高三数学(理)导数与三角函数综合测试题答案

合集下载

【高考数学】《三角函数与导数》的综合题(含答案)

【高考数学】《三角函数与导数》的综合题(含答案)

2. 设函数sin ()2cos x f x x=+. (Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求实数a 的取值范围..(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.(1)证明:f′(x )在区间(0,π)存在唯一零点;已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.1.【高考数学】《三角函数与导数》的综合题3. 已知函数,其中是自然对数的底数. (Ⅰ)求曲线在点()(),f ππ处的切线方程;(Ⅱ)令,讨论的单调性并求极值.4. 已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数. 证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.()22cos f x x x =+()()cos sin 22xg x e x x x =-+-2.71828e =L ()y f x =()()()()h x g x af x a R =-∈()h x5. 设函数()e cos (),x f x a x a R -=∈+6. 设函数()e cos ,()x f x x g x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明:()()02f x g x x π⎛⎫+- ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242m m πππ⎛⎫++ ⎪⎝⎭内的零点,其中n N ∈,证明:20022sin cos n n n x x e x πππ-+-<-.7. 已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+2()3()cos 4(1sin )ln(3)x g x x x x x π=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.8. 已知函数()()()[]321,12cos .0,12xx f x x e g x ax x x x -=+=+++∈当时, (I )求证:()11-;1x f x x≤≤+(II )若()()f x g x ≥恒成立,a 求实数的取值范围..微专题 三角函数与导数的综合题答案1. 解:(1)()2cos cos sin 1cos sin 1f x x x x x x x x '=-+-=+-令()cos sin 1g x x x x =+-,则()sin sin cos cos g x x x x x x x '=-++= 当()0,x π∈时,令()0g x '=,解得:2x π=∴当0,2x时,()0g x '>;当,2x ππ⎛⎫∈⎪⎝⎭时,()0g x '<g x 在0,2π⎛⎫ ⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减又()0110g =-=,1022g ππ⎛⎫=-> ⎪⎝⎭,()112g π=--=-即当0,2x 时,()0g x >,此时()g x 无零点,即()f x '无零点()02g g ππ⎛⎫⋅< ⎪⎝⎭ 0,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x = 又()g x 在,2ππ⎛⎫⎪⎝⎭上单调递减0x x ∴=为()g x ,即()f x '在,2ππ⎛⎫⎪⎝⎭上的唯一零点 综上所述:()f x '在区间()0,π存在唯一零点(2)若[]0,x π∈时,()f x ax ≥,即()0f x ax -≥恒成立令()()()2sin cos 1h x f x ax x x x a x =-=--+ 则()cos sin 1h x x x x a '=+--,()()cos h x x x g x '''==由(1)可知,()h x '在0,2π⎛⎫⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减 且()0h a '=-,222h a ππ-⎛⎫'=- ⎪⎝⎭,()2h a π'=-- ()()min 2h x h a π''∴==--,()max 222h x h a ππ-⎛⎫''==- ⎪⎝⎭①当2a ≤-时,()()min 20h x h a π''==--≥,即()0h x '≥在[]0,π上恒成立()h x ∴在[]0,π上单调递增 00h xh ,即()0f x ax -≥,此时()f x ax ≥恒成立②当20a -<≤时,()00h '≥,02h π⎛⎫'>⎪⎝⎭,()0h π'< 1,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()10h x '=()h x ∴在[)10,x 上单调递增,在(]1,x π上单调递减又()00h =,()()2sin cos 10h a a ππππππ=--+=-≥()0h x ∴≥在[]0,π上恒成立,即()f x ax ≥恒成立③当202a π-<<时,()00h '<,2022h a ππ-⎛⎫'=->⎪⎝⎭20,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()20h x '=()h x ∴在[)20,x 上单调递减,在2,2x π⎛⎫⎪⎝⎭上单调递增()20,x x ∴∈时,()()00h x h <=,可知()f x ax ≥不恒成立 ④当22a π-≥时,()max 2022h x h a ππ-⎛⎫''==-≤⎪⎝⎭()h x ∴在0,2π⎛⎫⎪⎝⎭上单调递减 00h xh 可知()f x ax ≥不恒成立综上所述:(],0a ∈-∞2. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. 当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+2232cos (2cos )a x x =-+++211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭. 故当13a ≥时,()0g x '≥.又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-.故当[)0arccos3x a ∈,时,()0h x '>.因此()h x 在[)0arccos3a ,上单调增加. 故当(0arccos3)x a ∈,时,()(0)0h x h >=,即sin 3x ax >.于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x xf x ax x =>>+.当0a ≤时,有π1π0222f a ⎛⎫=> ⎪⎝⎭g ≥. 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,.3. 解:(Ⅰ)易求: (Ⅱ)由题意得 2()(cos sin 22)(2cos )xh x ex x x a x x =-+--+,222y x ππ=--因为,令,则,所以在上单调递增.因为(0)0,m=所以当时,()0,m x>当0x<时,(1)当时,当时,,单调递减,当时,,单调递增,所以当时取得极小值,极小值是;极大值为,当时取到极小值,极小值是;②当时,,所以当时,,函数在上单调递增,无极值;③当时,所以当时,,单调递增;当时,,单调递减;当时,,单调递增;所以当时取得极大值,极大值是;当时取得极小值.极小值是.综上所述:当时,在上单调递减,在上单调递增,函数有极小值,极小值是;当时,函数在和和上递增,在上递减,函数有极大值,也有极小值,()()()()cos sin22sin cos222sinx xh x e x x x e x x a x x'=-+-+--+--()()2sin2sinxe x x a x x=---()()2sinxe a x x=--()sinm x x x=-()1cos0m x x'=-≥()m x Rx>()0m x<a≤x e a-0>x<()0h x'<()h x0x>()0h x'>()h xx=()h x()021h a=--()()()2ln ln2ln sin ln cos ln2h a a a a a a⎡⎤=--+++⎣⎦x=()h x()021h a=--1a=ln0a=(),x∈-∞+∞()0h x'≥()h x(),-∞+∞1a>ln0a>(),0x∈-∞ln0x ae e-<()()0,h x h x'>()0,lnx a∈ln0x ae e-<()()0,h x h x'<()ln,x a∈+∞ln0x ae e->()()0,h x h x'>x=()h x()021h a=--lnx a=()h x()()()2ln ln2ln sin ln cos ln2h a a a a a a⎡⎤=--+++⎣⎦a≤()h x(),0-∞()0,+∞()h x()021h a=--01a<<()h x(),ln a-∞()0,ln a()0,+∞()ln,0a()h x4. 解(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭ ()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,1111,7n na a +-=在1,2π⎛⎫- ⎪⎝⎭上单调递减()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减,又()0sin 0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++,00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '= ∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减则0x x =为()g x 唯一的极大值点,即()f x '在1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =, 0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在00,x 上单调递增,在0,2x π⎛⎫ ⎪⎝⎭上单调递减又()00f '= ()00f x '∴>()f x ∴在00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-< ⎪++⎝⎭,10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫ ⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+<,即()02f f ππ⎛⎫⋅< ⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln 1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<,即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点 5.具体答案如下:6. 解:(Ⅰ)由已知,有()()'ecos sin xf x x x =-.当()52,244x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭时,有sin cos x x >,得()'0f x <,则()f x 递减; 当()32,244x k k k Z ππππ⎛⎫∈-+∈ ⎪⎝⎭时,有sin cos x x <,得()'0f x >,则()f x 递增. 所以()f x 的递增区间为()32,244k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,()f x 的递减区间为()52,244k k k Z ππππ⎛⎫++∈ ⎪⎝⎭.(Ⅱ)记()()()2h x f x g x x π⎛⎫-=⎝+⎪⎭.依题意及(Ⅰ)有:()()cos sin x g x e x x =-, 从而'()2sin x g x e x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,()'0g x <,故'()'()'()()(1)()022h x f x g x x g x g x x ππ'⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭.(Ⅲ)依题意,()()10n n u x f x =-=,即e cos 1n xn x =.记2n ny x n π=-,则,42n y ππ⎛⎫∈ ⎪⎝⎭. 且()e cos n y n n f y y ==()()22e cos 2e nx n n n x n n N πππ---∈=. 由()()20e1n n f y f y π-==及(Ⅰ)得0n y y .由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()'0g x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫<= ⎪⎝⎭.又由(Ⅱ)知()()02n n n f y g y y π⎛⎫+- ⎪⎝⎭,故:()()()2e 2n n nn n f y y g y g y ππ---=-()()022200000sin cos sin cos n n n y e e e g y e y y x x πππ---=<--. 所以200e 22sin cos n n n x x x πππ-+--<.7. 证明:(Ⅰ)∵当x ∈(0,)时,f′(x )=﹣(1+sinx )(π+2x )﹣2x ﹣cosx <0,∴函数f (x )在(0,)上为减函数,又f (0)=π﹣>0,f ()=﹣π2﹣<0;∴存在唯一的x 0∈(0,),使f (x 0)=0;(Ⅱ)考虑函数h (x )=﹣4ln (3﹣x ),x ∈[,π],令t=π﹣x,则x∈[,π]时,t∈[0,],记函数u(t)=h(π﹣t)=﹣4ln(1+t),则u′(t)=﹣•=﹣=﹣==,由(Ⅰ)得,当t∈(0,x0)时,u′(t)>0;在(0,x0)上u(x)是增函数,又u(0)=0,∴当t∈(0,x0]时,u(t)>0,∴u(t)在(0,x0]上无零点;在(x0,)上u(t)是减函数,且u(x0)>0,u()=﹣4ln2<0,∴存在唯一的t1∈(x0,),使u(t1)=0;∴存在唯一的t1∈(0,),使u(t1)=0;∴存在唯一的x1=π﹣t1∈(,π),使h(x1)=h(π﹣t1)=u(t1)=0;∵当x∈(,π)时,1+sinx>0,∴g(x)=(1+sinx)h(x)与h(x)有相同的零点,∴存在唯一的x1∈(,π),使g(x1)=0,∵x1=π﹣t1,t1>x0,∴x0+x1<π.8. (I)证明:①当x∈[0,1)时,(1+x)e﹣2x≥1﹣x⇔(1+x)e﹣x≥(1﹣x)e x,令h(x)=(1+x)e﹣x﹣(1﹣x)e x,则h′(x)=x(e x﹣e﹣x).当x∈[0,1)时,h′(x)≥0,∴h(x)在[0,1)上是增函数,∴h(x)≥h(0)=0,即f(x)≥1﹣x.②当x∈[0,1)时,⇔e x≥1+x,令u(x)=e x﹣1﹣x,则u′(x)=e x﹣1.当x∈[0,1)时,u′(x)≥0,∴u(x)在[0,1)单调递增,∴u(x)≥u(0)=0,∴f(x).综上可知:.(II)解:设G(x)=f(x)﹣g(x)=≥=.令H(x)=,则H′(x)=x﹣2sinx,令K(x)=x﹣2sinx,则K′(x)=1﹣2cosx.当x∈[0,1)时,K′(x)<0,可得H′(x)是[0,1)上的减函数,∴H′(x)≤H′(0)=0,故H(x)在[0,1)单调递减,∴H(x)≤H(0)=2.∴a+1+H(x)≤a+3.∴当a≤﹣3时,f(x)≥g(x)在[0,1)上恒成立.下面证明当a>﹣3时,f(x)≥g(x)在[0,1)上不恒成立.f(x)﹣g(x)≤==﹣x.令v(x)==,则v′(x)=.当x∈[0,1)时,v′(x)≤0,故v(x)在[0,1)上是减函数,∴v(x)∈(a+1+2cos1,a+3].当a>﹣3时,a+3>0.∴存在x0∈(0,1),使得v(x0)>0,此时,f(x0)<g(x0).即f(x)≥g(x)在[0,1)不恒成立.综上实数a的取值范围是(﹣∞,﹣3].。

