怎样改变模拟量的正负值来控制伺服电机正反转

合集下载

伺服电机的调试步骤

伺服电机的调试步骤

伺服电机的调试步骤伺服电机是一种能够根据反馈信号控制位置和速度的电动机。

调试伺服电机主要涉及到参数设置、回路调节以及系统性能测试等方面。

下面是关于伺服电机调试步骤的详细说明。

步骤一:安装布置1.确保伺服电机正确安装到目标设备上,并连接好电源和控制器。

2.检查电机和控制器的接口是否正确连接,并确认连接线松紧适宜。

步骤二:设置控制器参数1.根据伺服电机的技术参数和要求,进行控制器参数的设置,如编码器分辨率、调度频率等。

2.设置控制器的电流限制以及过压、过流等保护参数,以确保电机的安全运行。

步骤三:调节电流环1.首先,先将速度环和位置环的比例增益设置为0,即断开速度反馈和位置反馈,只进行电流环的调节。

2.根据电机的静态工作电流和最大运行电流,逐步增加电流环的比例增益,观察电机运行是否正常,避免产生振荡或过流等异常现象。

3.测量和检查电机的静态电流和冷启动电流,调整电流环的积分增益,尽量减小静态偏差,并提高电机的动态响应性能。

步骤四:调节速度环1.首先,将位置环的比例增益设置为0,仅保持电流环的闭环控制,在此基础上进行速度环的调节。

2.将速度环的比例增益设置为一个较小的初始值,然后逐步增大,以避免过冲和超调。

观察电机的速度响应是否稳定且迅速。

3.根据速度环的实测速度和设定速度,调整速度环的积分增益,以改善电机的速度跟踪和稳定性能。

步骤五:调节位置环1.将位置环的比例增益设置为一个适当的初始值,然后逐步增大。

观察电机的位置跟踪和稳定性能。

2.根据位置环的实测位置和设定位置,调整位置环的积分增益,以改善电机的位置跟踪和稳定性能。

3.根据电机的运行要求,调整位置环的微分增益,以提高系统的稳定性和动态性能。

步骤六:系统性能测试1.进行伺服电机的系统性能测试,如频率响应测试、阶跃响应测试、脉冲响应测试等。

2.根据测试结果,调整和优化伺服电机的各个环节参数,以提高系统的控制精度和动态性能。

步骤七:系统稳定性验证1.在不同工作负荷和工作条件下,对伺服电机进行稳定性验证,观察和记录其动态响应和稳定性能。

模拟量信号控制伺服电机

模拟量信号控制伺服电机

什么叫“零漂”,及如何解决“零漂”现象?
零点漂移可描述为:输入电压为零,输出电压偏离零值的变化。它又被简称为:零漂。
零点漂移是怎样形成的: 运算放大器均是采用直接耦合的方式,我们知道直接耦合式放大
电路的各级的 Q 点是相互影响的,由于各级的放大作用,第一级的微弱变化,会使输出极
产生很大的变化。当输入短路时(由于一些原因使输入级的
在实验过程中,当模拟量输入 0v 时,电机并没有发生偏移现象。但是,我在试 验手册里还是找到了相关参数。
W 伺服对应“零漂”调整参数
Pn314=250 ( S 曲线加减速时间 250ms )
4. 实验过程
使用 CP1H-XA40DT-D 的模拟量输出功能,使用 模拟量与速度对应关系如下图所示:
G5 模拟量速度控制功能。 Nhomakorabea在实验过程中,发现当模拟量输入为 0v 时,电机以一个很缓慢的速度向 CW 方向旋转,即 发生了“零漂”现象。 在闭环控制中,“零漂”现象对精度的控制有一定的影响,需要抑制住“零漂”现象。
Q 点发生微弱变化,比如:温
度),输出将随时间缓慢变化,这样就形成了零点漂移。 解决“零漂” 最有效的方式: 随着三极管的导通工作, 其温度会上升, 导致扩散运动加剧 Ic、
Ie 电流增大,随之 Re 两端电压增大, Vbe 的电压就减小, Ib 也随之减小,从而使 Ic 减小, 形成了负反馈,这就是其抑制零漂的原理。
试验 1
1. 接线方式
模拟量信号控制伺服电机
2. 实验设备 R88D-KT02H R88M-K20030H-S2-Z CP1H-XA40DT-D
3. 实验参数设定
Pn000=1 (伺服旋转方向选择 0: CW 方向-右转 1: CCW 方向-左转)

