双参数威布尔分布函数的确定及曲线拟合
威布尔分布参数计算方法

威布尔分布参数计算方法\[ f(x;\lambda, k) = \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k} \]其中,$\lambda>0$和$k>0$是威布尔分布的两个参数,$\lambda$称为尺度参数,$k$称为形状参数。
下面将介绍如何计算威布尔分布的参数。
##最大似然估计法最常用的参数估计方法是最大似然估计法。
假设我们有$n$个样本数据$x_1, x_2, ..., x_n$,要估计威布尔分布的参数$\lambda$和$k$。
首先,根据概率密度函数,我们可以得到似然函数:\[ L(\lambda, k ; x_1, x_2, ..., x_n) = \prod_{i=1}^{n}\frac{k}{\lambda} \left(\frac{x_i}{\lambda}\right)^{k-1} e^{-(x_i/\lambda)^k} \]为了方便计算,我们可以求似然函数的对数:\[ \log L(\lambda, k ; x_1, x_2, ..., x_n) = n \log k - n \log \lambda + (k-1) \sum_{i=1}^{n}\log\left(\frac{x_i}{\lambda}\right) - \sum_{i=1}^{n}\left(\frac{x_i}{\lambda}\right)^k \]接下来,我们需要最大化对数似然函数。
可以通过求偏导数等于0来求解最大化的参数。
求解$\lambda$的最大似然估计值:\[ \frac{\partial \log L}{\partial \lambda} = -\frac{n}{\lambda} + \frac{(k-1)}{\lambda} \sum_{i=1}^{n}\frac{x_i}{\lambda} - \sum_{i=1}^{n} \frac{x_i^k}{\lambda^{k+1}} = 0 \]化简上式得到:\[ \sum_{i=1}^{n} \left(\frac{x_i}{\lambda}\right)^k =\frac{(k-1)}{n} \sum_{i=1}^{n} \frac{x_i}{\lambda} \]我们可以定义一些中间变量:\[ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]\[ s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \]将上面的结果代入方程中:\[ \left(\frac{\bar{x}}{\lambda}\right)^k = \frac{(k-1)}{n} \frac{\bar{x}}{\lambda} \]进一步整理可得:\[ \lambda = \left(\frac{\bar{x}}{k-1}\right)^{1/k} \]接下来求解$k$的最大似然估计值,我们将$\lambda$的最大似然估计值带入似然函数中,得到:\[ \log L(k ; x_1, x_2, ..., x_n) = n \log k - n \log\left(\frac{\bar{x}}{k-1}\right)^{1/k} + (k-1) \sum_{i=1}^{n}\log\left(\frac{x_i}{\left(\frac{\bar{x}}{k-1}\right)^{1/k}}\right) - \sum_{i=1}^{n}\left(\frac{x_i}{\left(\frac{\bar{x}}{k-1}\right)^{1/k}}\right)^k \]类似地,对上式求偏导等于0,可以得到对$k$的求解。
正态分布、指数分布、对数正态分布和威布尔分布函数及在工程分析中的应用

正态分布、指数分布、对数正态分布和威布尔分布函数及其在工程分析中的应用071330225 洋洋目录正态分布函数 (3)正态分布应用领域 (4)正态分布案例分析 (5)指数分布函数 (5)指数分布的应用领域 (6)指数分布案例分析 (7)对数正态分布函数 (7)对数正态分布的应用领域 (9)对数正态分布案例分析 (9)威布尔分布函数 (10)威布尔分布的应用领域 (16)威布尔分布案例分析 (16)附录 (18)参考文献 (21)正态分布函数【1】105正态分布概率密度函数f(t)蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 绿线:μ=1 σ=3均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。
σ越小,曲线越陡峭;σ越大,曲线越扁平。
105均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。
σ越小,图像越陡。
105正态分布可靠度函数R(t)蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。
σ越小,图像越陡。
105正态分布失效率函数λ(t)蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。
σ越小,图像越陡。
正态分布应用领域【1】正态分布是一种最常见的连续型随机变量的分布,它在概率论和数理统计中无论在理论研究还是实际应用上都占有头等重要的地位,这是因为它在误差理论、无线电噪声理论、自动控制、产品检验、质量控制、质量管理等领域都有广泛应用.数理统计中多重要问题的解决都是以正态分布为基础的.某些医学现象,如同质群体的身高、红细胞数、血红蛋白量、胆固醇等,以及实验中的随机误差,呈现为正态或近似正态分布;有些资料虽为偏态分布,但经数据变换后可成为正态或近似正态分布,故可按正态分布规律处理。
正态分布案例分析【1】例1.10 某地1993年抽样调查了100名18岁男大学生身高(cm),其均数=172.70cm,标准差s=4.01cm,①估计该地18岁男大学生身高在168cm以下者占该地18岁男大学生总数的百分数;②分别求X+-1s、X+-1.96s、X+-2.58s围18岁男大学生占该地18岁男大学生总数的实际百分数,并与理论百分数比较。
双参数威布尔分布函数的确定及曲线拟合