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析1.已知函数,则的值为 .【答案】.【解析】∵,两边求导,∴,令,得,∴,∴,即.【考点】导数的运用.2.已知函数.(1)求的最小正周期和最小值;(2)若,且,求的值.【答案】(1),;(2).【解析】(1)首先根据二倍角公式进行化简,并将函数的解析式化为的形式,然后利用最小正周期公式,最小值为,可得结果;(2)将代入,化简,利用得到三角函数值,根据,得到的值.此题考察三角函数的化简求值,属于基础题.试题解析:(1)解:, 4分,,所以的最小正周期为,最小值为. 8分(2)解:,所以, 11分因为,,所以,因此的值为. 13分【考点】1.三角函数的化简;2.三角函数的求值.3.函数的值域为.【答案】【解析】令,则.【考点】1、三角函数;2、二次函数;3、换元法.4.已知,,则x= .(结果用反三角函数表示)【答案】【解析】本题关键是注意反三角函数值的取值范围,适当利用诱导公式,,,而,故,即.【考点】反正弦函数.5.已知函数.(Ⅰ)求的单调减区间;(Ⅱ)求在区间上最大值和最小值.【答案】(Ⅰ)函数的单调减区间是:;(Ⅱ).【解析】(Ⅰ)将降次化一,化为的形式,然后利用正弦函数的单调区间,即可求得其单调递增区间.(Ⅱ)由(Ⅰ)可得,又的范围为,由此可得的范围,进而求得的范围.试题解析:.函数的单调减区间是:.的范围为,所以,所以即:【考点】1、三角恒等变换;2、三角函数的单调区间及范围.6.如图,两座建筑物的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9和15,从建筑物的顶部看建筑物的视角.⑴求的长度;⑵在线段上取一点点与点不重合),从点看这两座建筑物的视角分别为问点在何处时,最小?【答案】⑴;⑵当为时,取得最小值.【解析】⑴根据题中图形和条件不难想到作,垂足为,则可题中所有条件集中到两个直角三角形中,由,而在中,再由两角和的正切公式即可求出的值,又,可求出的值;⑵由题意易得在两直角三角形中,可得,再由两角和的正切公式可求出的表达式,由函数的特征,可通过导数求出函数的单调性和最值,进而求出的最小值,即可确定出的最小值.试题解析:⑴作,垂足为,则,,设,则 2分,化简得,解之得,或(舍)答:的长度为. 6分⑵设,则,. 8分设,,令,因为,得,当时,,是减函数;当时,,是增函数,所以,当时,取得最小值,即取得最小值, 12分因为恒成立,所以,所以,,因为在上是增函数,所以当时,取得最小值.答:当为时,取得最小值. 14分【考点】1.两角和差的正切公式;2.直角三角形中正切的表示;3.导数在函数中的运用7.已知以角为钝角的的三角形内角的对边分别为、、,,且与垂直.(1)求角的大小;(2)求的取值范围【答案】(1);(2).【解析】(1)观察要求的结论,易知要列出的边角之间的关系,题中只有与垂直提供的等量关系是,即,这正是我们需要的边角关系.因为要求角,故把等式中的边化为角,我们用正弦定理,,,代入上述等式得,得出,从而可求出角;(2)要求的范围,式子中有两个角不太好计算,可以先把两个角化为一个角,由(1),从而,再所其化为一个三角函数(这是解三角函数问题常用方法),下面只要注意这个范围即可.试题解析:1)∵垂直,∴(2分)由正弦定理得(4分)∵,∴,(6分)又∵∠B是钝角,∴∠B(7分)(2)(3分)由(1)知A∈(0,),, (4分),(6分)∴的取值范围是(7分)【考点】(1)向量的垂直,正弦定理;(2)三角函数的值域.8.已知向量,,(Ⅰ)若,求的值;(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.【答案】(1);(2).【解析】本题主要考查两角和与差的正弦公式、二倍角公式、余弦定理、三角函数的值域等基础知识,考查运用三角公式进行三角变换的能力和基本的运算能力.第一问,利用向量的数量积将坐标代入得表达式,利用倍角公式、两角和的正弦公式化简表达式,因为,所以得到,而所求中的角是的2倍,利用二倍角公式计算;第二问,利用余弦定理将已知转化,得到,得到,得到角的范围,代入到中求值域.试题解析:(Ⅰ)∵,而,∴,∴,(Ⅱ)∵,∴,即,∴,又∵,∴,又∵,∴,∴.【考点】1.向量的数量积;2.倍角公式;3.两角和与差的正弦公式;4.余弦公式;5.三角函数的值域.9.若,且,则 ( )A.B.C.D.【答案】B.【解析】,故选B.【考点】1.三角函数诱导公式;2.三角函数平方关系.10.在△ABC中,角均为锐角,且,则△ABC的形状是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形【答案】D.【解析】又角均为锐角,则且中,,故选D.【考点】1.诱导公式;2.正弦函数的单调性.11.已知函数为常数).(Ⅰ)求函数的最小正周期;(Ⅱ)若时,的最小值为,求a的值.【答案】(Ⅰ)的最小正周期;(Ⅱ).【解析】(Ⅰ)求函数的最小正周期,由函数为常数),通过三角恒等变化,把它转化为一个角的一个三角函数,从而可求函数的最小正周期;(Ⅱ)利用三角函数的图像,及,可求出的最小值,让最小值等于,可求出a的值.试题解析:(Ⅰ)∴的最小正周期(Ⅱ)时,时,取得最小值【考点】三角函数的性质.12.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.【答案】(1);(2).【解析】(1)函数.通过二倍角的逆运算将单角升为二倍角,再化为一个三角函数的形式,从而求出函数的周期.(2)x的范围是所以正弦函数在是递增的.所以f(x)的范围是本题考查三角函数的单调性,最值,三角函数的化一公式,涉及二倍角的逆运算等.三角函数的问题要关注角度的变化,角度统一,二次式化为一次的,三角函数名称相互转化.切化弦,弦化切等数学思想.试题解析:(1) 4分6分故的最小正周期为 8分(2)当时, 10分故所求的值域为 12分【考点】1.三角函数的化一公式.2.二倍角公式.3.函数的单调性最值问题.13.下列命题中:函数的最小值是;②在中,若,则是等腰或直角三角形;③如果正实数满足,则;④如果是可导函数,则是函数在处取到极值的必要不充分条件.其中正确的命题是_____________.【答案】②③④.【解析】当,等号成立时当且仅当“即”,显然不成立,则命题①不正确;在中,若,则或,则是等腰或直角三角形,故②正确;由,因为正实数,满足,所以,故③正确;如果是可导函数,若函数在处取到极值,则,当,,但函数在处无极值,则是函数在处取到极值的必要不充分条件,故④正确.【考点】基本不等式、三角函数性质、不等式及导数的性质.14.已知向量,函数.(1)求函数的最小正周期;(2)已知分别为内角、、的对边, 其中为锐角,且,求和的面积.【答案】(1);(2).【解析】(1)根据题意,再利用二倍角公式及辅助角公式将化简为;(2)将代入,得,因为,所以,再利用余弦定理,解出,最后根据三角形面积公式求出. 试题解析:(1)由题意所以.由(1),因为,所以,解得.又余弦定理,所以,解得,所以.【考点】1.三角函数恒等变形;2.三角函数周期;3.余弦定理及三角形面积公式.15.已知,,其中,若函数,且函数的图象与直线y=2两相邻公共点间的距离为.(l)求的值;(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且,求△ABC周长的取值范围.【答案】(1);(2).【解析】(1)先根据,结合二倍角公式以及和角公式化简,求得,函数最大值是,那么函数的图像与直线两相邻公共点间的距离正好是一个周期,然后根据求解的值;(2)先将代入函数的解析式得到:,由已知条件以及,结合三角函数的图像与性质可以解得,所以,由正弦定理得,那么的周长可以表示为:,由差角公式以及和角公式将此式化简整理得,,结合角的取值以及三角函数的图像与性质可得.试题解析:(1), 3分∵,∴函数的周期,∵函数的图象与直线两相邻公共点间的距离为.∴,解得. 4分(2)由(Ⅰ)可知,,∵,∴,即,又∵,∴,∴,解得. 7分由正弦定理得:,所以周长为:, 10分,所以三角形周长的取值范围是. 12分【考点】1.和角公式;2.差角公式;3.二倍角公式;4.三角函数的图像与性质;5.正弦定理16.已知向量,(Ⅰ)当时,求的值;(Ⅱ)求函数在上的值域.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)本小题主要利用向量平行的坐标运算得到,然后解出,再利用二倍角正切公式可得;(Ⅱ)本小题首先化简函数解析式,然后根据三角函数的图像与性质,得到三角函数的取值范围,进而求值域;试题解析:(Ⅰ),, 2分即,, 4分6分(Ⅱ)=10分,12分,即 14分【考点】1.平行向量;2.三角函数的图像与性质.17.已知 .【答案】【解析】.【考点】1.两角差的正切公式;2.三角函数的拆角方法.18.已知∈(,),sin=,则tan()等于()A.-7B.-C.7D.【答案】A.【解析】由题意,则.【考点】三角函数运算.19.在中,的对边分别为且成等差数列.(1)求B的值;(2)求的范围.【答案】(1);(2)【解析】(1)对于三角形问题中的边角混合的式子,可以利用正弦定理和余弦定理边角转化,或边化角转化为三角函数问题,或角化边转化为代数问题来处理,该题由等差中项列式,再利用正弦定理边化角为,,又根据三角形内角的关系,得,进而求;(2)由(1)得,可得,代入所求式中,化为自变量为的函数解析式,再化为,然后根据的范围,确定的范围,进而结合的图象确定的范围,进而求的范围.试题解析:(1)成等差数列,∴,由正弦定理得,,代入得,,即:,,又在中,,∵,∴;(2)∵,∴,∴===,∵,∴,∴,∴的取值范围是.【考点】1、等差中项;2、正弦定理;3、型函数的值域.20.取得最小值a时,此时x的值为b,则取得最大值时,的值等于________。

