一元多项式的各种运算实现(c++,c)

合集下载

数据结构课程设计-一元多项式的加法、减法、乘法的实现

数据结构课程设计-一元多项式的加法、减法、乘法的实现

一、设计题目一元多项式的加法、减法、乘法的实现。

二、主要内容设有一元多项式A m(x)和B n(x).A m(x)=A0+A1x1+A2x2+A3x3+… +A m x mB n(x)=B0+B1x1+B2x2+B3x3+… +B n x n请实现求M(x)= A m(x)+B n(x)、M(x)= A m(x)-B n(x)和M(x)= A m(x)×B n(x)。

要求:1) 首先判定多项式是否稀疏2) 采用动态存储结构实现;3) 结果M(x)中无重复阶项和无零系数项;4) 要求输出结果的升幂和降幂两种排列情况三、具体要求及应提交的材料1.每个同学以自己的学号和姓名建一个文件夹,如:“312009*********张三”。

里面应包括:学生按照课程设计的具体要求所开发的所有源程序(应该放到一个文件夹中)、任务书和课程设计说明书的电子文档。

2.打印的课程设计说明书(注意:在封面后夹入打印的“任务书”以后再装订)。

四、主要技术路线提示为把多个小功能结合成一个完整的小软件,需使用“菜单设计”技术(可以是控制台方式下的命令行形式,若能做成图形方式则更好)。

五、进度安排共计两周时间,建议进度安排如下:选题,应该在上机实验之前完成需求分析、概要设计可分配4学时完成详细设计可分配4学时调试和分析可分配10学时。

2学时的机动,可用于答辩及按教师要求修改课程设计说明书。

注:只用课内上机时间一般不能完成设计任务,所以需要学生自行安排时间做补充。

六、推荐参考资料(不少于3篇)[1]苏仕华等编著,数据结构课程设计,机械工业出版社,2007[2]严蔚敏等编著,数据结构(C语言版),清华大学出版社,2003[3]严蔚敏等编著,数据结构题集(C语言版),清华大学出版社,2003指导教师签名日期年月日系主任审核日期年月日摘要分析了matlab,mathmatic,maple等数学软件对一元多项式的计算过程,步骤后。

