八年级下册数学平行四边形的性质教学设计
新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
《平行四边形性质》说课稿(通用5篇)

《平行四边形性质》说课稿(通用5篇)《平行四边形性质》说课稿1我的说课内容是《平行四边形的性质》一教学背景分析(一)教材的地位和作用1、平行四边形的性质是学习和掌握了《图形的平移与旋转》、《中心对称和中心对称图形》的基础上编排的。
平行四边形作为中心对称图形的一个典型范例,对它性质的研究有利于加深对中心对称图形的认识。
而用中心对称作为工具,借助图形的旋转变化来研究平行四边形性质,有助于培养学生以动态观点处理静止图形的意识和能力,为以后论证几何的学习打好基础。
且为下节学习四边形的识别提供了良好的认知基础。
2、教学内容的选择和处理本节课所选教学内容是教材中四条性质及例题。
为了遵循学生认知规律的循序渐进性,探究问题的完整性,培养学生的学习能力,发展智力。
我采取把平行四边形所有性质集中在一课时中一起研究。
(二)学情分析学生在小学阶段已对平行四边形有了初步、直观的认识,为平行四边形性质的研究提供了一定的认知基础。
八年级学生正处在试验几何向论证几何的过渡阶段,对于严密的推理论证,从知识结构和知识能力上都有所欠缺。
而利用动手操作来实现探究活动,对学生较适宜,而且有一定吸引力,可进一步调动学生强烈的求知欲。
二教学目标1、知识与技能使学生掌握平行四边形的四条性质,并能运用这些性质进行简单计算。
2、过程与方法让学生体会通过操作,观察,猜想,验证获得数学知识的方法。
注意发展学生的分析,归纳能力,提升数学思维品质。
3、情感态度与价值观注意学生独立探究及合作交流的结合,促进自主学习和合作精神。
三重点,难点1、重点:理解并掌握平行四边形的性质。
2、难点:通过探究得到平行四边形的性质。
四教学方法和教学手段1、教学方法采用引导发现和直观演示相结合的方法,并运用多媒体辅助开展教学。
2、教学手段教学中鼓励学生自主地进行观察、试验、猜测、推理的数学活动,体验平行四边形是中心对称图形,并得出平行四边形性质,使学生在整个过程中形成对数学知识的理解和有效的学习策略。
华师大版数学八年级下册18.1《平行四边形的性质》(第2课时)教学设计

华师大版数学八年级下册18.1《平行四边形的性质》(第2课时)教学设计一. 教材分析华东师范大学版数学八年级下册18.1《平行四边形的性质》(第2课时)的内容主要包括平行四边形的判定、平行四边形的性质以及平行四边形的应用。
本节课的内容是学生对平行四边形知识的进一步拓展和深化,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在之前的学习中已经掌握了平行四边形的定义和判定,对于平行四边形的性质也有一定的了解。
但学生在应用平行四边形的性质解决实际问题时,还存在着一定的困难。
因此,在教学过程中,需要教师引导学生深入理解平行四边形的性质,提高学生运用知识解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握平行四边形的性质,能够运用性质判定平行四边形,解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:平行四边形的性质。
2.难点:运用平行四边形的性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平行四边形的性质,激发学生的学习兴趣。
2.活动教学法:引导学生通过观察、操作、交流等活动,发现平行四边形的性质。
3.问题驱动法:教师提出问题,引导学生思考,培养学生解决问题的能力。
六. 教学准备1.教师准备:教材、课件、教学素材、黑板、粉笔等。
2.学生准备:课本、练习本、文具等。
七. 教学过程1.导入(5分钟)教师通过展示生活中的平行四边形图片,如教室的黑板、滑滑梯等,引导学生观察并思考:这些物体为什么是平行四边形?它们有什么共同的特点?从而引出本节课的内容——平行四边形的性质。
2.呈现(10分钟)教师通过课件展示平行四边形的性质,引导学生观察并发现平行四边形的性质。
如:对边平行且相等,对角相等,对角线互相平分等。
人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。
通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。
二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。
但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。
在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。
三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。
2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:平行四边形的性质及其应用。
2.难点:对角线的性质和判定平行四边形的方法。
五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。