2024-2025学年四川省成都市高三上学期数学综合测试试题(含解析)

2024-2025学年四川省成都市高三上学期数学综合测试试题(含解析)

一、单选题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年四川省成都市高三上学期数学综合测试试题.1. 已知复数112i z =+,则z 的虚部是( )A. 2B. 2iC. 2i 5-D. 25-【答案】D 【解析】【分析】应用复数的除法计算化简,再结合复数的虚部的定义判断即可.【详解】因为()()2112i 12i 12i 12i 12i 12i 14i 55z --====-++--,所以z 的虚部为25-.故选:D.2. 一个盒子中装有5个大小相同的小球,其中3个红球,2个白球.若从中任取两个球,则恰有一个红球的概率为( )A.35B.23C.25D.13【答案】A 【解析】【分析】根据古典概型概率公式求解.【详解】根据题意,任取两球恰有一个红球的概率为112325C C 63C 105P ===.故选:A.3. 对任意的()20,,210x x mx ∞∈+-+>恒成立,则m 的取值范围为( )A. ()1,1-B. (),1-∞C. ()1,+∞D. ()(),11,-∞-⋃+∞【答案】B 【解析】【分析】分离参数,可得()110,,2x m x x ∞⎛⎫∈+<+ ⎪⎝⎭恒成立,结合基本不等式即可求得答案.【详解】对任意的()20,,210x x mx ∞∈+-+>恒成立,即对任意的()110,,2x m x x ∞⎛⎫∈+<+ ⎪⎝⎭恒成立,因为12x x +≥=,当且仅当1x x =,即1x =时取等号,故1m <,故m 的取值范围为(),1∞-.故选:B4. 已知tan 2α=,则1cos2sin2αα+=( )A. 3B.13C. 2D.12【答案】D 【解析】【分析】应用二倍角余弦公式及二倍角正弦公式计算再结合同角三角函数关系求解.【详解】21cos22cos 11sin22sin cos tan 2αααααα+===.故选:D.5. 设,a b ∈R ,则使a b >成立的一个充分不必要条件是( )A. 33a b > B. ()lg 0a b ->C. 22a b > D. a b>【答案】B 【解析】【分析】根据充分条件及必要条件定义结合不等式的性质判定各个选项即可.【详解】对于A ,33a b a b >⇔>,故33a b >是a b >的充要条件;对于B ,由()lg 0a b ->得1a b >+,能推出a b >,反之不成立,所以()lg 0a b ->是a b >的充分不必要条件;对于C ,由22a b >无法得到,a b 之间的大小关系,反之也是,所以22a b >是a b >的既不充分也不必要条件;对于D ,由a b >不能推出a b >,反之则成立,所以a b >是a b >的必要不充分条件.故选:B .6. 定义在(0,)+∞上函数()f x 的导函数为()f x ',若()()0xf x f x '-<,且(3)0f =,则不等式(2)()0x f x -<的解集为( )A. (0,2)(2,3)⋃B. (0,2)(3,)+∞C. (0,2)(2,)⋃+∞D. (0,3)(3,)+∞ 【答案】B 【解析】【分析】根据给定条件构造函数()()f x g x x=,利用导数确定单调性,结合(3)0f =求解不等式即得.【详解】依题意,令()()f x g x x =,求导得2()()()0'-'=<xf x f x g x x,则()g x 在(0,)+∞上单调递减,由(3)0f =,得(3)0g =,不等式(2)0(2)0(2)0()()()f x f x x g x x xx -<⇔-⋅<⇔-<,则20()0x g x -<⎧⎨>⎩或20()0x g x ->⎧⎨<⎩,即203x x <⎧⎨<<⎩或23x x >⎧⎨>⎩,解得02x <<或3x >,所以不等式(2)()0x f x -<解集为(0,2)(3,)+∞ .故选:B7. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,O 为坐标原点,若在C 的右支上存在关于x轴对称的两点,P Q ,使得1PF Q △为正三角形,且1OQ F P ⊥,则C 的离心率为( )A.B. 1C.D. 1+【答案】D 【解析】【分析】根据条件,利用几何关系得到12π2F PF ∠=,又21π6F F P ∠=,得到21,PF c PF ==,再结2c a -=,即可求解.【详解】设双曲线的焦距为2(0)c c >,右焦点为2F ,直线OQ 交1F P 于点M ,连接2PF ,因为1PF Q △为正三角形,1OQ F P ⊥,所以M 为1F P 的中点,所以2//OM F P ,的的故12π2F PF ∠=,易知21π6F F P ∠=,所以21,PF c PF ==,由双曲线的定义知122PF PF a -=,2c a -=,得1c e a ===+故选:D .8. 如图,在直三棱柱111ABC A B C -中,ABC V 是等边三角形,1AA =,2AB =,则点C 到直线1AB 的距离为( )A.B.C.D.【答案】C 【解析】【分析】取AC 的中点O ,以OB 所在直线为x 轴,OC 所在直线为y 轴,O 与11A C 中点连线所在直线为z 轴,建立空间坐标系,利用空间向量求解即可.【详解】解:取AC 的中点O ,则,BO AC BO ⊥=,以OB 所在直线为x 轴,OC 所在直线为y 轴,O 与11A C 中点连线所在直线为z 轴,建立如图所示的空间直角坐标系O xyz -,所以()()10,1,0,,0,1,0A B C -,所以()1,0,2,0AB CA ==-,所以CA 在1AB上的投影的长度为11||||CA AB AB ⋅==,故点C 到直线1AB的距离为d ===故选:C.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有选错的得0分.9. 对于函数()ln 1f x x =-,则下列判断正确的是( )A. 直线22exy =是()f x 过原点一条切线B. ()f x 关于y x =对称的函数是1e x y +=C. 过一点(),a b 可以有3条直线与()f x 相切D. ()2f x x ≤-【答案】ABD 【解析】【分析】由导数的几何意义可判定A ,由反函数的概念可判定B ,利用对数函数的图像可判定C ,利用常用的切线放缩可判定D.【详解】对于A ,设切点(),ln 1m m -,则()1ln 100m k f m m m --=='=-,∴1ln 1m m m-=⋅,∴ln 2m =,∴2e m =,切点()2e ,1所以过原点的切线方程为222e 1e ex xy y --=⇒=,∴A正确;的对于B ,由反函数的概念可得111ln ee y x y x x y +++=⇒=⇒=,故与()f x 关于y x =对称的函数为1e x y +=,∴B 正确;对于C ,当点(),a b 在()f x 上方,如下图所示,结合图象可知,最多有两条切线,如果在()f x 下方,没有切线,在曲线上,只有一条切线C 正错误;对于D ,由于x +∀∈R ,设()()1ln 1x g x x x g x x'-=--⇒=,令()01g x x >'⇒>,令()001g x x <⇒<<',∴()g x 在(1,+∞)上单调递增,在()01,上单调递减;∴()()()10ln 12g x g x x f x x ≥=⇒≤-⇒≤-,∴D 正确.故选:ABD10. 等差数列{}n a 中,10a >,则下列命题正确的是( )A. 若374a a +=,则918S =B. 若125a a +=,349a a +=,则7817a a +=C. 若150S >,250S <,则2219a a <D. 若910S S =,则110S >【答案】ABD 【解析】【分析】利用等差数列的性质,对于A ,()()193799922a a a a S ++==,计算即可;对于B ,由已知计算数列公差,再求值即可;对于C ,结合数列单调性比大小;对于D ,由10a >,100a =,得()111116111102a a S a +==>.【详解】等差数列{}n a 中,10a >,设公差为d ,若374a a +=,则()()19379991822a a a a S ++===,A 正确;若125a a +=,349a a +=,则()()3412954a a a a d +-+=-=,得1d =,27811251217a a a d a ++===++,B 正确;若()115158151502a a S a +==>,()1252513252502a a S a +==<,所以公差0d <,当90a >时,有190a a >>,则有2219a a >,当90a <时,有79820a a a +=>,得790a a >->,所以1790a a a >->>,则有2219a a >,C 错误;若910S S =,则100a =,因为10a >,所以()111116111102a a S a +==>,D 正确.故选:ABD .11. 设定义在R 上的函数()f x 与()g x 的导函数分别为()f x '和()g x '.若()()42f x g x --=,()()2g x f x ''=-,且()2f x +为奇函数,则下列说法中一定正确的是( )A. 函数()f x 的图象关于点()2,0对称B. ()()352g g +=-C.20241()2024k g k ==-∑D.20241()0k f k ==∑【答案】AD 【解析】【分析】根据给定条件,结合奇函数性质,借助赋值法探讨对称性、周期性,再逐项分析判断即得.【详解】对于A ,由(2)f x +为奇函数,得(2)(2)f x f x -+=-+,即(2)(2)0f x f x -++=,因此函数()f x 的图象关于点(2,0)对称,A 正确;由()(2)g x f x ''=-,得()(2)g x f x a =-+,则(4)(2)g x f x a -=-+,又()(4)2f x g x --=,于是()(2)2f x f x a =-++,令1x =,得2a =-,即()(2)f x f x =-,则(2)()f x f x +=-,(4)(2)()f x f x f x +=-+=,因此函数()f x 是周期函数,周期为4,对于B ,由()(2)2g x f x =--,得(3)(5)(1)2(3)24g g f f +=-+-=-,B 错误;对于C ,显然函数()g x 是周期为4的周期函数,(1)(3)(3)(5)4g g g g +=+=-,(2)(4)(0)2(2)24g g f f +=-+-=-,则2024411()506()506(8)4048k k g k g k ====⨯-=-∑∑,C 错误;对于D ,(1)(3)0f f +=,(2)(4)0f f +=,则2024411()506()0k k f k f k ====∑∑,D 正确.故选:AD【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,①存在常数a ,b 使得()(2)2()()2f x f a x b f a x f a x b +-=⇔++-=,则函数()y f x =图象关于点(,)a b 对称.②存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.三、填空题:本题共3个小题,每小题5分,共15分.12. 在5ax ⎛ ⎝展开式中2x 的系数为270-,则a 的值为__________.【答案】3-【解析】【分析】根据二项式定理可得展开式的通项为()35255C 1r rrrxa--⋅-,令3522r -=,求得r 代入运算即可.【详解】因为展开式的通项为()()3552555C C ,0,1,2,3,,145rr r r rrrax x r a ---⎛⋅= ⎝=-,令3522r -=,解得2r =,因为2x 的系数为()5323211C 2700a a -=-=,解得3a =-.故答案为:3-.13. 函数2()ln 2f x x ax =+-在[1,2]内存在单调递增区间,则a 的取值范围是______.