由于这些软件比较大功能齐全,但是实用性不强。

c语言一元多项式的加法,减法,乘法的实现

c语言一元多项式的加法,减法,乘法的实现

c语言一元多项式的加法,减法,乘法的实现一元多项式是代数学中的重要概念,它由各项式的系数和幂次构成。

在C语言中,我们可以通过定义结构体来表示一元多项式,并实现加法、减法和乘法运算。

我们定义一个结构体来表示一元多项式。

结构体中包含两个成员变量,一个是整数类型的系数coeff,另一个是整数类型的幂次exp。

```ctypedef struct{int coeff; // 系数int exp; // 幂次} Polynomial;```接下来,我们可以实现一元多项式的加法运算。

加法运算的规则是将两个多项式中幂次相同的项的系数相加,若幂次不同的项,则直接将其添加到结果多项式中。

具体实现如下:```cPolynomial addPolynomial(Polynomial poly1, Polynomial poly2){Polynomial result;result.coeff = poly1.coeff + poly2.coeff;result.exp = poly1.exp;return result;}```然后,我们可以实现一元多项式的减法运算。

减法运算的规则是将被减多项式的各项的系数取相反数,然后再与减数多项式相加。

具体实现如下:```cPolynomial subtractPolynomial(Polynomial poly1, Polynomial poly2){Polynomial result;result.coeff = poly1.coeff - poly2.coeff;result.exp = poly1.exp;return result;}```我们可以实现一元多项式的乘法运算。

乘法运算的规则是将两个多项式的每一项相乘,然后将结果相加。

具体实现如下:```cPolynomial multiplyPolynomial(Polynomial poly1, Polynomialpoly2){Polynomial result;result.coeff = poly1.coeff * poly2.coeff;result.exp = poly1.exp + poly2.exp;return result;}```通过上述的实现,我们可以对一元多项式进行加法、减法和乘法运算。

数据结构C语言实现之一元多项式的表示及相加(2)

数据结构C语言实现之一元多项式的表示及相加(2)
以单链表作为存储结构并且和多项式中的结点无需另生成则可看成是将多项式b加到多项式a中由此得到下列运算规则设pq分别指向多项式ab的一项比较结点的指数项若pexpqexp则结点p所指的结点应是和多项式中的一项令指针p后移
数据结构 C 语言实现之一元多项式的表示及相加(2)
一元多项式的表示及相加 对于符号多项式的各种操作,实际上都可以利用线性表来处理。比较典型的是关于一元多项式的处理。在
} } e>next; /*将 q 结点加入到和多项式中*/ q =q->next; } }
} if(p!=NULL)/*多项式 A 中还有剩余,则将剩余的结点加入到和多项式中*/
pre->next=p;
else /*否则,将 B 中的结点加入到和多项式中*/ pre->next=q; }
算法 2.24 多项式相加 假设 A 多项式有 M 项,B 多项式有 N 项,则上述算法的时间复杂度为 O(M+N) 图 2.20 所示为图 2.19 中两个多项式的和,其中孤立的结点代表被释放的结点。
通过对多项式加法的介绍,我们可以将其推广到实现两个多项式的相乘,因为乘法可以分解为一系列的加 法运算。
“中的结点无需另生成,则可看成是将多项式 B 加到多项式 A 中,由此得到下列运算规则(设 p、q 分别 指向多项式 A,B 的一项,比较结点的指数项)
若 p->exp< q->exp,则结点 p 所指的结点应 是“和多项式”中的一项,令指针 p 后移;若 p>exp>q->exp,则结点 q 所指的结点应是“和多项式”中的一项,将结点 q 插入在结点 p 之前, 且令指针 q 在原来的链表上后移;
(1)用单链表存储多项式的结点结构如下: struct Polynode { int coef; int exp; Polynode *next; } Polynode , * Polylist;

一元多项式的各种运算实现(c++,c)

一元多项式的各种运算实现(c++,c)
{
float a=1.0;
for(int i=1;i<=k;i++)
a=a*1e-1;
return a;
}
//赋值,参数是指向头结点的指针
void fuzhi(node *&toup)
{
float fumi(int k);
void init(node *&toup);
if(!toup) init(toup);
if(toup) destory(toup);//假如有头结点或元素节点,销毁结点
toup=(node*)malloc(sizeof(node));
if(!toup){cout<<"溢出错误"<<endl;exit(0ext=NULL;
}
//销毁全部,包括头结点
cout<<"*******************************************************************************"<<endl;
cout<<"举例:3 x3 9.3x-3 -x....."<<endl;
}
//求未知数指数是-k时的值
float fumi(int k)
while(p)
{
if(p->data ==0)
{
if(!pr)
{
tem=p;
toup->next =p->next ;
p=p->next ;
toup->length--;
free(tem);
tem=NULL;

一元符号多项式的四则运算讲解

一元符号多项式的四则运算讲解