ISSN1672-9064CN35-1272/TK图1威布尔函数拟合曲线的仿真系统模块作者简介:包小庆(1959~),男,高级工程师,从事可再生能源的研究。
大型风电场的建设不但可以减缓用电短缺情况,而且并网后还能为电网提供很大一部分电能。
而大型风电场的选址,与该地的风速分布情况有关。
用于描述风速分布的模型很多,如瑞利分布、对数正态分布、r分布、双参数威布尔分布、3参数威布尔分布,皮尔逊曲线拟合等。
经过大量的研究表明,双参数威布尔分布函数更接近风速的实际分布。
本文采用4种方法计算威布尔分布函数的参数,并利用计算出的参数确定威布尔分布函数的实际数学模型进行曲线拟合。
最后以白云鄂博矿区风电场拟选址为例,使用计算机软件(MATLAB)对该地区风速威布尔分布函数进行曲线拟合,得到该地区不同高度的风速分布函数曲线。
1双参数威布尔分布函数的确定双参数威布尔分布是一种单峰的正偏态分布函数,其概率密度函数表达式为:p(x)=kcxc!"exp-xc!"(1)式中:k———形状参数,无因次量;c———尺度参数,其量纲与速度相同。
为了确定威布尔分布函数的实际模型,需计算出实际情况下对应函数的2个参数。
估算风速威布尔参数的方法很多,本文给出4种有效的方法以确定k和c值。
1.1HOMER软件法HOMER是一个对发电系统优化配置与经济性分析的软件。
通过输入1a逐时风速数据或者月平均风速数据,根据实际情况设置相应参数,即可计算得到k和c值,此时计算出的k和c值是计算机系统认为的最佳值。
1.2Wasp软件法Wasp是一个风气候评估、计算风力发电机组年发电量、风电场年总发电量的软件。
通过输入风速统计资料,计算机可以直接计算出k和c值。
1.3最小二乘法通过风速统计资料计算出最小二乘法拟合直线y=ax+b的斜率a和截距b。
由下式确定k和c的值:k=b(2)c=espab(3)1.4平均风速和最大风速估计法从常规气象数据获得平均风速和时间T观测到的10min平均最大风速Vmax,设全年的平均风速为V通过下式计算k和c值:k=ln(lnT)0.90Vmax(4)c=1+1/!"K(5)计算过程中,为了减小Vmax的抽样随机误差,一般情况Vmax取多年平均值(10a以上)进行计算。
威布尔分布函数