【答案】1(,)2-+∞【解析】【分析】根据给定条件,求出函数()f x 的导数()f x ',再利用()0f x '>在(1,2)内有解即可.【详解】函数2()ln 2f x x ax =+-,求导得1()2f x ax x'=+,由函数()f x 在[1,2]内存在单调递增区间,得不等式()0f x '>在(1,2)内有解,不等式21()02f x a x'>->⇔,而函数212y x =-在(1,2)上单调递增,当(1,2)x ∈时,21122x ->-,因此12a >-,所以a 的取值范围是1(,)2-+∞.故答案为:1(,)2-+∞14. 双曲线的离心率可以与其渐近线有关,比如函数1y x=的图象是双曲线,它的实轴在直线y x =上,虚轴在直线y x =-上,实轴顶点是()()1,1,1,1--,焦点坐标是,(,已知函数y x =+e .则其在一象限内的焦点横坐标是__________,其离心率2e =__________.【答案】 ①.②.43【解析】【分析】根据材料得到双曲线的轴和顶点的定义,根据双曲线的离心率和其渐近线的斜率之间的关系求双曲线的离心率,利用双曲线的离心率的定义求双曲线的焦点坐标.【详解】直线y x =和y 轴是双曲线的两条渐近线,由阅读材料可知,双曲线的焦点所在的对称轴是直线y =,由顶点的定义知,对称轴与双曲线的交点即顶点,联立得2y x x y ⎧⎫=+⎪⎪⎭⎨⎪=⎩,解得:1x y =⎧⎪⎨=⎪⎩1x y =-⎧⎪⎨=⎪⎩(,若将双曲线绕其中心适当旋转可使其渐近线变为直线y x =,则双曲线的离心率e ==243e =,设双曲线的位于第一象限的焦点的坐标为()00,x y ,则01x =,所以0x =,所以002y ==,所以双曲线的位于第一象限的焦点的坐标为2⎫⎪⎪⎭,.43.【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤15. 根据统计, 某蔬菜基地西红柿亩产量的增加量 y (百千克)与某种液体肥料每亩的使用量x (千克)之间 的对应数据的散点图如图所示.(1)从散点图可以看出, 可用线性回归方程拟合 y 与x 的关系, 请计算样本相关系数r 并判断它们的相关程度;(2)求 y 关于x 的线性回归方程ˆˆˆybx a =+, 并预测液体肥料每亩的使用量为 12 千克时西红柿亩产量的增加量.附:()()()121ˆˆˆnn i i i n i i x x y y x x y y r b ay bx x x ==----===--∑∑,.【答案】(1)r = ; y 与x 程正线性相关, 且相关程度很强. (2) 1.50.7y x =+; 9.9 百千克.【解析】【分析】(1)由图形中的数据结合相关系数公式求得相关系数r ,再由0.75r >即可求解;(2)求出线性回归方程,再取12x =代入,即可求解.【小问1详解】由题知: 24568345675555x y ++++++++====,所以()()()()55522111142010i i i i i i i x x y y x x y y ===--=-=-=∑∑∑,,所以50.75x x y y r --===>所以 y 与x 程正线性相关, 且相关程度很强.小问2详解】因为 ()()()51521140.70ˆ2i ii i i x x y y b x x ==--===-∑∑,ˆˆ50.75 1.5a y bx =-=-⨯=,所以 y 关于x 的线性回归方程为 1.507ˆ.yx =+,当 12x =时, 1.50.712ˆ9.9y=+⨯=.所以预测液体肥料每亩的使用量为 12 千克时西红柿亩产量的增加量为 9.9 百千克.16. 已知数列{a n }的前n 项和为n S ,且223n S n n =+,数列{b n }满足24log 1n n a b =+.(1)求,n n a b ;(2)设n n n c a b =⋅,数列{}n c 的前n 项和为n T ,求n T .【【答案】(1)41,2n n n a n b =+=(2)()16432n n T n +=+-⋅【解析】【分析】(1)由n a 与n S 的关系,再结合24log 1n n a b =+即可求解;(2)由错位相减法即可求解.【小问1详解】由223n S n n =+,当2n ≥时,()221232(1)3141n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦.当1n =时,115a S ==,也适合41n a n =+.综上可得,41n a n =+.由24log 141n n a b n =+=+,所以2n n b =.【小问2详解】由(1)知()412nn n a b n =+⋅()125292412nn T n =⨯+⨯+++ ()()23125292432412n n n T n n +=⨯+⨯++-⋅++⋅ ①①-②得()21104242412n n n T n +-=+⨯++⨯-+⋅ ②()()()111412104412643212n n n n T n n -++--=+⨯-+⋅=---⋅-,所以()16432n n T n +=+-⋅.17. 在三棱柱111ABC A B C -中,平面11AA C C ⊥平面ABC ,11AA A C =,2AC =,AC BC ⊥,11AA AC ⊥.(1)证明:1BB ⊥平面1A BC ;(2)若异面直线11,AB CA 所成角的余弦值为13,求BC .【答案】(1)证明过程见解析(2)【解析】【分析】(1)由面面垂直得到线面垂直,进而得到BC ⊥1AA ,结合11AA A C ⊥得到1AA ⊥平面1A BC ,再由平行关系得到证明;(2)作出辅助线,证明出1A P ⊥平面ABC ,建立空间直角坐标系,设BC m =,写出各点坐标,利用异面直角夹角的余弦值列出方程,求出m =,得到答案.【小问1详解】因为平面11AA C C ⊥平面ABC ,交线为AC ,AC BC ⊥,⊂BC 平面ABC ,所以BC ⊥平面11AAC C ,因为1AA ⊂平面11AAC C ,所以BC ⊥1AA ,因为11AA A C ⊥,1A C BC C = ,1,AC BC ⊂平面1ABC ,所以1AA ⊥平面1A BC ,又1//BB 1AA ,所以1BB ⊥平面1A BC ;【小问2详解】取AC 的中点P ,连接1PA ,因为11AA A C =,所以1A P ⊥AC ,因为平面11AA C C ⊥平面ABC ,交线为AC ,1A P ⊂平面11AAC C ,所以1A P ⊥平面ABC ,取AB 的中点H ,连接PH ,则//PH BC ,因为AC BC ⊥,所以PH ⊥AC ,故以P 为坐标原点,1,,PH PC PA 所在直线分别为,,x y z 轴,建立空间直角坐标系,因为2AC =,所以1112A P AC ==,故()()()101,0,0,1,0,0,0,1A C A -,设BC m =,则(),1,0B m ,设()1,,B s t h ,由11AA BB = 得()()0,1,1,1,s m t h =--,解得,2,1s m t h ===,故()1,2,1B m ,()()11,3,1,0,1,1AB m CA ==- ,因为异面直线11,AB CA 所成角的余弦值为13,所以11cos ,3AB =,解得m =,故BC =18. 已知抛物线Γ:24y x =,在Γ上有一点A 位于第一象限,设A 的纵坐标为(0)a a >.(1)若A 到抛物线Γ准线的距离为3,求a 的值;(2)当4a =时,若x 轴上存在一点B ,使AB 的中点在抛物线Γ上,求O 到直线AB 的距离;(3)直线l :3x =-,抛物线上有一异于点A 的动点P ,P 在直线l 上的投影为点H ,直线AP 与直线l 的交点为.Q 若在P的位置变化过程中,4HQ >恒成立,求a 的取值范围.【答案】(1)a =(2(3)(]0,2【解析】【分析】(1)先求出点A 的横坐标,代入抛物线方程即可求解;(2)先通过中点在抛物线上求出点B 的坐标,进一步求出直线AB 方程,利用点到直线距离公式求解即可;(3)设22(,),(,),(3,)(0)44t a P t Aa H t t a -≠>,联立方程求出点Q 的坐标,根据4HQ >恒成立,结合基本不等式即可求解.【小问1详解】抛物线Γ:24y x =的准线为1x =-,由于A 到抛物线Γ准线的距离为3,则点A 的横坐标为2,则2428(0)a a =⨯=>,解得a =【小问2详解】当4a =时,点A 的横坐标为2444=,则()4,4A ,设(),0B b ,则AB 的中点为4,22b +⎛⎫⎪⎝⎭,由题意可得24242b +=⨯,解得2b =-,所以B (−2,0),则402423AB k -==+,由点斜式可得,直线AB 的方程为()223y x =+,即2340x y -+=,所以原点O 到直线AB =;【小问3详解】如图,设()22,,,,3,(0)44t a P t A a H t t a ⎛⎫⎛⎫-≠> ⎪ ⎪⎝⎭⎝⎭,则22444AP t a k t a t a -==+-,故直线AP 的方程为244a y a x t a ⎛⎫-=- ⎪+⎝⎭,令3x =-,可得2434a y a t a ⎛⎫=-+⋅ ⎪+⎝⎭,即243,34a Q a t a ⎛⎫⎛⎫--+⋅ ⎪ ⎪ ⎪+⎝⎭⎝⎭,则2434a HQ t a t a ⎛⎫=-++⋅ ⎪+⎝⎭,依题意,24344a t a t a⎛⎫-++⋅> ⎪+⎝⎭恒成立,又2432204a t a a a t a⎛⎫+++⋅-≥-> ⎪+⎝⎭,则最小值为24a ->,即2a >+2a >+,则221244a a a +>++,解得02a <<,又当2a =时,1624442t t ++-≥-=+,当且仅当2t =时等号成立,而a t ≠,即当2a =时,也符合题意.故实数a 的取值范围为(]0,2.19. 已知函数22()ln(1),(1,)2x f x x x x ax=+-∈-+∞++.(1)当1a =时,求曲线()y f x =在1x =处切线的方程;(2)当0a =时,试判断()f x 零点的个数,并说明理由;(3)是否存在实数a ,使(0)f 是()f x 的极大值,若存在,求出a 的取值集合;若不存在,请说明理由.【答案】(1)388ln270x y -+-=;(2)1个,理由见解析;(3)存在,1{}6a ∈-.【解析】【分析】(1)把1a =代入,求出函数的导数,利用导数的几何意义求出切线方程.(2)把0a =代入,利用导数探讨函数的单调性即可得解.(3)利用连续函数极大值意义求出a 值,再验证即可得解.【小问1详解】当1a =时,22()ln(1)2x f x x x x =+-++,求导得222142()1(2)x f x x x x -=-+++',则3(1)8f '=,而1(1)ln22f =-,于是切线方程是13ln2)(1)(28x y -=--,所以曲线()y f x =在1x =处切线的方程388ln270x y -+-=.【小问2详解】当0a =时,24()ln(1)ln(1)222x f x x x x x=+-=++-++,的求导得22214()01(2)(1)(2)x f x x x x x '=-=≥++++,函数()f x 在(1,)-+∞上单调递增,又(0)0f =,所以函数()f x 有且仅有一个零点,是0.【小问3详解】由(0)f 是()f x 的极大值,得0,0m n ∃<>,使得当(,)x m n ∈时,220x ax ++>且()(0)f x f ≤恒成立,求导得22222(461)()(1)(2)x a x ax a f x x ax x '+++=+++,因此0x =是22()461h x a x ax a =+++的变号零点,即(0)0h =,解得16a =-,经检验,当16a =-时,322(24)()(1)(612)x x f x x x x -=+--',则当(1,0)x ∈-时()0f x '>,当(0,24)x ∈时()0f x '<,于是(0)f 是()f x 的极大值,符合条件,所以a 的取值集合为1{}6-.【点睛】结论点睛:函数()y f x =是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

