核分析技术资料概论
核工程与核技术专业导论

专业导论2012核工程与核技摘要从应用的角度讲,核技术主要包括射线和粒子束技术与放射性核素技术。
前者主要包括核分析技术、辐射加工与离子束加工、无损检测、工业核仪表、核医学成像、肿瘤放疗和辐射诱变育种技术等;后者则主要包括放射性核素测年、放射性核素示踪和放射性药物。
射线和粒子束与物质的相互作用是核技术的物理基础,粒子加速器技术和核探测技术是核技术的主要支撑技术。
本文介绍了上述各技术领域的发展,并介绍北京大学的核技术及应用研究工作。
关键词核技术;应用;粒子加速器;核探测技术;射线;粒子束;放射性核素中图分类号TL5;TL8;TL92;TL99;O571.3术姓名:张朝平班级:双核二班学号:201206020212时间:2013-1-3一、培养目标本专业培养适应我国国民经济和国防核科技工业发展需要的,能在核技术及相关专业领域从事研究、设计、生产、应用和管理等的专门人才。
本专业培养的人才应具有良好的数理基础、扎实的专业知识和熟练的专业技能,能够适应核技术各个方向发展的基本需要;同时应具有较好的人文社会科学和管理知识,较高的道德素质和文化素质,身心健康,全面发展。
素质要求:热爱祖国,拥护中国共产党的领导,逐步树立科学的世界观和人生观。
具有健全的法治意识、诚信意识和集体主义精神,具有良好的思想品德、社会公德和职业道德。
具有较好的人文、艺术修养和文字、语言表达能力,了解历史和世界,积极参加社会实践活动,适应社会发展与进步,具有良好的心理素质和合作意识精神,具有健康的体魄和进取精神。
具有良好的理论基础和扎实的专业知识,掌握熟练的专业技能,勤奋、严谨、求实、创新,有科学精神和奋斗意识。
能力要求:具有较强的获取知识、更新知识和应用知识的能力,良好的表达能力、社交能力和计算机及信息技术应用能力。
在核技术及相关的科研、应用和开发领域,能够综合应用所学知识,发现和分析解决实际问题,具有通过创造性思维进行创新实验和科技研究开发的能力。
染色体核型分析系列之三大技术介绍

染色体核型分析三大技术介绍·概念是细胞遗传学研究的基本方法,是研究物种演化、分类以及染色体结构、形态与功能之间关系所不可缺少的重要手段。
经行核型分析后,可以根据染色体结构和数目的变异来判断生物的病因。
染色体核型分析技术,传统上是观察染色体形态。
但随着新技术的发现与应用,染色体核型分析三大技术包括:GRQ带技术、荧光原位杂交技术、光谱核型分析技术。
·三大技术介绍一、GRQ带技术人类染色体用Giemsa染料染色呈均质状,但是如果染色体经过变性和(或)酶消化等不同处理后,再染色可呈现一系列深浅交替的带纹,这些带纹图形称为染色体带型。
显带技术就是通过特殊的染色方法使染色体的不同区域着色,使染色体在光镜下呈现出明暗相间的带纹。
每个染色体都有特定的带纹,甚至每个染色体的长臂和短臂都有特异性。
根据染色体的不同带型,可以更细致而可靠地识别染色体的个性。
染色体特定的带型发生变化,则表示该染色体的结构发生了改变。
一般染色体显带技术有G显带(最常用),Q显带和R显带等。
百奥赛图提供的小鼠染色体核型分析服务,就是利用Giemsa染色法,对染色体染色后进行显带分析,保证基因敲除小鼠在染色体水平阶段没有发生变异,从而确保基因敲除小鼠可以正常繁殖。
二、荧光原位杂交技术荧光原位杂交(fluorescenceinsituhybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子结合,杂交后再通过免疫细胞化学过程连接上荧光染料。
FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA纤维切片上,再用与荧光素分子耦联的单克隆抗体与探针分子特异性结合,来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析,可判断单个碱基突变。
核技术

