ,则A 、B 、C 、D 是一个平行四边形的四个顶点。

A .① B. ①② C. ①③ D.②③ 13、下列命题中不正确的是 ( )
A .向量A
B BA 与向量的长度相等 B.任何一个非零向量都可以平行移动
C .若a //b b 0a 0≠≠且,则
D 。

两个有共同起点且共线的的向量,其终点不一定相同 14、如图,4×5方格纸中有一个向量AB 现以方格纸中的格点为起点和终点作向量,其中与AB 相等且与AB 平行的向量有多少个?
15、下列各命题中,真命题是( )
A .若a b a b a b ===-,则或
B 。

若a //b,b //c,a //c 则
C .长度不相等而方向相反的两个向量一定是平行向量
D 。

若a b a b >>,则 16、在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( )
A. AB =CD,BC =AD
B. AD+OD =DA
C. AO+OD =AC +CD
D. AB+BC +CD =DA
17、设平面内有四边形ABCD 和点O ,OA=a,OB =b,OC =c,OD =d ,若a+c =b+d ,则四边形ABCD 的形状是 。

18、设12e e 、是同一个平面内的两个向量,则有( ) A .12e e 、一定平行 B. 12e e 、的模相等
C .同一平面内的任一向量a 都有()12a e e R λμλμ=+∈、
D .若12e e 、不共线,则同一平面内的任一向量a 都有()12a e e R λμλμ=+∈、
19、已知点P 1(x 1,y 1),P 2(x 2,y 2),P 是直线P1P2上的一点,且()112P P PP λλ=≠-, 求P 点的坐标。

20、已知O 是坐标原点,点A 在第一象限,43OA =xoA =60°,求OA 的坐标。

1212121e 0,e 0,R,a e e ,b 2e a b λλ≠≠∈=+=、已知向量,若与共线,则下列关系一定成立的是——————。

22、如图,ABCD 中,点M 是AB 的中点,点N 在BD 上,且1
BN BD 3
=,求证:M 、N 、C 三点共线。

()23a 21,2,b (2,2),x,y ,a,b ?x -y x+y =+-=-、已知:当为何值时向量共线
24、已知单位向量12e e 、的夹角为60°,求向量21221a=e +e b=e -e 与向量的夹角
25、已知两点A(x1,y1)、B(x 2,y 2),试用向量的方法证明以线段AB为直径的圆的方程为(x -x 1)(x -x 2)+(y-y1)(y-y2)=0
26、在静水中划船的速度是每分钟40m ,水流的速度是每分钟20m ,若船从岸边A 处出发,沿着垂直水流的航线到达对岸,那么船的行进方向应指向何处?
27、两个力4512F i j F i j =+=-,作用于同一个质点,使得该质点从A (20,15)移动到点B
(7,0)(其中i j 、是x 轴,y 轴正方向上的单位向量)。

求(1)12F F ,分别对质点做的功;(2)12F F ,的合力对该质点所做的功。

28、设向量a b 、
满足a b 13a 2b 7==-=及 (
1)求a b 、的夹角;(2)求3a -2b 的值。

29、如图,在平面斜坐标系xoy 中,∠xoy =60°,平面上任意一点P 关于斜坐标系的坐标是
()
x y P x y O 1 1212op =xe +ye e e 这样定义的:其中、分别是与轴、轴同方向的单位向量、
则点的斜坐标为(、)。

求以为圆心以为半径的圆的斜坐标方程。

()()3022x 3
4
2x f x tan x tanx f x π
π
≤≤
=++、已知-,,求的最大值及最小值并求出相应的值。

31、已知锐角α、β满足cos α=35,cos (α+β)=5
13
-,求cos β的值。

32、已知sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,求证cos (α-γ)=12
-
33、已知△ABC ,求证:A B B C C A
tan tan +tan tan +tan tan 222222
为定值。

34、求值:50110sin ︒︒()
4
4
443573516
161616
sin sin sin sin π
πππ
+++、求的值。

()()()2236cos cos m sin sin αβαβαβ-=++、已知,那么等于
m m
A m
B m
C
D 22
-。

-。

37、()()4cosA cosB 4sin A sin B 1cos4A 1cos4B ⋅=⋅--的值。

38、已知函数f (x )=2acos2x+bsinxcosx 且f (0)=2,f (
3
π
)=122+
(1)求a 、b 的值及f (x )的值;(2)若α-β≠κπκ∈Z 且α、β是方程f (x )=0的两
根,求证:sin (α+β)=cos (α+β)。

相关文档
最新文档