高三数学导数试题答案及解析

高三数学导数试题答案及解析

高三数学导数试题答案及解析1.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x)上单调递减D.若x0是f(x)的极值点,则f′(x)=0【答案】C【解析】若c=0,则有f(0)=0,所以A正确.由f(x)=x3+ax2+bx+c得f(x)-c=x3+ax2+bx,因为函数f(x)=x3+ax2+bx的对称中心为(0,0),所以f(x)=x3+ax2+bx+c的对称中心为(0,c),所以B正确.由三次函数的图象可知,若x是f(x)的极小值点,则极大值点在x0的左侧,所以函数在区间(-∞,x)单调递减是错误的,D正确.2.已知集合,以下命题正确的序号是.①如果函数,其中,那么的最大值为。

②数列满足首项,,当且最大时,数列有2048个。

③数列满足,,,如果数列中的每一项都是集合M的元素,则符合这些条件的不同数列一共有33个。

④已知直线,其中,而且,则一共可以得到不同的直线196条。

【答案】②③④【解析】①令,,则,所以,故不正确.②由条件知数列是首项为,公差为2的等差数列,则,则当时,,所以各有两种可能取值,因此满足条件的数列有个,故正确.③根据条件可知满足条件的数列可分为四类:(1),且,有9种;(2),且,有5种;(3),且,有10种;(4),且,有9种,共有9+5+10+9=33种.④满足的选法有,其中比值相同重复有14种,因此满足条件的直线共有210-14=196.【考点】1、导数的计数;2、等差数列;3、计数原理.3.已知集合,以下命题正确的序号是.①如果函数,其中,那么的最大值为.②数列满足首项,,当且最大时,数列有2048个.③数列满足,,,如果数列中的每一项都是集合M的元素,则符合这些条件的不同数列一共有33个.④已知直线,其中,而且,则一共可以得到不同的直线196条.【答案】②③④【解析】对①,将求导得:,所以.故错.对②,是一个等差数列,都是互为相反数的两个值,所以数列共有个.对③,由得.法一、由于,,故将加4个2,再减3个2即可.由于故不能连续加4次,也不能连续减3次,所以共有个.法二、因为,所以或,注意到数列中的每一项都是集合M的元素,依次下去可得.由于,所以.由此我们可得以下树图:,所以符合这些条件的不同数列一共有14+19=33个.法三、由于或,,故可以分以下四种情况分别求解:.,共有9个;,共有5个;,共有10个;,共有9个.所以总共有33个.对④,从中取3个不同的数作为,因为,所以共有种取法.再排除其中重复的直线.与相同的有,多3条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多2条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条(注意这种情况在前面已经考虑了);与相同的有,多1条;与相同的有,多1条;与相同的有,多1条;与相同的有,多1条.一共可以得到不同的直线条.【考点】1、导数;2、数列;3、直线的方程;4、计数原理.4.曲线在点(1,0)处的切线与坐标轴所围三角形的面积等于 .【答案】【解析】∵,∴,所以切线方程为:,∴三角形面积为.【考点】1.利用导数求切线方程;2.三角形的面积公式.5.设是定义在R上的奇函数,且,当时,有恒成立,则不等式的解集是()A.(-2,0) ∪(2,+∞)B.(-2,0) ∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)【答案】D【解析】根据和构造的函数在(0,+∞)上单调递减,又是定义在R上的奇函数,故是定义在R上单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(-∞,-2)∪(0,2).【考点】1.导数在函数单调性中的应用;2.复合函数的导数.6.曲线处的切线与坐标轴围成的三角形面积为()A.B.C.D.【答案】A【解析】切线斜率,故切线方程为,即,其和坐标轴围成的三角形面积,选A.【考点】导数的几何意义、直线方程.7.已知函数在区间上是增函数,则实数的取值范围为 .【答案】【解析】由题意知在有定义,即在恒成立,即,又在增,故在恒成立,因为,故,综上可知,.【考点】利用导数研究函数单调性、函数最值.8.已知函数,.(Ⅰ)若,求函数在区间上的最值;(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)【答案】(Ⅰ) 最大值;(Ⅱ)的取值范围是.【解析】(Ⅰ) 讨论去掉绝对值,利用导数求得最值; (Ⅱ) 对分,讨论:当时,,恒成立,所以;当时,对讨论去掉绝对值,分离出通过求函数的最值求得的范围.试题解析:(1) 若,则.当时,,,所以函数在上单调递增;当时,,.所以函数在区间上单调递减,所以在区间[1,e]上有最小值,又因为,,而,所以在区间上有最大值.(2)函数的定义域为.由,得.(*)(ⅰ)当时,,,不等式(*)恒成立,所以;(ⅱ)当时,①当时,由得,即,现令,则,因为,所以,故在上单调递增,从而的最小值为,因为恒成立等价于,所以;②当时,的最小值为,而,显然不满足题意.综上可得,满足条件的的取值范围是.【考点】绝对值的计算、函数的最值求法、利用导数求函数单调性.9.定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直.(Ⅰ)求函数的解析式;(Ⅱ)设,若存在使得,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由三个条件可得三个等式,从而可求出三个未知数.(Ⅱ)一般地若存在使得,则;若存在使得,则.在本题中,由可得: .则大于的最小值.试题解析:(Ⅰ),由题设可得:所以(Ⅱ)由得: 即:令由题意得:所以在单调递增,在上单调递减又,所以的最小值为【考点】函数的性质,导数的求法及应用.10.设,曲线在点处的切线与直线垂直.(1)求的值;(2) 若,恒成立,求的范围.(3)求证:【答案】(1) 0. (2) .(3) 结合(2)时,成立.令得到,累加可得.【解析】(1)求导数,并由得到的值; (2)恒成立问题,往往转化成求函数的最值问题.本题中设,即转化成.利用导数研究函数的最值可得.(3) 结合(2)时,成立.令得到,累加可得.试题解析:(1) 2分由题设,,. 4分(2) ,,,即设,即.6分①若,,这与题设矛盾. 8分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 9分当时,方程,其根,,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得14分【考点】导数的几何意义,利用导数研究函数的性质,利用导数证明不等式.11.设函数 (R),且该函数曲线在处的切线与轴平行.(Ⅰ)讨论函数的单调性;(Ⅱ)证明:当时,.【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ)见解析.【解析】(Ⅰ)先求出原函数的导函数,令导函数大于零得单调增区间,令导函数小于零得单调减区间;(Ⅱ)当时,,在上单调递增,求出在上的最大值为和最小值,用最大值减去最小值可得结论.试题解析:(Ⅰ),由条件知,故则 3分于是.故当时,;当时,。

高中数学必修一第五章三角函数单元测试(1)(含答案解析)

高中数学必修一第五章三角函数单元测试(1)(含答案解析)