C++开放项目实验报告题目:一元符号多项式四则运算姓名:指导老师:学号:班级:一、内容总结1.功能要求用所学C++知识编程实现两个一元符号多项式的加法,减法和乘法运算。

2.算法概要设计①结点插入函数void Insert (PNode *temp);②多项式的创建函数void CreatPoly();③赋值运算符的重载Polynomail& operator = (const Polynomail &p1);④一元符号多项式的加法Polynomail& operator + (const Polynomail &p);⑤一元符号多项式的减法Polynomail& operator - (Polynomail &p);⑥一元符号多项式的乘法Polynomail& operator * (const Polynomail &p);3.应用技巧①利用Insert()插入函数规范多项式的输入问题,进行同类项的合并和不同类项间的排序问题,使得到有序的链表,方便后续的运算②对赋值、加、减和乘运算符进行重载,赋予其新的意义,进行多项式间的四则运算。

③发现函数间联系,可以减少代码的长度。

巧妙利用Insert()函数和加运算符重载函数,方便乘法和减法等代码编写。

二、实验成果1.输入要求按提示一次输入多项式各项的系数和指数,建立多项式。

如下所示: 系数,指数:1,2系数,指数:3,4系数,指数:0 4(以输入系数为零的项结束创建)创建结果为:1x^2+3x^4进行加法运算2根据自己的需要选择输入功能序号进行运算,如选择数字2.输出样例总体上各项是按照输入的方法进行输出,如果指数为零只输出系数,如果系数为零,那么该项不输出,如果系数为负数,那么两项间“+”变“-”。

以上述输入为例创建的结果为:1x^2+3x^4。

如果另一个多项式为:-1-2x^6,那么加法运算后的结果为:-1+1x^2+3x^4-2x^6:主要代码展示 3.//**** c++开放实验项目****//一元符号多项式的四则运算#include <iostream>using namespace std;struct PNode{PNode(double c=0,int e=-1){ coef=c; expn=e; next=NULL;}double coef;int expn;PNode *next;};class Polynomial{public:Polynomial(){poly=new PNode;}Polynomial(Polynomial &p);void Print();~Polynomial();void Insert (PNode *temp);void CreatPoly();Polynomial& operator = (const Polynomial &p);Polynomial& operator + (const Polynomial &p);Polynomial& operator - (Polynomial &p);Polynomial& operator * (const Polynomial &p);private:PNode *poly;};//析构函数Polynomial::~Polynomial(){PNode *pt=poly->next;while (pt){poly->next=pt->next;delete pt;pt=poly->next;}delete poly;poly=NULL;}//赋值运算符的重载Polynomial& Polynomial::operator = (const Polynomial &p){ this->~Polynomial();poly=new PNode;PNode *pt=poly,*qt=p.poly->next;while(qt){PNode *s=new PNode(qt->coef,qt->expn);pt->next=s;pt=s;qt=qt->next;}return *this;}//复制构造函数Polynomial::Polynomial(Polynomial &p){poly=new PNode;*this=p;}//遍历void Polynomial::Print(){if(poly->next==NULL){cout<<empty!\n;return;}PNode *pt=poly->next;if(pt){if(pt->expn==0){cout<<pt->coef;}else {潣瑵?瑰?潣晥?硜属?瑰?硥湰※}pt=pt->next;}while (pt){if(pt->expn==0){cout<<pt->coef;}else {if(pt->coef<0){潣瑵?瑰?潣晥?硜属?瑰?硥湰※}else {潣瑵???瀼?挾敯?尼幸?瀼?放灸?}}pt=pt->next;}cout<<endl;}//结点插入函数void Polynomial::Insert (PNode *temp){ if(poly->next==NULL){poly->next=temp;return;}PNode *pt=poly;PNode *qt=pt->next;while(qt&&qt->expn<temp->expn){ pt=qt;qt=pt->next;}if(qt==NULL||qt->expn>temp->expn){ temp->next=qt;pt->next=temp;}else {qt->coef+=temp->coef;if(qt->coef==0){pt->next=qt->next;delete qt;}}}//多项式的构建函数void Polynomial::CreatPoly(){double c;int e;潣瑵?系数,指数:;cin>>c>>e;while (c){PNode *p=new PNode(c,e);Insert(p);潣瑵?