六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。
2.课件:平行四边形的性质及其应用。
七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。
2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。
设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。
3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。
学生互相检查,教师巡回指导。
设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。
4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。
设计意图:巩固所学知识,提高学生的判断能力。
《平行四边形的性质》数学教案

《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。
2. 培养学生的观察力、思维能力和空间想象能力。
3. 通过实践操作,提高学生的动手能力和合作学习的能力。
二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。
2. 教学难点:理解和应用平行四边形的性质。
三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。
2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。
3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。
4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。
5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。
四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。
《平行四边形的性质(第一课时)》教学设计

《平行四边形的性质(第一课时)》教学设计一、教学分析(一)教学内容分析《平行四边形的性质》是九年制义务教育课本八年级数学第二学期第十九章第一节内容,它是在学生学过平移和旋转等几何知识的基础上学习的,学习它不仅是对已学平行线、三角形等知识的综合应用和深化,同时对后面学习的矩形、菱形、正方形及梯形等特殊的平行四边形起到引领作用;其次,平行四边形性质在实际生产和生活中有广泛的应用,如:小区的伸缩门、庭院的竹篱笆等制造时都需要用到平行四边形的性质;第三:从培养学生的逻辑思维能力来说,学生已经初步掌握了推理论证方法,需要进一步巩固和提高,本节课及至本章都是为达到这个目标而设置的.(二)教学对象分析由于学生在“第七章三角形”中已经学过多边形的概念以及多边形内角和、外角和的相关知识,且平行四边形的定义也在小学学过,对它们并不陌生,但对于概念的本质属性的理解并不深刻,需加深理解.在认知过程中,对平行四边形通过辅助线与三角形相联系,加以引导,在学生自主探究的学习过程中,不仅要完成对平行四边形性质的认知,还需有效引导学生的探究欲与成就感.(三)教学环境分析本节教学内容是平行四边形的性质,针对数学学科培养学生逻辑思维与理性探究的学科特点,概念与性质的揭示需要一个渐进的探究过程,不适宜通过网络查阅查询,所以本课选择多媒体教室环境,而多媒体课件的作用,应体现在认知过程中,对学生认知前期的引导,和学生认知后期的验证,应避免以动画的过程替代学生大脑中推演的过程.二、教学目标(一)知识与技能理解平行四边形的定义,掌握平行四边形的有关性质,并能初步应用平行四边形的性质进行简单的计算和证明,解决生活中的实际问题.(二)过程与方法在性质的探索、发现与证明的过程中,培养学生的观察能力及逻辑推理论证能力,渗透“转化”的数学思想.(三)情感态度与价值观引导学生观察、发现,激发学生的好奇心和求知欲,并且引导学生在应用数学知识解决实际问题的活动中体验成功,树立学习的自信心.三、教学重点难点(一)教学重点:让学生亲历平行四边形性质定理的“观察——猜想——验证”过程,理解定理内容,并学会用它们进行有关的论证和计算.(二)教学难点:通过性质定理的推导,培养学生独立思考、自主探索的精神,提高分析问题和解决问题的能力.四、教学方法定理推导上采用引导探索法;设置疑问,引导学生通过观察、猜想、论证、应用等环节积极思考,勇于探索,较好地理解和掌握本节课的学习内容,体验解决问题的方法和乐趣,增强数学学习兴趣.在教学手段方面,利用PPT制作的课件,增大教学容量和直观性,提高教学质量和效率.五、教学过程。
人教版八年级数学下册18.1《平行四边形的性质》教案

然而,我也注意到,一些学生在逻辑推理和数学表达方面还存在困难。在未来的教学中,我需要更多地关注这部分学生,提供更多的指导和支持,帮助他们克服这些难点。
3.增强学生的空间观念,通过实际操作和解决具体问题,让学生理解平行四边形在实际生活中的应用,提高解决几何问题的能力。