⾼中数学必修⼀第五章三⾓函数单元测试(1)(含答案解析)⾼中数学必修⼀第五章三⾓函数单元测试 (1)⼀、选择题(本⼤题共9⼩题,共45.0分)1.以罗尔中值定理、拉格朗⽇中值定理、柯西中值定理为主体的“中值定理”反映了函数与导数之间的重要联系,是微积分学重要的理论基础,其中拉格朗⽇中值定理是“中值定理”的核⼼内容,其定理陈述如下:如果函数y=f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内⾄少存在⼀个点x0∈(a,b),使得f(b)?f(a)=f?(x0)(b?a),x=x0称为函数y= f(x)在闭区间[a,b]上的中值点,则函数f(x)=sinx+√3cosx在区间[0,π]上的“中值点”的个数为参考数据:√2≈1.41,√3≈1.73,π≈3.14.A. 1B. 2C. 3D. 42.若α∈(π2,π),cos?2α=?13,则tan?α=()A. ?√33B. ?√3 C. ?√2 D. ?√223.cos20o cos40°?sin20°sin40°=()A. 1B. 12C. ?12D. √324.为了得到函数f(x)=sin(2x+3π4)的图象,可以将函数g(x)=cos2x的图象()A. 向右平移π4个单位 B. 向左平移π4个单位5.在△ABC中,⾓A,B,C的对边分别为a,b,c,若2c?ba =cosBcosA,a=2√3,则△ABC⾯积的最⼤值为()A. √3B. 2√3C. 3√3D. 4√36.已知sinα?cosα=13,则cos2(π4α)=()A. 1718B. 19C. √29D. 1187.若将函数f(x)=sin(2x+φ)+√3cos(2x+φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点(π2,0)对称,则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值()A. ?12B. ?√3228.若函数f(cos x)=cos2x+1,则f(cos30°)的值为()A. 12B. 32C. 72D. 49.3?sin110°8?4cos210°=()A. 2B. √22C. 12D. √32⼆、填空题(本⼤题共5⼩题,共25.0分)10.已知cos?(α+π4)=13,α∈(0,π4),则cos2α=________.11.已知△ABC的内⾓A,B,C所对的边分别为a,b,c,B=π4,tan(π4A)=12,且△ABC的⾯积为25,则a+b=_________.12.函数y=√3sin2x?cos2x的图象向右平移φ(0<φ<π)个长度单位后,得到函数g(x)的图象,若函数g(x)为偶函数,则φ的值为___________.13.在ΔABC中,cosB+√3sinB=2,且cosBb +cosCc=2√3sinA3sinC,则a+c的取值范围是________.14.已知函数f(x)=sinxcos(x+π3)+√34,x∈[?π3,π6],则函数的单调减区间为___________,函数的值域为____________.三、解答题(本⼤题共6⼩题,共72.0分)15.如图,在四边形ABCD中,已知∠DAB=π3,AD︰AB=2︰3,BD=√7,AB⊥BC.(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的最⼩值为?3,若f(x)图象相邻的最⾼点与最低点的横坐标之差为2π,且f(x)的图象经过点(0,32).(2)若⽅程f(x)?k=0在x∈[0,11π3]上有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.17.在△ABC中,⾓A,B,C的对边分别为a,b,c.已知向量m =(b,a?2c),n?=(cosA?2cosC,cosB),且n?⊥m .(1)求sinCsinA的值;(2)若a=2,|m |=3√5,求△ABC的⾯积S.18.化简,求值:(1)已知tanα=34,求tan(α+π4)的值;(2)sin20°sin40°?cos20°cos40°.19.在△ABC中,内⾓A,B,C对边的边长分别是a、b、c,△ABC的⾯积为S⑴若c=2,C=π3,S=√3,求a+b;)=a,求⾓A;⑴若√3(bsinC?ccosBtanC20.如图,某住宅⼩区的平⾯图呈圆⼼⾓为120°的扇形AOB,⼩区的两个出⼊⼝设置在点A及点C处,且⼩区⾥有⼀条平⾏于BO的⼩路CD.(1)已知某⼈从C沿CD⾛到D⽤了10分钟,从D沿DA⾛到A⽤了6分钟,若此⼈步⾏的速度为每分钟50⽶,求该扇形的半径OA的长(精确到1⽶);(2)若该扇形的半径为OA=a,已知某⽼⼈散步,从C沿CD⾛到D,再从D沿DO⾛到O,试确定C的位置,使⽼⼈散步路线最长.-------- 答案与解析 --------本题考查导数运算、余弦函数性质,属于中档题.求出f(x)的导数,利⽤f′(x0)=f(b)?f(a)b?a,可得结合余弦函数性质易知⽅程在区间(0,π)内有2解,【解答】解:由知由拉格朗⽇中值定理:令f′(x0)=f(b)?f(a)b?a,即,由?√3π∈(?1,?12),结合余弦函数性质易知⽅程在区间(0,π)内有2解,故在区间[0,π]上的“中值点”有2个,故选B.2.答案:C解析:【分析】本题考查三⾓函数的化简求值,考查同⾓三⾓函数基本关系式和⼆倍⾓公式,是基础题.由已知可得tanα<0,再由⼆倍⾓公式和同⾓三⾓函数基本关系可得tanα的⽅程,解之可得答案.【解答】解:∵α∈(π2,π),且cos2α=?13,∴tanα<0,且cos2α=cos2α?sin2α=cos2α?sin2αcos2α+sin2α=1?tan2α1+tan2α=?13,解得tanα=?√2.故选C.3.答案:B本题考查两⾓和与差的三⾓函数公式,属于基础题.由题直接计算求解即可得到答案.【解答】解:cos20o cos40°?sin20°sin40°=cos(20°+40°) =cos60°=12.故选B . 4.答案:D解析:【分析】本题考查三⾓函数的图象变换规律,是基础题.根据题意,进⾏求解即可.【解答】解:,,⼜,∴只需将函数g(x)=cos2x 的图象向左平移π8个单位即可得到函数f(x)=sin?(2x +3π4)的图象.故选D . 5.答案:C解析:【分析】本题考查正余弦定理、三⾓形⾯积公式,两⾓和的正弦公式和基本不等式,属于中档题.先由正弦定理和两⾓和的正弦公式得出cosA =12,再由余弦定理和基本不等式解得bc ≤12,最后由三⾓形⾯积公式求得△ABC ⾯积的最⼤值.【解答】解:由已知可得(2c ?b)cosA =acosB ,由正弦定理可得(2sinC ?sinB)cosA =sinAcosB ,所以2sinCcosA =sinBcosA +sinAcosB =sin(A +B)=sinC ,由sinC ≠0可得cosA =12,则,由余弦定理可得12=b 2+c 2?2bc ×12=b 2+c 2?bc ,由基本不等式可得12=b 2+c 2?bc ≥2bc ?bc =bc ,解得bc ≤12,当且仅当b =c =2√3时,取等号,故△ABC ⾯积S =12bcsinA =√34bc ≤√34×12=3√3.故选C .6.答案:A解析:【分析】本题主要考查⼆倍⾓公式、诱导公式以及同⾓三⾓函数基本关系的应⽤,属于基础题.由条件利⽤⼆倍⾓公式可得sin2α=81+cos(π22α)2=12+sin2α2,计算求得结果.【解答】解:∵sinα?cosα=13,∴1?2sinαcosα=1?sin2α=19,∴sin2α=89,则cos2(π4?α)=1+cos(π22α)2=12+sin2α2=1718,故选A.7.答案:D解析:【分析】本题主要考查函数y=Asin(ωx+φ)的图像变换规律、诱导公式和三⾓函数的性质.3]=2cos(2x+φ+π3),再根据图像关于点(π2,0)对称,得到φ=π6,得到g(x)=cos(x+π6),进⽽求出g(x)的最⼩值.【解答】解:∵f(x)=sin?(2x+φ)+√3cos?(2x+φ)=2sin?(2x+φ+π3),∴将函数f(x)的图像向左平移π4个单位长度后,得到图像的函数解析式为y=2sin?[2(x+π4)+φ+π3]=2cos?(2x+φ+π3).∵函数y=2cos(2x+φ+π3)的图像关于点(π2,0)对称,∴2cos(2×π2+φ+π3)=0,所以π+φ+π3=kπ+π2解得φ=kπ?5π6,k∈Z.∵0<φ<π,∴φ=π6,∴g(x)=cos(x+π6).∵x∈[?π2,π6],∴x+π6∈[?π3,π3],∴cos(x+π6)∈[12,1],则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值是12.故选D.8.答案:B解析:【分析】本题主要考查⼆倍⾓公式的应⽤,属于基础题.利⽤⼆倍⾓公式,然后求出函数值即可.【解答】解:∵f(cos x)=cos 2x +1=2cos 2x ,∴f(cos?30°)=2cos 230°32)2=32.故选B . 9.答案:C解析:【分析】本题考查三⾓函数的化简求值问题,属于基础题.根据诱导公式与⼆倍⾓的余弦公式即可求出结果.【解答】解:原式=3?sin110°8?4cos 210°=3?cos20°8?2(1+cos20°)=3?cos20°6?2cos20°=12.故选C .10.答案:4√29解析:解:因为cos(α+π4)=13,α∈(0,π4),所以sin(α+π4)=2√23,所以cos2α=cos[2(α+π4)?π2]=sin2(α+π4) =2sin(α+π4)cos(α+π4)=2×2√23×13=4√29.答案:4√29由诱导公式可知cos2α=cos[2(α+π4)?π2]=sin2(α+π4),然后结合⼆倍⾓的正弦公式展开可求.本题主要考查函数值的计算,利⽤三⾓函数的倍⾓公式是解决本题的关键. 11.