系数,指数:;cin>>c>>e;}}//多项式的加法Polynomial& Polynomial::operator + (const Polynomial &q){ Polynomial *PC=new Polynomial;PNode *ta=poly->next,*tb=q.poly->next, *tc=PC->poly; while(ta&&tb){int a=ta->expn;int b=tb->expn;int t=a>b?1:(b>a?-1:0);switch(t){case -1:{PNode *s=new PNode(ta->coef,ta->expn);tc->next=s;tc=s;ta=ta->next;break;}case 0:{double sum=ta->coef+tb->coef;if(sum==0){ta=ta->next;tb=tb->next;}else {PNode *s=new PNode(sum,ta->expn);tc->next=s;tc=s;ta=ta->next;tb=tb->next;}break;}case 1:{PNode *s=new PNode(tb->coef,tb->expn);tc->next=s;tc=tc->next;tb=tb->next;break;}} //switch} //whilewhile (ta){PNode *s=new PNode(ta->coef,ta->expn);tc->next=s;tc=s;ta=ta->next;}while (tb){PNode *s=new PNode(tb->coef,tb->expn);tc->next=s;tc=s;tb=tb->next;}return *PC;}//多项式的减法Polynomial& Polynomial::operator - (Polynomial &p){//复制取反相加Polynomial P(p),*PC=new Polynomial;PNode *pt=P.poly->next;while(pt){pt->coef=-pt->coef;pt=pt->next;}*PC=*this+P;return *PC;}//多项式的乘法Polynomial& Polynomial:: operator * (const Polynomial &p){ Polynomial *PC=new Polynomial;PNode *pt=poly->next,*qt;for(;pt;pt=pt->next){for(qt=p.poly->next;qt;qt=qt->next){PNode *s=new PNode(pt->coef*qt->coef,pt->expn+qt->expn);PC->Insert(s);}}return *PC;}//主函数int main(){Polynomial PA,PB,PC;int index;cout<< //------一元符号多项式的表示及运算------// <<endl;潣瑵?本函数的功能列表:<<endl;cout<<.多项式的加法:<<endl;cout<<.多项式的减法:<<endl;cout<<.多项式的乘法:<<endl;cout<<.选择重建多项式:<<endl;cout<<_x0005_.结束运算\n<<endl;潣瑵?依次输入PA各项系数和指数(以输入系数0项结束),建立多项式:<<endl;PA.CreatPoly();PA.Print();潣瑵?依次输入PB各项系数和指数(以输入系数0项结束),建立多项式:<<endl;PB.CreatPoly();PB.Print();cout<<\请输入功能序号进行多项式的运算:;cin>>index;while(index){switch(index){case 1:{PC=PA+PB;cout<<PC=PA+PB:;PC.Print();break;}case 2:{PC=PA-PB;cout<<PC=PA-PB:;PC.Print();break;}case 3:{PC=PA*PB;cout<<PC=PA*PB:;PC.Print();break;}case 4:{int flag;潣瑵?输入0修改多项式PA,其他数字保留多项式PA:;cin>>flag;if(!flag){PA.CreatPoly();PA.Print();}潣瑵?输入0修改多项式PB,其他数字保留多项式PB:;cin>>flag;if(!flag){PB.CreatPoly();PB.Print();}break;}case 5:{潣瑵?运算结束<<endl;return 0;}}//switchcout<<\是否需要继续,请再次输入选择:;cin>>index;}//whilereturn 0;}4.项目结果展示实践体会三、在此次的C++开放项目试验中,我承担了用C++实现一元符号多项式的四则运算,将所学C++知识运用实战编程中去,并及时进行知识的查缺补漏,帮助我更好的掌握了C++这门语言。

数据结构课程设计--一元多项式计算问题(C语言)

数据结构课程设计--一元多项式计算问题(C语言)

长沙学院课程设计说明书题目一元多项式计算问题系(部)计算机科学与技术系专业(班级)12软件4班姓名谢仲蛟学号2012022411指导教师邱建雄起止日期2013.12.9~2013.12.20课程设计任务书课程名称:数据结构与算法设计题目:一元多项式计算问题已知技术参数和设计要求:问题描述:设计一个稀疏多项式简单计算器基本要求:(1)输入并分别建立多项式A和B(2)输入输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……,其中n是多项式的项数,ci和ei 是第i项的系数和指数,序列按指数降序排列(3)完成两个多项式的相加、相减,并将结果输出;测试数据:(1) A+B A= 3x14-8x8+6x2+2 B=2x10+4x8+-6x2(2) A-B A=11x14+3x10+2x8+10x6+5 B=2x14+3x8+5x6+7(3) A+B A=x3+x1 B=-x3-x1(4) A+B A=0 B=x7+x5+x3+x1(5) A-B A=100x100+50x50+20x20+x B=10x100+10x50+10x20+x选作内容:(1).多项式在x=1时的运算结果(2)求多项式A和B的乘积设计工作量:40课时工作计划:指导教师签名:日期:教研室主任签名:日期:系主任签名:日期:长沙学院课程设计鉴定表摘要本次课程设计是在《数据结构》基础上设计以C语言来实现的,它的目的是帮助同学更深入的了解《数据结构》这门课程并熟练运用C语言,使同学达到熟练掌握的程度。