中国工程检测网( )
郭之虞 王宇钢
(北京大学重离子物理研究所,重离子物理教育部重点实验室,北京,100871)
包尚联
(北京大学重离子物理研究所,医学物理和工程北京市重点实验室,北京,100871)
中子与物质的相互作用如散射,慢化,扩散和辐射俘获等,对于反应堆技术至关重要,故很早就进行了仔细的研究.但近年来随着中子散射技术的发展,中子在晶体中的散射(包括衍射)和在液体中的散射也得到了充分的研究.后者可用于软物质的研究,为生命科学的研究提供了新手段.
1.2 粒子加速器技术
摘 要 从应用的角度讲,核技术主要包括射线和粒子束技术与放射性核素技术.前者主要包括核分析技术,辐射加工与离子束加工,无损检测, 工业核仪表,核医学成像,肿瘤放疗和辐射诱变育种技术等;后者则主要包括放射性核素测年,放射性核素示踪和放射性药物.射线和粒子束与物质的相互作用是核技术的物理基础,粒子加速器技术和核探测技术是核技术的主要支撑技术.本文介绍上述各技术领域的发展,并介绍北京大学的核技术及应用研究工作.
1.3 核探测技术
核探测技术是高能物理及核物理实验研究的基础,也是核技术的重要支撑技术.从本质上讲,探测器是一种能量转换仪器,它可将辐射(粒子束)的能量通过与工作介质的相互作用(如产生光子或电子等)转化为电信号,再由电子学仪器记录和分析.通常的核探测器主要包括气体探测器(利用射线或粒子束在气体介质中的电离效应探测辐射),闪烁体探测器(利用射线或粒子束在闪烁体中的发光效应进行探测)及半导体探测器(利用射线或粒子束在半导体介质中产生的电子空穴对在电场中的漂移来探测辐射).在核物理发展的早期,气体探测器是主要的探测器.20世纪50年代以后气体探测器逐渐被闪烁探测器和半导体探测器取代,但在某些领域气体探测器因其独特的性能仍在使用和发展.特别是70年代以来,在高能物理实验中又获得了广泛应用.闪烁体探测器近年来发展很快并在核医学成像方面得到了广泛应用.随着60年代半导体工业的兴起,半导体探测器也迅速发展起来.由于其能量分辨本领好,线性范围宽,体积小,集成度高等优势,加上其成本不断降低,它的应用领域正在不断扩大.另外,针对中子辐射的特殊性,人们发展了专门的中子探测器.在大型粒子物理实验及地学,矿物学等研究中,核径迹探测器也发挥着重要的作用.随着材料科学,计算机技术及成像技术的飞速发展,核探测技术也在迅猛发展之中.在以前用于带电粒子探测的半导体探测器中,其材料基本都是单晶Si和Ge(Li)(包括高纯Ge),目前CdZnTe,GaAs以及a-Se等材料不象Ge一样需要低温,因此发展势头非常好.在无机及有机闪烁体材料中,也不断有体积越来越大或厚度越来越薄的材料出现(目前有机薄膜闪烁体可以做到几个微米厚),同时由于掺杂了一些高量子效率的元素,闪烁体的量子效率也在不断提高.气体无线条微图形探测器开始在大面积探测使用中与Si半导体探测器竞争;微剥离气体室(MSGC)探测器及基于气体电子倍增管(GEM)的探测器以及基于GEM的气体雪崩成像光电倍增管也开始出现.
核分析技术与地球科学

的要 求 , 映 出 当今 核分 析 技术 发 展 的趋 势 。 反
1 元素总量 的分析
地 学 研 究 中利 用 微 量 元 素 揭 示 出 大量 的 信 息 , 推 动 了地球 化 学 领域 各 方 面 的研 究 。因此 地 质样 品
中微 量 元 素 的测试 成 为迫 切 的 问题 ,从 2 O世 纪 8 O
分 离 , 化 后 的样 品才能进 行测定 。这样 就使得 分析 纯 既费时 又费力使 中子活化分 析 的应用 受到 很大 限制 。 七 、 十年代 随着科学技 术 的发 展 , 八 半导体工业 得到很 大 的发展 , 锗锂 探测器 G (i e ) L 及高 纯锗 ( G ) 测器 HP e 探 的 出 现 , 能 量 分 辨 率 大 大 提 高 , 而使 活 化 分 析 把 从
实验 装 置及 其 应 用 , 别指 出了在 地 学研 究领域 中的 应 用前 景 。 特
关键词 核 分析 技 术 地 球科 学
为 7 0 k , 中子 通量 为 4 7 1 /c s。 00W 堆 - x 03 ( ・1 n m 游泳 池 反 应 堆 :用 水 作 为 中 子 减 速 剂 或 慢 化 剂 , 的慢 化 不 如 重 水 反 应 堆 , 就 是 堆 中 子 除 了 它 也 热 中子 外 , 有 较 高 通量 的超 热 中 子 和快 中子 。所 还 以 引起 核 反 应 除 ( ^ 反 应 外 , 产 生 ( ) 应 , n y ) 还 n P反 此 种 反应 堆 中子 通 量一 般 < 03/c s。清 华 大学 1 ( ・) n m 的反应 堆 和原 子 能 院 的 4 — 9 2堆 属 于此 种 反应 堆 。 S O O E微 型反 应堆 : 种 反应 堆 用水 作 慢 L WP K 这
第1章核反应堆设计概论