答案:5+5√5解析:【分析】本题考查两⾓和与差的三⾓公式的应⽤,考查正弦定理及三⾓形⾯积公式的应⽤,属中档题.依题意,根据两⾓和与差的三⾓公式求得tanA =13,进⽽得sin?A ,cos?A .⼜B =π4,求得sinC ,再结合三⾓形⾯积及正弦定理求解即可.【解答】解:因为tan?(π4?A)=12,所以1?tan?A1+tan?A =12,则tan?A =13,因此sinA =√1010,cosA =3√1010.所以sinC =sin (A +B )=sinAcosB +cosAsinB =√1010×√22+3√1010×√22=2√55,根据△ABC 的⾯积为25,得12absinC =12ab ×2√55=25,得ab =25√5,⼜由正弦定理得a sinA =bsinB ,得b =√5a ,联⽴{ab =25√5b =√5ab =5√5,所以a +b =5+5√5.故答案为5+5√5.12.答案:π6解析:【分析】先将y =√3sin2x ?cos2x 化为y =2sin(2x ?π6),然后再利⽤图象平移知识,求出g(x),根据g(x)是偶函数,则g(0)取得最值,求出φ.本题考查三⾓函数图象变换的⽅法以及性质,将奇偶性、对称性与函数的最值联系起来,是此类问题的常规思路,属于中档题.【解答】解:由已知得y =√3sin2x ?cos2x =2(sin2x ?√32cos2x 12)=2sin(2x π6).所以g(x)=2sin[2(x ?φ)?π6],由g(x)是偶函数得g(0)=2sin(?2φ?π6)=±2,∴?2φ?π6=π2+kπ,k ∈Z ,∴φ=?π3kπ2,k ∈Z ,当k =?1时,φ=π6即为所求.故答案为:π6.13.答案:(√32,√3]解析:【分析】本题考查正、余弦定理,三⾓函数恒等变换的应⽤,正弦函数的性质,考查了计算能⼒和转化思想,属于中档题.由题意可得⾓B和边b,然后利⽤正弦定理,三⾓函数恒等变换的应⽤可求a+c=√3sin(A+π6),66<5π6,利⽤正弦函数的性质可求其取值范围.【解答】解:∵在ΔABC中,cosB+√3sinB=2,∴2(12cos?B+√32sin?B)=2,即2sin(B+π6)=2,所以B+π6=π2,B=π3,⼜cosBb +cosCc=2√3sinA3sinC=2√3a3c,所以ccosB+bcosC=2√33ab,故c?a2+c2?b22ac +b?a2+b2?c22ab=2√3即a=2√33ab,解得b=√32,∴由正弦定理可得bsinB =√32√32=1=asinA=csinC,故a=sinA,c=sinC,所以a+c=sinA+sinC=sinA+sin(2π3A)=sinA+√32cosA+12sinA=32sinA+√32cosA=√3sin(A+π63,π66<5π6,所以sin(A+π6)∈(12,1]∴a+c=√3sin(A+π6)∈(√32,√3].故答案为(√32,√3].14.答案:;[?√34,12]解析:【分析】本题主要考查了两⾓和与差的三⾓函数公式、⼆倍⾓公式、函数的单调区间以及函数的值域,属于基础题.由题意化简可得,且,,由此即可得到函数的单调减区间以及值域.【解答】解:=sinx (12cosx ?√32sinx)+√34=14sin2x ?√32sin 2x +√34 =14sin2x +√34cos2x ,令,解得,,令k =0,可得,即函数的单调减区间为,此时,,即函数的值域为[?√34,12],故答案为;[?√34,12].15.答案:解:(1)由题意可设AD =2k ,AB =3k(k >0).∵BD =√7,∠DAB =π3,∴由余弦定理,得(√7)2=(3k)2+(2k)2?2×3k ×2kcos π3,解得k =1,∴AD =2,AB =3..(2)∵AB ⊥BC ,,,,∴CD =√7×2√77√32=4√33.解析:本题主要考查了余弦定理,⽐例的性质,正弦定理,同⾓三⾓函数之间的关系以及特殊⾓的三⾓函数值在解三⾓形中的综合应⽤,考查了计算能⼒和转化思想,属于中档题.(1)在△ABC 中,由已知及余弦定理,⽐例的性质即可解得AD =2,AB =3,由正弦定理即可解得sin∠ABD 的值;(2)由(1)可求cos∠DBC ,利⽤同⾓三⾓函数关系式可求sin∠DBC 的值,利⽤正弦定理即可计算得解.16.答案:解:(1)由题意得:A =3,T2=2π,则T =4π,即ω=2πT=12,所以f(x)=3sin(12x +φ),⼜f(x)的图象经过点(0,32),则32=3sinφ,由|φ|<π2得φ=π6,所以f(x)=3sin(12x +π6); (2)由题意得,f(x)?k =0在x ∈[0,11π3]有且仅有两个解x 1,x 2,即函数y =f(x)与y =k 在x ∈[0,11π3]且仅有两个交点,由x ∈[0,11π3]得,12x +π6∈[π6,2π],则f(x)=3sin(12x +π6)∈[?3,3],设t =12x +π6,则函数为y =3sint ,且t ∈[π6,2π],画出函数y =3sint 在t ∈[π6,2π]上的图象,如图所⽰:由图可知,k 的取值范围为:k ∈(?3,0]∪[3 2,3),当k ∈(?3,0]时,由图可知t 1,t 2关于t =3π2对称,即x =83π对称,所以x 1+x 2=16π3当k ∈[32,3)时,由图可知t 1,t 2关于t =π2对称,即x =23π对称,所以x 1+x 2=4π3,综上可得,x 1+x 2的值是16π3或4π3.解析:(1)由题意求出A 和周期T ,由周期公式求出ω的值,将点(0,32)代⼊化简后,由φ的范围和特殊⾓的三⾓函数值求出φ的值,可得函数f(x)的解析式;(2)将⽅程的根转化为函数图象交点问题,由x 的范围求出12x +π6的范围,由正弦函数的性质求出f(x)的值域,设设t =12x +π6,函数画出y =3sint ,由正弦函数的图象画出y =3sint 的图象,由图象和条件求出k 的范围,由图和正弦函数的对称性分别求出x 1+x 2的值.本题考查了形如f(x)=Asin(ωx +φ)的解析式的确定,正弦函数的性质与图象,以及⽅程根转化为函数图象的交点问题,考查分类讨论思想,数形结合思想,以及化简、变形能⼒.17.答案:解:(1)由m⊥n ? ,可得b(cosA ?2cosC)+(a ?2c)cosB =0,根据正弦定理可得,sinBcosA ?2sinBcosC +sinAcosB ?2sinCcosB =0∴(sinBcosA +sinAcosB)?2(sinBcosC +sinCcosB)=0∴sin(A +B)?2sin(B +C)=0,∵A +B +C =π,∴sinC ?2sinA =0,所以(2)由(1)得:c =2a ,因为a =2,|m |=3√5,所以c =4,b =3,所以cosA =32+42?222×3×4=78,因为A ∈(0,π),所以sinA =√1?(78)2=√158,所以△ABC 的⾯积为=12bcsinA =12×3×4×√158=3√154解析:本题考查平⾯向量的数量积、垂直的应⽤、考查两⾓和与差的三⾓函数、正弦定理、余弦定理以及三⾓形⾯积公式的运⽤,考查计算能⼒和转化能⼒,属于中档题.(1)由⊥m n?,可得b(cosA?2cosC)+(a?2c)cosB=0,根据正弦定理可得,sinBcosA?2sinBcosC+sinAcosB?2sinCcosB=0,化简即可;(2)由(1)c=2a可求c,由|m |=3√5可求b,结合余弦定理可求cos A,利⽤同⾓平⽅关系可求sin A,代⼊三⾓形的⾯积公式S=12bcsinA可求.18.答案:解:(1)∵tan?α=34,∴tan?(α+π4)=tanα+tanπ41?tanα·tanπ4=34+11?34×1=7.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°)=?cos(?20°+?40°)=?cos60°=?12.解析:本题主要考查了两⾓和差公式,三⾓函数的化简与求值,属于较易题.(1)利⽤两⾓和的正切公式直接代值求解.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°),利⽤两⾓和的余弦公式求解.19.答案:解:,∴ab=4 ①,⼜c2=a2+b2?2abcosC,c=2,∴a2+b2?2ab=4 ②,由①②得a+b=4;(2)∵√3(bsinC?ccosBtanC)=a,∴∵√3(sinBsinC?sinCcosBcosCsinC)=sinA,∴?√3cos(B+C)=sinA,∴tanA=√3,⼜,.解析:本题考查解三⾓形和三⾓恒等变换,考查推理能⼒和计算能⼒,属于⼀般题.(1)利⽤三⾓形的⾯积公式和余弦定理即可求解;(2)由正弦定理和三⾓恒等变换公式得tanA=√3,结合范围即可求出A.20.答案:解:(1)设该扇形的半径为r⽶,连接CO.由题意,得CD=500(⽶),DA=300(⽶),∠CDO=60°,在△CDO中,CD2?+OD2?2CD?OD?cos60°=OC2,即,5002+(r?300)2??2×500×(r?300)×1 2=r?2,解得r=490011≈445(⽶).(2)连接OC,设∠DOC=θ,θ∈(0,2π3),在△DOC中,由正弦定理得:CDsinθ=DOsin(2π3θ)=OCsinπ3=√3,于是CD=3,DO=3sin(2π3θ),则DC+DO=√3+sin(2π3θ)]=2asin(θ+π6),θ∈(0,2π3),所以当θ=π3时,DC+DO最⼤为 2a,此时C在弧AB的中点处.解析:本题主要考查解三⾓形在实际问题中的运⽤,属于中档题.(1)连接OC,由CD//OB知∠CDO=60°,可由余弦定理得到OC的长度.(2)连接OC,设∠DOC=θ,θ∈(0,2π3),由正弦定理,三⾓恒等变换可求DC+DO=2asin(θ+π6),θ∈(0,2π3),利⽤正弦函数的性质可求最⼤值,即可得解.。