课程设计一个稀疏多项式简单计算器。

其基本要求有六:其一,输入建立两个多项式;其二,输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……,其中n是多项式的项数,ci和ei是第i项的系数和指数,序列按指数的降序序列排列;其三,多项式排序,多项式按指数的降序序列排列;其四,多项式相加,指数相同系数相加,指数不同则把此项加进去;其五,多项式相减,指数相同系数相加,指数不同则把此项取反再加进去;其六,返回多项式的项数。

顺序链式一元多项式加法、减法、乘法运算的实现

顺序链式一元多项式加法、减法、乘法运算的实现

1.1设计内容及要求1)设计内容(1)使用顺序存储结构实现多项式加、减、乘运算。

例如:10321058)(2456+-+-+=x x x x x x f ,x x x x x x g +--+=23451020107)(求和结果:102220128)()(2356++-+=+x x x x x g x f(2)使用链式存储结构实现多项式加、减、乘运算,10305100)(1050100+-+=x x x x f ,x x x x x x g 320405150)(10205090+++-=求和结果:1031040150100)()(102090100++-++=+x x x x x x g x f2)设计要求(1)用C 语言编程实现上述实验内容中的结构定义和算法。

(2)要有main()函数,并且在main()函数中使用检测数据调用上述算法。

(3)用switch 语句设计如下选择式菜单。

***************数据结构综合性实验***********************一、多项式的加法、减法、乘法运算***************** 1.多项式创建 ***************** 2.多项式相加 ***************** 3.多项式相减 ***************** 4.多项式相乘 ***************** 5.清空多项式 ***************** 0.退出系统 ***************** 请选择(0—5) ************************************************************请选择(0-5):1.2数据结构设计根据下面给出的存储结构定义:#define MAXSIZE 20 //定义线性表最大容量//定义多项式项数据类型typedef struct{float coef; //系数int expn; //指数}term,elemType;typedef struct{term terms[MAXSIZE]; //线性表中数组元素int last; //指向线性表中最后一个元素位置}SeqList;typedef SeqList polynomial;1.3基本操作函数说明polynomial*Init_Polynomial();//初始化空的多项式int PloynStatus(polynomial*p)//判断多项式的状态int Location_Element(polynomial*p,term x)在多项式p中查找与x项指数相同的项是否存在int Insert_ElementByOrder(polynomial*p,term x)//在多项式p中插入一个指数项xint CreatePolyn(polynomial*P,int m)//输入m项系数和指数,建立表示一元多项式的有序表p char compare(term term1,term term2)//比较指数项term1和指数项term2polynomial*addPloyn(polynomial*p1,polynomial*p2)//将多项式p1和多项式p2相加,生成一个新的多项式polynomial*subStractPloyn(polynomial*p1,polynomial*p2) //多项式p1和多项式p2相减,生成一个新的多项式polynomial*mulitPloyn(polynomial*p1,polynomial*p2)//多项式p1和多项式p2相乘,生成一个新的多项式void printPloyn(polynomial*p)//输出在顺序存储结构的多项式p1.4程序源代码#include<stdlib.h>#include<stdio.h>#include<iostream.h>#define NULL 0#define MAXSIZE 20typedef struct{float coef;int expn;}term,elemType;typedef struct{term terms[MAXSIZE];int last;}SeqList;typedef SeqList polynomial; void printPloyn(polynomial*p);int PloynStatus(polynomial*p) {if(p==NULL){return -1;}else if(p->last==-1){return 0;}else{return 1;}}polynomial*Init_Polynomial() {polynomial*P;P=new polynomial;if(P!=NULL){P->last=-1;return P;}else{return NULL;}}void Reset_Polynomial(polynomial*p){if(PloynStatus(p)==1){p->last=-1;}}int Location_Element(polynomial*p,term x){int i=0;if(PloynStatus(p)==-1)return 0;while(i<=p->last && p->terms[i].expn!