核技术应用

3、后装治疗仪 后装治疗仪是一种远距离控制小射线 源(钴60,铯137等)的治疗装置。
4、快中子治疗仪 中子源14MeV D-T中子发生器
5、负π介子治疗仪
放射治疗是癌症治疗的主要手段。最早用于治 疗癌症的是X射线,50年代出现了远距离钴60 治疗机,进入60年代后,医用加速器技术应运 而生。由于医用加速器能产生电子、X、γ等射 线,射线定向性好,能量高,穿透性强,并且
1. X射线透视:利用X射线的穿透性和荧 光作用进行透视检查,X线穿过受检组 织或脏器将它们投影到荧光屏上,供 医生观察和诊断。
2. X线摄影:利用X线的穿透性和感光 性,将受检组织或脏器显象在胶片上, 称为X线照相。
1、X线造影技术:用造影剂注入到 受检脏器,以增加它们与周围组 织的对比度,提高影像分辨率。
王德忠教授 机械与动力工程学院
核医学 核农学 核分析技术
1.什么是核医学 核医学是一门利用开放型放射性核素诊断
和治疗疾病的学科。
放射诊断学(agnostic radiology)是利用X 射线诊断疾病的学科;
放射治疗学(therapeutic radiology)是利用 核射线(X、γ、β一和中子流等)对疾病进行 辐射治疗的学科;
为加强国际合作与交流,1984年NCT国际协作组织成立。
此后,日本、美国、荷兰、英国、芬兰、澳大利亚和德国 等国制定了BNCT中长期发展计划,主要集中在脑胶质细胞 瘤的治疗上;
20世纪90年代后,日本的皮肤病专家Mishima开始了BNCT 在恶性黑色素瘤治疗方面的研究;
意大利、我国台湾省正在研究BNCT治疗肝癌的技术,特别 是意大利,已有成功试治的的先例。
目前能够最大程度接近这些要求的中子源只有反 应堆中子源,但世界上正全力开拓小型加速器中 子源及辅助设备,从90年代初开始,已吸引了几 十个研究组在开展研究工作。
1-核科学概论基础知识

α衰变
238 92
U Th He
234 90 4 2
β衰变
3 1
H He
3 2
γ衰变核素不会变化,只改变原子核内部状态。 γ射线与X射线相似,它是一种波长更短,能量 更高的电磁波。
29
核科学与技术概论
放射性同位素的半衰期
放射性同位素通过发射各种射线使原子 核发生转变(衰变),这种过程的快慢 用衰变的半衰期表示。 放射性同位素的原子核数目衰减为初始 值一半时所需要的时间,为半衰期。
34
核科学与技术概论
原子能的释放
一个铀-235原子核受一个中子轰击后能 分裂为两块碎片(中等质量的原子核), 同时放出2~3个中子和大量的能量,放 出的能量比化学反应中释放出的能量大 得多,这就是核裂变能,也就是我们所 说的核能。
35
核科学与技术概论
原子能的释放
1 0Байду номын сангаас
n U Kr Ba 2 n E
到2003年底,全世界核电总装机容量达 到3.6亿千瓦,发电量占总发电量的 16~17%; 80年代以后基本保持原来水平; 美国核电已占全国发电量的22%; 法国核电已占全国发电量的78%。
16
核科学与技术概论
中国核电发展
2003 年 核 电 发 电 量 占 全 国 总 发 电 量 的 2.2%。 目前核电装机容量913万千瓦,仅占全国 发电装机总容量的2%左右。
教学目的
了解核领域 建立初步概念 热爱本专业
10
核科学与技术概论
3. 课程参考资料
关于植物核型分析的标准化问题

关于植物核型分析的标准化问题一、本文概述植物核型分析作为一种重要的细胞遗传学技术,对于揭示植物遗传物质的结构和变异,以及理解植物进化和适应机制具有重要意义。
然而,随着技术的不断发展和研究的深入,植物核型分析在标准化方面面临着一系列挑战。
本文旨在探讨植物核型分析的标准化问题,通过分析当前植物核型分析技术在实际应用中存在的问题和不足,提出相应的标准化建议,以期推动植物核型分析技术的规范化和准确化,为植物科学研究和应用提供有力支持。
文章将首先介绍植物核型分析的基本原理和技术流程,然后分析当前植物核型分析标准化面临的问题和挑战,接着提出具体的标准化建议,包括样本采集、预处理、核型制备、观察和分析等方面的标准化要求,最后展望植物核型分析标准化的未来发展趋势和前景。
通过本文的阐述,期望能够为植物核型分析技术的标准化提供有益参考和借鉴。
二、植物核型分析的基本概念植物核型分析是一种对植物细胞核染色体形态、结构和数量进行研究的生物技术。
核型,即细胞核内所有染色体的集合,反映了物种的遗传信息及其组织方式。
通过核型分析,我们可以了解染色体的数量、形态、大小和结构,从而揭示物种的遗传特性、亲缘关系、进化历程和染色体变异等信息。
核型分析的基本步骤包括染色体制备、显带技术、显微观察和图像分析。
通过特定的细胞处理方法,如秋水仙碱阻断细胞分裂,我们可以获得含有中期染色体的细胞样本。
然后,利用显带技术,如Giemsa 染色、C带技术等,使染色体呈现出明显的形态和结构特征,便于观察和计数。
接着,通过显微镜观察,我们可以获取染色体的形态、大小和数量等基本信息。
利用图像分析软件,我们可以对染色体进行精确测量和统计分析。
在核型分析中,有几个重要的概念需要注意。
首先是染色体组型,它是指一个体细胞中所有染色体的形态、大小和数量的总和,反映了物种的遗传基础。
其次是染色体带型,它是指染色体经过显带技术处理后呈现出的特定图案,有助于识别和区分不同的染色体。