伺服PID调节与域值设置

伺服PID调节与域值设置

伺服电机PID控制及增益调节1、伺服电机3环电流环:最内环,此环在伺服启动器内进行,装在线圈上的霍尔元件通过检测磁场强度转化为电流,把电流负反馈给输入端。

电流环是控制的根本,任何控制都是通多电流来作为媒介控制的。

可用于转矩控制,通常有重力负载情况下使用。

例如如果10V对应5N的力,如果负载低于5N电机正转,如果高于5N电机反转。

速度环:通过检测电机编码器的信号频率来获得电机速度。

它的环内PID 输出直接就是电流环的设定输入,所以速度环包括了速度环和电流环。

用于速度控制。

位置环:最外环,通过检测电机编码器的计数并获得转动角度,通过编码器的频率获得速度。

位置环内部PID运算后的输出是速度环的设定输入,位置环的运算包括了所有环的计算,所以运算量最大。

用于位置控制,由于位置模式对速度和位置都有严格的控制,所以一般用于定位装置。

2、各环的工作计算原理和联系位置环:设定值:外部脉冲经过平滑滤波处理和电子齿轮计算后作为“设定的位置环的标准输入值”负反馈:编码器反馈的脉冲信号经过偏差计数器计算后的数值差值:设定值和负反馈之间的差值。

PID调节:将上面差值做PID调节(比例增益调节,无积分微分调节)速度环:设定值:位置环差值经PID调节后的值和位置环的设定值的和。

负反馈:编码器反馈的信号经过速度运算器的运算得到。

差值:设定值和负反馈之间的差值。

PID调节:将上面差值做PID调节(通常是比例增益调节,积分调节)电流环:设定值:速度环的差值经PID调节后的值。

负反馈:安装在线圈每相上的霍尔元件将磁场转换为电压电流信号作为反馈。

差值:设定值和负反馈之间的差值。

PID调节:将上面差值做PID调节。

最终:将上面电流环的PID调节后的值作为最终的输出值,将其电流作用在电机线圈上实现点机的控制。

3、PID调节比例控制(P):将输入的差值(误差信号)做比例放大,放大误差信号的强度值,这样作用于电机上就可以加强响应效果,使系统快速响应,减小残差。

伺服电机编码器调零对位方法

伺服电机编码器调零对位方法
1、是电机高速反转,这是由于编码器与实际零位相差太大所致,不必惊慌,你可以把编码器转过一个角度直到电机能静止下来为止.、是电机在零速指令下处于静止状态,这时你可以小心地先反时针转动编码器,注意:一定要慢,直到电机开始高速反转,记下该位置同时立即往回调至静止区域.这里要求两手同时操作,一手作旋转,另一手拿好记号笔,记住动作一定要快,也不可慌乱失措,完全没必要,这是正常现象.然后按顺时针继续缓慢转动直到又一次高速反转的出现,记下该位置并立即往回调至静止区,
找到中心位置后并把这个位置擦干净,只要把编码器底座用502胶直接固定于电机侧面对应处即可.待502干了后再在上机涂上一层在硅橡胶即可投入正常运行.实践证明,正常情况下这样处理后的伺服电机使用一年是没有问题的,
从上面的调整可以看出,由于编码器的轴与电机轴心是可以随便以任一角度连接的,所以编码器零位与电机的机械位置只是相对位置而已,只有编码器的轴与电机轴固定了,那么编码器的实际零位位置也便固定下来了,如果活动底座位置确定了,那么轴间的柱头镙钉的位置也便固定了.
伺服电机编码器调零对位方法
2013-1-9 10:24:00 来源:
[关闭][打印]?
一台AB伺服电机(MPL-B640F-MJ24AA),拆开检查刹车时由于客户无知,连装在电机尾部固定的编码器也拆了下来(没做标记),编码器是sick的SRM50-HFA0-K01。装上后刹车没问题,但出现飞车故障。伺服驱动器报错E18?OVER?SPEED或者E24?velocity?error。
通过上述调整,你会发现增量式伺服电机其实有一个较宽的可调区域,而这个区域里的中间位置就是伺服电机最大力矩输出点,如果一个电机力矩不足或正反方向运行时有一个方向上力矩不足往往是因为编码器的Z信号削弱或该位置偏离中心所致,即零位发生了偏离,一般重新调整该零位即可.