=x.expn) {i++;}if(i>p->last){return 0;}else{return 1;}}int Insert_ElementByOrder(polynomial*p,term x) {int j;if(PloynStatus(p)==-1)return 0;if(p->last==MAXSIZE-1){cout<<"The polym is full!"<<endl;return 0;}j=p->last;while(p->terms[j].expn<x.expn && j>=0){p->terms[j+1]=p->terms[j];j--;}p->terms[j+1]=x;p->last++;return 1;}int CreatePolyn(polynomial*P,int m){float coef;int expn;term x;if(PloynStatus(P)==-1)return 0;if(m>MAXSIZE){printf("顺序表溢出\n");return 0;}else{printf("请依次输入%d对系数和指数...\n",m);for(int i=0;i<m;i++)scanf("%f%d",&coef,&expn);x.coef=coef;x.expn=expn;if(!Location_Element(P,x)){Insert_ElementByOrder(P,x);}}}return 1;}char compare(term term1,term term2){if(term1.expn>term2.expn){return'>';}else if(term1.expn<term2.expn){return'<';}{return'=';}}polynomial*addPloyn(polynomial*p1,polynomial*p2) {int i,j,k;i=0;j=0;k=0;if((PloynStatus(p1)==-1)||(PloynStatus(p2)==-1)) {return NULL;}polynomial*p3=Init_Polynomial();while(i<=p1->last && j<=p2->last){switch(compare(p1->terms[i],p2->terms[j])){case'>':p3->terms[k++]=p1->terms[i++];p3->last++;break;case'<':p3->terms[k++]=p2->terms[j++];p3->last++;break;case'=':if(p1->terms[i].coef+p2->terms[j].coef!=0){p3->terms[k].coef=p1->terms[i].coef+p2->terms[j].coef;p3->terms[k].expn=p1->terms[i].expn;k++;p3->last++;}i++;j++;}}while(i<=p1->last){p3->terms[k++]=p1->terms[i++];p3->last++;}return p3;}polynomial*subStractPloyn(polynomial*p1,polynomial*p2) {int i;i=0;if((PloynStatus(p1)!=1)||(PloynStatus(p2)!=1)){return NULL;}polynomial*p3=Init_Polynomial();p3->last=p2->last;for(i=0;i<=p2->last;i++){p3->terms[i].coef=-p2->terms[i].coef;p3->terms[i].expn=p2->terms[i].expn;}p3=addPloyn(p1,p3);return p3;}polynomial*mulitPloyn(polynomial*p1,polynomial*p2){int i;int j;int k;i=0;if((PloynStatus(p1)!=1)||(PloynStatus(p2)!=1)){return NULL;}polynomial*p3=Init_Polynomial();polynomial**p=new polynomial*[p2->last+1];for(i=0;i<=p2->last;i++){for(k=0;k<=p2->last;k++){p[k]=Init_Polynomial();p[k]->last=p1->last;for(j=0;j<=p1->last;j++){p[k]->terms[j].coef=p1->terms[j].coef*p2->terms[k].coef;p[k]->terms[j].expn=p1->terms[j].expn+p2->terms[k].expn;}p3=addPloyn(p3,p[k]);}}return p3;}void printPloyn(polynomial*p){int i;for(i=0;i<=p->last;i++){if(p->terms[i].coef>0 && i>0)cout<<"+"<<p->terms[i].coef;elsecout<<p->terms[i].coef;cout<<"x^"<<p->terms[i].expn;}cout<<endl;}void menu(){cout<<"\t\t*******数据结构综合性实验*********"<<endl;cout<<"\t\t***一、多项式的加、减、乘法运算***"<<endl;cout<<"\t\t******* 1.多项式创建 *********"<<endl;cout<<"\t\t******* 2.多项式相加 *********"<<endl;cout<<"\t\t******* 3.