4.培养学生的数学建模素养,使学生能够运用平行四边形的性质构建数学模型,解决实际问题,体会数学与实际生活的紧密联系。
三、教学难点与重点
1.教学重点
a.平行四边形的定义及其判定方法:熟练掌握平行四边形的定义,能快速识别图形是否为平行四边形。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的定义、性质和在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对平行四边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了平行四边形的性质,我发现学生们对这一几何图形的概念和性质表现出很大的兴趣。在导入环节,通过提出与生活相关的问题,成功吸引了学生的注意力,他们积极参与,提出了不少有趣的观察和问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是具有两对对边平行的四边形。它在几何图形中非常重要,广泛应用于日常生活和建筑领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了平行四边形在建筑设计中的应用,以及它如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的定义和性质这两个重点。对于难点部分,我会通过图形示例和逻辑推理来帮助大家理解。
华师版八年级数学下册 18.1平行四边形的性质 教案

18.1平行四边形的性质1一.教学目标:(一)、知识与能力:理解平行四边形的概念,掌握平行四边形的边、角、的性质,并能初步用其来解决实际问题.(二)、过程与方法通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生缜密的逻辑思维能力,渗透“转化”的数学思想.(三)、情感、态度与价值观让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.二.导学重点、难点教学重点:探索平行四边形的性质教学难点:平行四边形的性质应用三、教法分析根据本节课特点,我采用以下教法:以问题导学为驱动,学生动手操作为主线。
借助多媒体,利用直观形象的图片、引导学生在观察、操作、猜测、验证与交流等数学活动中,学习平行四边形的性质坚持以学生为主体,教师为指导,让学生在教师的指导下主动探究。
四、学法指导在合理选择教法的同时,也注重了对学生学法的指导:观察猜想。
以学生的操作观察猜想为主,主动探索平行四边形的性质。
合作交流。
采取积极引导、主动参与、互相交流来组织教学,使学生真正成为教学的主体,体会成功的喜悦。
总结归纳。
通过探索学习、练习反馈,引导学生总结归纳本节课学习的主要内容和解决问题的方法,发挥学生的积极性和主动性,培养学生良好的学习习惯。
五.导学准备每位同学准备全等三角形六、教学过程(一)情境导入出示课件观察列举生活中平行四边形,猜谜语。
回顾解决四边形问题的方法(二)新知探究1.拼一拼自主学习:学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动,并引导学生共同得到:平行四边形的定义。
(1)小组为单位展示台展示拼接的方法及结果。
(2)拼出几个平行四边形,对边有怎样的位置关系?(3)请用简洁的语言刻画这个图形的特征。
生拼出的图形【设计目的】让学生对平行四边形与非平行四边形的图形有一个直观和感性的认识,同时也培养学生的求异思维能力。
从操作中抽象出平行四边形的几何图形,培养学生的抽象思维,在提炼图形的过程中,学生强化了对平行四边形定义的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平行四边形的性质第一课时》教学设计
一、内容及内容解析
1.内容
北京师范大学出版社八年级下册第六章第一节平行四边形的性质第一课时.内容为平行四边形的定义,平行四边形边、角的性质.
2.内容解析
平行四边形是一种特殊的四边形,是“图形与几何”部分最基本的几何图形之一,它在生活中有着十分广泛的应用.按照图形概念的从属关系,平行四边形首先是四边形,是四边形中的一类特殊图形,两组对边分别平行是平行四边形的本质属性.
学生在小学就已经认识了平行四边形并了解了它的相关性质,初中阶段研究平行四边形与小学最大的不同是构建平行四边形相关知识的逻辑结构体系,利用平行线和全等三角形的相关知识用逻辑推理的方法研究平行四边形的性质,在研究与应用中进一步发展学生的数学抽象、几何直观和推理能力.
平行四边形是平行线和三角形知识的延续和发展,也是后续学习矩形、菱形、正方形的基础,在教材中起到承上启下的作用.作为章头起始课,承载着单元知识以及学习方法、研究方向的引领作用.类比等腰三角形的学习经验,明确研究几何图形的一般思路:定义——性质——判定——应用,主要从几何图形的构成要素(边、角)和相关要素(对角线)入手,经历观察、猜想、验证等过程来探究平行四边形的性质.学生掌握了平行四边形的研究思路和研究方法,才能运用类比的方法,进一步自主学习矩形、菱形、正方形相关知识,真正实现由学会到会学的目的.平行四边形的性质还为证明线段相等、角相等、两直线平行提供新的方法和依据.