伺服参数调节原则与方法

伺服参数调节原则与方法

一.伺服驱动器对伺服电机的主要控制方式?位置控制、速度控制和转矩控制。

位置控制方式的特点:(机床设备等)是驱动器对电机的转速、转角和转矩均于控制,CNC对驱动器发脉冲串进行转速与转角的控制,输入的脉冲频率控制电机的转速,输入的脉冲个数控制电机旋转的角度。

脉冲频率f与电机转速n(rpm)、脉冲个数P与电机旋转角度β的关系参见下式:式中:G—电子齿轮比速度控制方式的特点:(传送带设备等)是驱动器仅对电机的转速和转矩进行控制,CNC对驱动器发出的是模拟量(电压)信号,范围为+10V~-10V,正电压控制电机正转,负电压控制电机反转,电压值的大小决定电机的转速。

电机的转角由CNC取驱动器反馈的A、B、Z编码器信号进行控制。

转矩控制方式的特点:(收放卷设备等)是驱动器仅对电机的转矩进行控制,电机输出的转矩不随负载改变,只听从于输入的转矩命令,CNC对驱动器发出的是模拟量(电压)信号,范围为+10V~-10V,正电压控制电机正转,负电压控制电机反转,电压值的大小决定电机输出的转矩。

电机的转速与转角由上位机控制。

二:什么是电子齿轮比(G)?当机械装置的传动比不能满足数控装置脉冲当量的要求时,用电子齿轮比,来配合数控装置与机械传动比之间的关系,满足数控装置所需要的脉冲当量。

它起到了一个输入与输出变比的作用。

电子齿轮比仅在位置控制中起作用。

电子齿轮比数值设置过大,会降低伺服电机的运行状态。

脉冲当量(M):CNC每变化一个最小数字单位时,要求相应的机械装置有一个设定的长度或角度的相应变化,称为脉冲当量,如0.001mm。

电机每转脉冲数(P):电机旋转一圈电机反馈元件反馈的脉冲数,计算方式为电机编码器的线数的4倍。

如:360×4=1440,2500×4=10000等。

丝杆螺距(L):指的是机械传动丝杆的螺纹之间的距离。

机械齿轮比(i):指的是减速机的机械齿轮比等。

电子齿轮比计算公式:G=(P ×M×i)÷L三:伺服驱动器速度环、位置环参数调整的原则是什么?伺服电机使用效果如何,除了与电机和驱动器的性能有关外,驱动器参数的调整也是一个十分关键的因素。

伺服电机相位调整方法

伺服电机相位调整方法

[PLC伺服与运动控制]伺服电机转子反馈的检测相位与转子磁极相位的对齐方式(转)转自工控网论坛主流的伺服电机位置反馈元件包括增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等。

增量式编码器的相位对齐方式在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UV W,UVW各自的每转周期数与电机转子的磁极对数一致。

带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下:1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;2.用示波器观察编码器的U相信号和Z信号;3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置;4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系;5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z 信号都能稳定在高电平上,则对齐有效。

撤掉直流电源后,验证如下:1.用示波器观察编码器的U相信号和电机的UV线反电势波形;2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。

上述验证方法,也可以用作对齐方法。

需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。

伺服电机的控制模式及增益调整的详细说明

伺服电机的控制模式及增益调整的详细说明

 伺服电机的控制模式及增益调整第一部分:伺服电机的控制模式详解1. 转矩控制:转矩控制方式是通过外部模拟量的输入或直接的 地址的赋值来设定电机轴对外的输出转矩的大小,具体表现 为例如 10V 对应 5Nm 的话,当外部模拟量设定为 5V 时电机 轴输出为 2.5Nm:如果电机轴负载低于 2.5Nm 时电机正转,外 部负载等于 2.5Nm 时电机不转,大于 2.5Nm 时电机反转(通 常在有重力负载情况下产生) 可以通过即时的改变模拟量的 。