多项式相减 *********"<<endl;cout<<"\t\t******* 4.多项式相乘 *********"<<endl;cout<<"\t\t******* 5.清空多项式 *********"<<endl;cout<<"\t\t******* 0.退出系统 *********"<<endl;cout<<"\t\t****** 请选择(0-5) ********"<<endl;cout<<"\t\t***********************************"<<endl; }void main(){int sel;polynomial*p1=NULL;polynomial*p2=NULL;polynomial*p3=NULL;while(1){menu();cout<<"\t\t*请选择(0-5):";cin>>sel;switch(sel){case 1:p1=Init_Polynomial();p2=Init_Polynomial();int m;printf("请输入第一个多项式的项数:\n"); scanf("%d",&m);CreatePolyn(p1,m);printf("第一个多项式的表达式为p1="); printPloyn(p1);printf("请输入第二个多项式的项数:\n"); scanf("%d",&m);CreatePolyn(p2,m);printf("第二个多项式的表达式为p2="); printPloyn(p2);break;case 2:printf("p1+p2=");if((p3=subStractPloyn(p1,p2))!=NULL) printPloyn(p3);break;case 3:printf("\np1-p2=");if((p3=subStractPloyn(p1,p2))!=NULL)printPloyn(p3);break;case 4:printf("\np1*p2=");if((p3=mulitPloyn(p1,p2))!=NULL)printPloyn(p3);case 5:Reset_Polynomial(p1);Reset_Polynomial(p2);Reset_Polynomial(p3);break;case 0:return;}}return;}1.5程序执行结果。

数据结构一元多项式的运算

数据结构一元多项式的运算

数据结构一元多项式的运算数据结构一元多项式的运算1、引言1.1 研究背景1.2 研究目的2、一元多项式的定义2.1 一元多项式的概念2.2 一元多项式的表示方法2.3 一元多项式的次数和系数2.4 一元多项式的零多项式和常数项2.5 一元多项式的加法运算2.6 一元多项式的减法运算2.7 一元多项式的乘法运算3、一元多项式的特殊运算3.1 一元多项式的乘方运算3.2 一元多项式的取余运算3.3 一元多项式的求导运算3.4 一元多项式的积分运算3.5 一元多项式的复合运算4、一元多项式的应用4.1 一元多项式在数学中的应用4.2 一元多项式在计算机科学中的应用4.3 一元多项式在工程领域中的应用5、实例分析5.1 实例一:一元多项式的相加减5.2 实例二:一元多项式的乘法运算5.3 实例三:一元多项式的特殊运算应用6、结论附件:附件一:一元多项式的代码实现示例法律名词及注释:1.一元多项式: 指仅有一个未知数的多项式。

2.多项式的次数: 多项式中各项最高次幂的次数。

3.多项式的系数: 多项式中各项中未知数的系数。

4.零多项式: 所有系数均为0的多项式。

5.常数项: 多项式中次数为0的项,即常数项。

6.多项式的加法运算: 将两个多项式相同次项的系数相加。

7.多项式的减法运算: 将两个多项式相同次项的系数相减。

8.多项式的乘法运算: 将两个多项式的各项相乘,并根据指数相加合并同类项。

9.多项式的乘方运算: 将一个多项式自乘n次。

10.多项式的取余运算: 两个多项式相除后的余数部分。

11.多项式的求导运算: 对多项式中的每一项进行求导操作。

12.多项式的积分运算: 对多项式中的每一项进行积分操作。

13.多项式的复合运算: 将一个多项式代入另一个多项式中进行运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
list *temp=pre->next;
pre->next=pre->next->next;
free(temp);
toup->length--;
}//if
else p=p->next;
}//while,合并幂相等的项
p=toup->next;
list* pr=NULL;
list* tem=NULL;
{
if(!toup) {cout<<"初始化失败"<<endl;exit(0);}
list *a=toup->next;
int i=1;
while(i<toup->length)
{
list* temp=a;
list* p=a;
list* t=p->next;
while(t)
{
if(abs(p->zhi)>abs(t->zhi))
if(toup) destory(toup);//假如有头结点或元素节点,销毁结点
toup=(node*)malloc(sizeof(node));
if(!toup){cout<<"溢出错误"<<endl;exit(0);}
toup->length=0;
toup->next=NULL;
}
//销毁全部,包括头结点
ch=c;
switch(c)
{case '-':
k1=-1;
k2=0;
k3=0;
break;
case '+':
k1=1;
k2=0;
k3=0;
break;
case 'x':if(k2==0)
p->data=k1*1;
else
p->data=k1*dat;
dat=0.0;
k1=1;
k2=0;
k3=0;
kx=1;
void shuoming()
{