威布尔分布函数韦布尔分布,即韦伯分布(Weibull distribution),又称韦氏分布或威布尔分布,是可靠性分析和寿命检验的理论基础。
威布尔分布在可靠性工程中被广泛应用,尤其适用于机电类产品的磨损累计失效的分布形式。
由于它可以利用概率值很容易地推断出它的分布参数,被广泛应用于各种寿命试验的数据处理。
历史(History)1. 1927年,Fréchet(1927)首先给出这一分布的定义。
2. 1933年,Rosin和Rammler在研究碎末的分布时,第一次应用了韦伯分布(Rosin, P.; Rammler, E. (1933), "The Laws Governing the Fineness of Powdered Coal", Journal of the Institute of Fuel 7: 29 - 36.)。
3. 1951年,瑞典工程师、数学家Waloddi Weibull(1887-1979)详细解释了这一分布,于是,该分布便以他的名字命名为Weibull Distribution。
定义从概率论和统计学角度看,Weibull Distribution是连续性的概率分布,其概率密度为:其中,x是随机变量,λ>0是比例参数(scale parameter),k>0是形状参数(shape parameter)。
显然,它的累积分布函数是扩展的指数分布函数,而且,Weibull distribution与很多分布都有关系。
如,当k=1,它是指数分布;k=2且时,是Rayleigh distribution(瑞利分布)。
性质(Properties)均值(mean),其中,Г是伽马(gamma)函数。
方差(variance)偏度(skewness)峰度(kurtosis)应用工业制造研究生产过程和运输时间关系。
极值理论预测天气可靠性和失效分析雷达系统对接受到的杂波信号的依分布建模。
双参数威布尔分布函数的确定及曲线拟合(精)

2007.NO.4. CN35-1272/TK图 1威布尔函数拟合曲线的仿真系统模块作者简介 :包小庆 (1959~ , 男 , 高级工程师 , 从事可再生能源的研究。
大型风电场的建设不但可以减缓用电短缺情况 , 而且并网后还能为电网提供很大一部分电能。
而大型风电场的选址 , 与该地的风速分布情况有关。
用于描述风速分布的模型很多 , 如瑞利分布、对数正态分布、 r 分布、双参数威布尔分布、 3参数威布尔分布 , 皮尔逊曲线拟合等。
经过大量的研究表明 , 双参数威布尔分布函数更接近风速的实际分布。
本文采用 4种方法计算威布尔分布函数的参数 , 并利用计算出的参数确定威布尔分布函数的实际数学模型进行曲线拟合。
最后以白云鄂博矿区风电场拟选址为例 , 使用计算机软件 (MATLAB 对该地区风速威布尔分布函数进行曲线拟合 , 得到该地区不同高度的风速分布函数曲线。
1双参数威布尔分布函数的确定双参数威布尔分布是一种单峰的正偏态分布函数 , 其概率密度函数表达式为 :p(x=kx " exp-x "(1式中 :k ———形状参数 , 无因次量 ;c ———尺度参数 , 其量纲与速度相同。
为了确定威布尔分布函数的实际模型 , 需计算出实际情况下对应函数的 2个参数。
估算风速威布尔参数的方法很多 , 本文给出4种有效的方法以确定 k 和 c 值。
1.1HOMER 软件法HOMER 是一个对发电系统优化配置与经济性分析的软件。
通过输入 1a 逐时风速数据或者月平均风速数据 , 根据实际情况设置相应参数 , 即可计算得到 k 和c 值 , 此时计算出的 k 和 c 值是计算机系统认为的最佳值。
1.2Wasp 软件法Wasp 是一个风气候评估、计算风力发电机组年发电量、风电场年总发电量的软件。
通过输入风速统计资料 , 计算机可以直接计算出 k 和 c 值。
1.3最小二乘法通过风速统计资料计算出最小二乘法拟合直线 y=ax+b 的斜率 a 和截距 b 。
matlab用weibull分布函数拟合曲线

matlab用weibull分布函数拟合曲线Weibull分布函数是一种常用于可靠性分析的概率分布函数,可以用来估计产品的平均故障时间。
在MATLAB中,我们可以使用curve fitting toolbox工具箱中的weibull分布函数进行曲线拟合。
具体步骤如下:1. 导入数据:将需要拟合的数据导入MATLAB中,可以使用xlsread函数读取Excel文件,也可以手动输入数据。
2. 创建拟合曲线对象:可以使用cftool命令打开curvefitting toolbox,选择Weibull分布函数进行拟合,也可以在代码中使用cfit函数创建一个Weibull对象。
3. 设置拟合参数:使用setoptions函数设置拟合参数,包括起点、终点、步长等。
4. 拟合曲线:使用fit函数进行曲线拟合,得到拟合结果。
5. 绘制拟合曲线:使用plot函数绘制拟合曲线,并将图表美化。
下面是MATLAB代码示例:% 导入数据data = xlsread('data.xlsx');% 创建拟合曲线对象weibull_fit = cfit('a*x^b*exp(-x^b/a)', 'a', 'b', 'x');% 设置拟合参数options = fitoptions('Method','NonlinearLeastSquares',...'StartPoint',[1 1],...'Lower',[0 0],...'Upper',[Inf Inf]);% 拟合曲线weibull_result = fit(data(:,1), data(:,2), weibull_fit, options);% 绘制拟合曲线plot(weibull_result, data(:,1), data(:,2)); xlabel('时间');ylabel('概率密度');title('Weibull分布函数拟合曲线');。
威布尔分析方法