教材中平行四边形的性质这一内容安排了两课时,第一课时研究平行四边形的定义及平行四边形边、角的性质;第二课时研究平行四边形对角线的性质,并应用性质解决简单问题.本节课是第一课时,主要从边、角两方面探究平行四边形的性质,进一步积累几何图形的研究思路和研究方法,在探究中将四边形问题转化为三角形问题,对于培养演绎推理、训练数学思维、积累活动经验等方面
起到重要作用.
本节课的教学重点是:探究和证明平行四边形边、角的性质.
二、目标和目标解析
1.目标
(1)理解平行四边形的概念.
(2)探究并证明平行四边形的性质,并能解决一些简单问题.
(3)经历探索平行四边形概念和性质的过程,明确几何图形的研究思路和研究方法,增强合作交流的意识.
2.目标解析
达成目标(1)的标志是:知道平行四边形与一般四边形的区别和联系,能应用定义进行判断和推理.
达成目标(2)的标志是:能从平行四边形的定义出发证明其边、角的性质,能利用平行四边形对边相等或对角相等的性质进行基本的计算或证明;初步学会从题设或结论出发寻求论证思路的方法,体会转化的数学思想.
达成目标(3)的标志是:明确几何图形研究的一般思路:定义——性质——判定——应用;体验观察、度量、实验、猜想、证明等几何研究的基本活动,体会用合情推理发现结论、用演绎推理证明结论的思考方式;学会在有困难的情况下采取合作交流的学习方式.
三、教学问题诊断分析
在小学阶段,学生已经认识了平行四边形,对平行四边形的有关性质有所了解.初中七年级、八年级学习了平行线和三角形知识,为几何学习打下扎实的基础.对于平行四边形性质的探究与证明,观察、度量等只是发现结论、提出猜想的辅助手段,初中对平行四边形的学习更加注重逻辑推理的方法,从定义出发证明性质,构建知识之间的逻辑体系.这种借助定义来推导性质的方法,学生在等腰三角形等图形的研究中已经经历过,具有初步的经验.但是用逻辑推理的方法构建知识体系,对学生的数学素养、数学思维要求较高,学生独立进行有困难
时,需要引导学生类比等腰三角形的研究思路,提出平行四边形的研究思路,先给出定义,再从定义出发研究性质和判定.此外,证明过程需要添加辅助线转化为三角形,再利用三角形全等来证明线段相等.需要引导学生从需证明的结论(线段相等)入手,连接对角线,再利用三角形知识解决.本班学生数学基础较好,主动学习的意识强,有较好的自主探究与合作交流的能力.
本节课教学的难点是:确定研究思路与内容,在证明中合理添加辅助线.
四、教学支持条件分析
借助多媒体课件,帮助学生在实际生活中抽象出平行四边形,回忆相关知识;类比等腰三角形的学习,帮助学生确定平行四边形的研究路径;在小结部分和学生一起形成知识网络框架,梳理知识和方法,帮助学生反思.
教具的展示,使性质的探究更直观有效,激发参与热情;在性质的探究与证明过程中,独立思考难免存在困难,小组合作的方式,生生互动,解决问题的同时,进一步培养团队协作能力.
五、教学过程设计
生活中的平行四边形
重庆大剧院
在生活中平行四边形运用如此
六、目标检测设计
1.如图,在□ABCD 中:
(1)若∠A =130°,则∠C 的度数是( ). A .50° B .100° C .130° D .150° (2)若AB = 4cm ,BC =5 cm ,则□ABCD 的周长为_____cm .
(3)若AB =3 cm ,□ABCD 的周长为14 cm ,则AD 的长为____cm . (4)若∠B +∠D =90°,则∠A = 度,∠B = 度.
设计意图:四个小题针对性强,层层递进,由浅入深,有效促进学生对本节课所学概念与性质更加深刻的理解与掌握.其中第(2)、(3)小问考查平行四边形对边相等的性质,第(1)、(4)小问考查平行四边形对角相等的性质.
2.如图,在平行四边形ABCD 中,AF =CE .求证:AE =CF .
B D
第1题图
A
D
C
E B
F
第2题图
3.如图,在□A BCD 中,AM ⊥BC ,CN ⊥AD ,垂足分别为M ,N .求证:BM =DN . 设计意图:第2、3两题考查综合运用平行四边形性质与三角形全等知识解决问题的能力.其中第3题也可以利用平行四边形的定义及性质来证明.
七、板书设计
N
D
A
C
M
B
第3题图。