cout<<"*******************************************************************************"<<endl;
cout<<"*各项可以用平时书写习惯输入,若有未知数,必须用x表示,且各项之间必须用空格分隔,支*"<<endl;
int i=0;
while(c!='\n')
{
if(!p)
{ p=(list*)malloc(sizeof(list)); if(!p) {cout<<"溢出错误"<<endl;exit(0);}
if(i==0) {toup->next=p;toup->length++;i++;p->next=NULL;t=p;}
结构体类型定义:
typedef struct list
{
type data;
int zhi;
struct list* next;
}list;
typedef struct node
{
int length;
list* next;
}node;
用到的函数:
注:各函数参数如是结构体指针,则此指针传入函数之前必将其赋值为NULL否则可能出现错误。
i++;
}//while
}
//把指数相等的项合并,也可实现多项式加法
void neat(node *&toup)
{
paixu(toup);//先排序
list* p=toup->next;
list* pre;
while(p)
{
if(equalmi(p,p->zhi,pre))
{
p->data=pre->next->data+p->data;
}
//将toup2原样赋给toup1
void copy(node*& toup1,node*& toup2)
{
if(!toup2) {cout<<"初始化未成功"<<endl;exit(0);}
init(toup1);
list* t2=toup2->next,*t1=toup1->next ;
while(t2)
status equalmi(list *&element,int m,list *&prep)
{
prep=element;
list *t=element->next;
while(t&&t->zhi!=m)
{
prep=t;
t=t->next;
}//while
if(t) return 1;//找到了
else return 0;
{
if(!atoup||!btoup) {cout<<"链初始化失败";exit(0);}
void init(node *&toup);
init(newtoup);
list* ap=atoup->next;list* bp=btoup->next;list* temp=NULL;
int i=1;
while(ap)
if(0==kx) {p->data =k1*dat;p->zhi=0;}
else {if(k2==0) p->zhi=k1*1;else p->zhi=k1*(int)dat;}
}
//初始化,生成单链表表头,参数是指向头结点的指针
void init(node *&toup)
{
status destory(node *&toup);
p=p->next;
free(tem);
tem=NULL;
}
}//if
else
{
pr=p;
p=p->next ;
}//else
}//while,将数据为0的项删除
pr=NULL;
}
//得到第i个元素的指数
/*status get(node *&toup,int i)
{if(!toup) {cout<<"错误:没有头结点"<<endl;exit(-1);}
#include<sys/timeb.h>
#include<stdarg.h>
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
typedef int status;
typedef floattype;
typedef int fuhaosign;
status destory(node *&toup)
{
if(toup)
{
list* p=toup->next;list* t;
while(p)
{
t=p->next;
free(p);
p=t;
}//while
free(toup);
toup=NULL;
}//if
return OK;
}
//找到指数与m相等的元素,返回前一元素的指针,参数是元素指针
{ list* t=(list*)malloc(sizeof(list));
if(i==1) {newtoup->next=t;newtoup->length++;t->data=ap->data;t->zhi=ap->zhi;ap=ap->next;temp=t;i++;}
else {temp->next=t;newtoup->length++;t->data=ap->data;t->zhi=ap->zhi;temp=t;ap=ap->next;}
#include<iostream.h>
#include<iomanip.h>
#include<ctype.h>
#include<malloc.h>
#include<limits.h>
#include<stdio.h>
#include<stdlib.h>
#include<io.h>
#include<math.h>
int k2=0;//k2标志着+-号前面是否有数值,0时没有,1为有
fuhaosign k1=1;//k1是符号位正负的标志,0为负,1为正
int k3=0;//小数点的个数
int kx=0;//标志前面是否有x
list* p=toup->next,* t;
type dat=0.0;
//输入
c=getchar();
{
list* temp=(list*)malloc(sizeof(list));
if(!t1)
{
toup1->next =temp;toup1->length++;temp->data =t2->data ;temp->zhi =t2->zhi ;t2=t2->next ;t1=temp;
相关文档
最新文档