• • • • •
β=1.0 随机失效
不充足的 burn-in 或应力筛选 部件的质量问题 制造的质量问题 错误的安装,设置及使用 重做/刷新时出现的问题
当β=1.0,失效原因归结于:
• • •
1.0<β<4.0 早期损耗
维护中的人为错误 引发的失效而非固有的 意外事故和自然灾害(外来物体,闪电袭击,强 风摧毁等)
1.1.1 威布尔分析的优点:
威布尔分析广泛用于研究机械、化工、电气、电子、材料的失效,甚至人体疫病。威 布尔分析最主要的优点在于它的功能: 提供比较准确的失效分析和小数据样本的失效预测,对出现的问题尽早的制订解 决方案。 为单个失效模式提供简单而有用的图表,使数据在不充足时,仍易于理解。 描述分布状态的形状可很好的选择相应的分布。 提供基于威布尔概率图的斜率的物理失效的线索。
1 MTTF 1 …………………………………………………………………(7.2)
When 1, MTTF .
When 0.5, MTTF 2 . When 1, MTTF , 典型分布。 When 1, MTTF .
虽然, 威布尔教授最初提出用平均值作为 MTTF 值绘制在威布尔概率分布图的 y 轴上, 现在是标准的工程方法用失效时间的中间值来划分寿命数据。 表 7-2 展示了一个中间等级表 (50%)作为 10 个数量的样本,由此形成莱奥纳多·杰克逊(Leonard Johnson)的等级公 式。 因为在寿命数据中非均匀分布相当常见,所以中间值比均值更为准确些。一旦知道 β 和 η,任意时间的失效概率都可轻易算出。
t F (t ) 1 exp ………………………………………………………………(7.1)
风能资源统计与计算——威布尔(Weibull)分布

风能资源统计与计算——威布尔(Weibull)分布
来源:作者:佚名发布时间: 2008-8-27 13:29:15
关于风速的分布,国外有过不少的研究,近年来国内也有探讨。
风速分布一般均为正偏态分布,一般说,风力愈大的地区,分布曲线愈平缓,峰值降低右移。
这说明风力大的地区,一般大风速所占比例也多。
如前所述,由于地理、气候特点的不同,各种风速所占的比例有所不同。
通常用于拟合风速分布的线型很多,有瑞利分布、对数正态分布、 分布、双参数威布尔分布、三参数威布尔分布等,也可用皮尔逊曲线进行拟合。
但威布尔分布双参数曲线,普遍认为适用于风速统计描述的概率密度函数。
图13:威布尔分布双参数曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万方数据
万方数据
双参数威布尔分布函数的确定及曲线拟合
作者:包小庆, 刘志强, 吴永忠, 李冬梅
作者单位:包小庆,吴永忠(水利部牧区水利科学研究所,内蒙古呼和浩特,010010), 刘志强,李冬梅(内蒙古工业大学,内蒙古呼和浩特,010051)
刊名:
能源与环境
英文刊名:ENERGY AND ENVIRONMENT
年,卷(期):2007(4)
被引用次数:1次
1.宫靖远;贺德馨风电场工程技术手册 2004
2.张志涌精通MATLAB6.5版 2003
3.黄永安;马路MATLAB 7.0/Simulink 6.0建模仿真开发与高级工程应用 2005
1.张端.郭慧贤.章苗根.何熊熊.邹涛一种新型风力发电机的设计[期刊论文]-江南大学学报(自然科学版)
2010(4)
本文链接:/Periodical_nyyhj200704003.aspx。