设定来改变设定的力矩大小,也可通过通讯方式改变对应的 地址的数值来实现。

应用主要在对材质的受力有严格要求的 缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的 设定要根据缠绕的半径的变化随时更改以确保材质的受力不 会随着缠绕半径的变化而改变。

2. 位置控制:位置控制模式一般是通过外部输入的脉冲的频率 来确定转动速度的大小, 通过脉冲的个数来确定转动的角度, 也有些伺服可以通过通讯方式直接对速度和位移进行赋值。

由于位置模式可以对速度和位置都有很严格的控制,所以一 般应用于定位装置。

3. 速度模式:通过模拟量的输入或脉冲的频率都可以进行转动 速度的控制,在有上位控制装置的外环 PID 控制时速度模式 也可以进行定位,但必须把电机的位置信号或直接负载的位1 郑州力创自动化——专业食品包装机械制造商  置信号给上位反馈以做运算用。

位置模式也支持直接负载外 环检测位置信号, 此时的电机轴端的编码器只检测电机转速, 位置信号就由直接的最终负载端的检测装置来提供了,这样 的优点在于可以减少中间传动过程中的误差,增加整个系统 的定位精度。

4. 全闭环控制模式:全闭环控制是相对于半闭环控制而言的。

首先我们来了解下半闭环控制,半闭环是指数控系统或 PLC 发出速脉冲指令。

伺服接受指令,然后执行,在执行的过程 中,伺服本身的编码器进行位置反馈给伺服,伺服自己进行 偏差修正,伺服本身误差可避免,但是机械误差无法避免, 因为控制系统不知道实际的位置。

模拟量转矩偏置调整方法

模拟量转矩偏置调整方法

附件四模拟量转矩偏置调整方法一、称重传感器输出接到VG7的Ai1-M端子上,功能码E-49设成“5:转矩偏置”。

二、模拟量转矩偏置控制方框图三、关于模拟量转矩偏置输入极性根据升降方向和电动机旋转方向以及输入电压极性,按照下表设定加在Ai1或Ai2端子上的模拟量转矩偏置的增益设定值(E53或E54)。

四、模拟量转矩偏置平衡调整 操作面板上的名称是「Ai3偏置」E 5 9 A i 3 偏 置设定范围:-100. 0 ~ 100.0 (%)◆ 将平衡载荷时的模拟量转矩偏置输入电压以相对于10V 的百分比进行设定。

(1)上升运转电动机正转时平衡载荷时输入电压的绝对值(V )×100(%)10(V )设定值为(+)(2)上升运转电动机反转时平衡载荷时输入电压的绝对值(V )×100(%)- 10(V )设定值为(-)五、模拟量转矩偏置增益调整◆ E55设定值为驱动运转时的增益,E56设定值为制动运转时的增益,乘以模拟量转矩偏置输入值。

◆ 根据载重检测器的输入电压,设定增益。

在100%载荷和0%载荷的状态下, 用LED 监视器上确认的恒速运转时的转矩指令值来确定模拟量偏置输入电压(相当于载重量)的增益。

设定标准(1) E55(驱动时的增益)τ100up :在100% 载荷状态下恒速上升时LED 显示的转矩指令值[%]。

E59 =E59 =τ100up [%]10[V]×[(100%载荷的输入电压)[V]-(平衡载荷时的输入电压)[V] ]τ0dwn :在0% 载荷状态下恒速下降时LED 显示的转矩指令值[%]。

τ0dwn10[V]×[(100%载荷的输入电压)[V]-(平衡载荷时的输入电压)[V] ](2) E56(制动时的增益)τ100up :在100% 载荷状态恒速上升时LED 显示的转矩指令值[%]。

τ100up [%]10[V]×[(100%载荷的输入电压)[V]-(平衡载荷时的输入电压)[V] ]τ0dwn :在0% 载荷状态下恒速下降时LED 显示的转矩指令值[%]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档