高三理科数学培优专题——三角函数(含答案)

高三理科数学培优专题——三角函数(含答案)

三角函数专题一、方法总结:1.三角函数恒等变形的基本策略。

(1)注意隐含条件的应用:1=cos 2x +sin 2x 。

(2)角的配凑。

α=(α+β)-β,β=2βα+-2βα-等。

(3)升幂与降幂:主要用2倍角的余弦公式。

(4)化弦(切)法,用正弦定理或余弦定理。

(5)引入辅助角。

asinθ+bcosθ=22b a +sin (θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

2.解答三角高考题的策略。

(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。

(2)寻找联系:运用相关公式,找出差异之间的内在联系。

(3)合理转化:选择恰当的公式,促使差异的转化。

二、例题集锦: 考点一:三角函数的概念1.(2011年东城区示范校考试15)设A 是单位圆和x 轴正半轴的交点,Q P 、是单位圆上的两点,O 是坐标原点,6π=∠AOP ,[)παα,0,∈=∠AOQ .(1)若34(,)55Q ,求⎪⎭⎫ ⎝⎛-6cos πα的值; (2)设函数()f OP OQ α=⋅u u u r u u u r ,求()αf 的值域.考点二:三角函数的图象和性质2.(2014年课标I ,7)在函数①cos 2y x =,②cos y x =,③cos(2)6y x π=+,④tan 24y x π⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为 ( )A.①②③B. ②③④C. ②④D. ①③3.(2012年课标全国,9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( )A.15[,]24B.13[,]24C.10,2⎛⎤ ⎥⎝⎦D.()0,24.(2011年课标全国,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A. ()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减B. ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C. ()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 D. ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增5.将函数()()sin 22f x x πϕϕ⎛⎫=+<⎪⎝⎭的图象向左平移6π个单位长度后,所得函数()g x 的图象关于原点对称,则函数()f x 在0,2π⎡⎤⎢⎥⎣⎦的最小值为 A .12- B .12C.6.(2011年东城区期末15)函数()sin()(0,0,||)2f x A x A ωφωφπ=+>><部分图象如图所示.(Ⅰ)求()f x 的最小正周期及解析式;(Ⅱ)设()()cos 2g x f x x =-,求函数()g x 在区间[0,]2x π∈上的最大值和最小值.考点三、四、五:同角三角函数的关系、 诱导公式、三角恒等变换7.已知函数2()2sin cos 2cos f x x x x ωωω=-(0x ω∈>R ,),相邻两条对称轴之间的距离等于2π. (Ⅰ)求()4f π的值; (Ⅱ)当02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值.8.已知向量(cos ,sin ),a x x =r 向量(cos ,sin ),()b x x f x a b =-=⋅r r r(1)求函数()()sin 2g x f x x =+的最小正周期和对称轴方程; (2)若x 是第一象限角且'3()2()f x f x =-,求tan()4x π+的值.考点六:解三角形9.ABC ∆中,角,,A B C成等差数列是sin sin )cos C A A B =+成立的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10.已知函数()cos f x x =,,,a b c 分别为ABC ∆的内角,,A B C 所对的边,且22233a b c +-4ab =,则下列不等式一定成立的是A .()()sin cos f A fB ≤ B .()()sin cos f A f B ≥C .()()sin sin f A f B ≥D .()()cos cos f A f B ≤ 11.(2014年课标I ,16)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .12.(2014年河南焦作联考)在ABC ∆中,已知sin sin cos sin sin cos sin sin cos A B C A C B B C A =+,若,,a b c 分别是角,,A B C 所对的边,则2abc 的最大值为 . 13.(2015河北秦皇岛一模,17,12分)在ABC ∆中,角A B C ,,所对的边分别为,,a b c ,满足()222.AB AC a b c ⋅=-+u u u r u u u r(1)求角A 的大小; (2)求24sin()23C B π--的最大值,并求取得最大值时角,B C 的大小.14.(2009全国II , 17,10分) 设ABC ∆的内角A B C ,,的对边分别为,,a b c ,3cos()cos 2A CB +=-,2b ac =.求B ∠的大小.14.(2015课标II ,17,12分)△ABC 中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆的面积是ADC ∆面积的2倍. (1)求sin sin BC∠∠;(2)若1,2AD DC ==,求BD 和AC 的长.15、(2011东城一模15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 分,且满足2cos cos c b Ba A-=. (Ⅰ)求角A 的大小;(Ⅱ)若a =ABC 面积的最大值.例题集锦答案:1.(2011年东城区示范校考试理15)如图,设A 是单位圆和x 轴正半轴的交点,Q P 、是 单位圆上的两点,O 是坐标原点,6π=∠AOP ,[)παα,0,∈=∠AOQ .(1)若34(,)55Q ,求⎪⎭⎫ ⎝⎛-6cos πα的值;(2)设函数()f OP OQ α=⋅u u u r u u u r ,求()αf 的值域.★★单位圆中的三角函数定义解:(Ⅰ)由已知可得54sin ,53cos ==αα……………2分6sin sin 6cos cos 6cos παπαπα+=⎪⎭⎫⎝⎛-∴………3分1043321542353+=⨯+⨯=…………4分(Ⅱ)()f OP OQ α=⋅u u u r u u u r ()cos ,sin cos ,sin 66ππαα⎛⎫=⋅ ⎪⎝⎭………6分ααsin 21cos 23+=………………7分 sin 3πα⎛⎫=+⎪⎝⎭………………8分[0,)απ∈Q 4[,)333πππα∴+∈………9分 sin 123πα⎛⎫-<+≤ ⎪⎝⎭ (12)分()αf ∴的值域是⎛⎤ ⎥ ⎝⎦ (13)分2.(2011年西城期末理15)已知函数2()22sin f x x x =-.(Ⅰ)若点(1,P在角α的终边上,求()f α的值; (Ⅱ)若[,]63x ππ∈-,求()f x 的值域.★★三角函数一般定义解:(Ⅰ)因为点(1,P 在角α的终边上,所以sin α=,1cos 2α=, ………………2分 所以22()22sin cos 2sin f αααααα=-=-………………4分21(2(32=⨯-⨯=-. ………………5分 (Ⅱ)2()22sin f x x x =-cos 21x x =+- ………………6分2sin(2)16x π=+-, ………………8分因为[,]63x ππ∈-,所以65626πππ≤+≤-x , ………………10分所以1sin(2)126x π-≤+≤, ………………11分所以()f x 的值域是[2,1]-. ………………13分 3.(2011年东城区期末理15)函数()sin()(0,0,||)2f x A x A ωφωφπ=+>><部分图象如图所示.(Ⅰ)求()f x 的最小正周期及解析式;(Ⅱ)设()()cos 2g x f x x =-,求函数()g x 在区间[0,]2x π∈上的最大值和最小值.解:(Ⅰ)由图可得1A =,22362T πππ=-=,所以T =π. ……2分 所以2ω=.当6x π=时,()1f x =,可得 sin(2)16ϕπ⋅+=, 因为||2ϕπ<,所以6ϕπ=. ……5分 所以()f x 的解析式为()sin(2)6f x x π=+. ………6分 (Ⅱ)()()cos 2sin(2)cos 26g x f x x x x π=-=+-sin 2cos cos 2sin cos 266xx x ππ=+- 12cos 22x x =- sin(2)6x π=-. ……10分 因为02x π≤≤,所以52666x πππ-≤-≤. 当262x ππ-=,即3x π=时,()g x 有最大值,最大值为1;当266x ππ-=-,即0x =时,()g x 有最小值,最小值为12-.……13分2T =相邻平衡点(最值点)横坐标的差等;2||T =πω ;()max min 12y y A =- ;φ----代点法 4.(2010年海淀期中文16)已知函数x x x f 2cos )62sin()(+-=π.(1)若1)(=θf ,求θθcos sin ⋅的值;(2)求函数)(x f 的单调增区间.(3)求函数的对称轴方程和对称中心 解:(1)22cos 16sin2cos 6cos2sin )(xx x x f ++-=ππ...3分(只写对一个公式给2分) 212sin 23+=x ....5分 由1)(=θf ,可得332sin =θ ......7分 所以θθθ2sin 21cos sin =⋅ ......8分 63= .......9分 (2)当Z k k x k ∈+≤≤+-,22222ππππ,换元法 ..11即Z k k k x ∈++-∈],4,4[ππππ时,)(x f 单调递增.所以,函数)(x f 的单调增区间是Z k k k ∈++-],4,4[ππππ... 13分5.(2011年丰台区期末理15)已知函数2()2sin cos 2cos f x x x x ωωω=- (0x ω∈>R ,),相邻两条对称轴之间的距离等于2π.(Ⅰ)求()4f π的值;(Ⅱ)当02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值.解:(Ⅰ)()sin 2cos 212sin(2)14f x x x x π=--=--ωωω. ω意义 ……4分因为 22T π=,所以 T =π,1ω=. ……6分所以 ()2sin(2)14f x x π=--.所以 ()04f π= ………7分(Ⅱ)()2sin(2)14f x x π=--当 0,2x π⎡⎤∈⎢⎥⎣⎦时, 32444x πππ-≤-≤, 无范围讨论扣分所以 当242x ππ-=,即8x 3π=时,max ()21f x =-, …10分当244x ππ-=-,即0x =时,min ()2f x =-. ………13分6、(2011朝阳二模理15)已知函数2()2sin sin()2sin 12f x x x x π=⋅+-+ ()x ∈R .(Ⅰ)求函数()f x 的最小正周期及函数()f x 的单调递增区间;(Ⅱ)若02()23x f =,0ππ(, )44x ∈-,求0cos 2x 的值. 解: 2()2sin cos 2sin 1=⋅-+f x x x x ……………………………………1分 sin 2cos2=+x x ……………………………………2分π2sin(2)4x =+. 和差角公式逆用 ………………3分 (Ⅰ)函数()f x 的最小正周期2ππ2T ==. ……………………………………5分 令πππ2π22π242k x k -++≤≤()k ∈Z , ……………………………………6分所以3ππ2π22π44k x k -+≤≤. 即3ππππ88k x k -+≤≤.所以,函数()f x 的单调递增区间为3ππ[π, π]88k k -+ ()k ∈Z . ……………8分(Ⅱ)解法一:由已知得0002()sin cos 23x f x x =+=, …………………9分 两边平方,得021sin 29x += 同角关系式 所以 07sin 29x =-…………11分 因为0ππ(, )44x ∈-,所以0π2(, )22x π∈-. 所以20742cos 21()99x =--=. ……………………………………13分 解法二:因为0ππ(, )44x ∈-,所以0ππ(0, )42x +∈. …………………………9分 又因为000ππ2()2)2)2244x x f x =⋅+=+=,得 0π1sin()43x +=. ……………………………………10分 所以20π122cos()1()43x +=-=……………………………………11分 所以,00000πππcos 2sin(2)sin[2()]2sin()cos()2444x x x x x π=+=+=++ 122422339=⋅⋅=. 诱导公式的运用7、(2011东城二模理15)(本小题共13分)已知πsin()410A+=,ππ(,)42A∈.(Ⅰ)求cos A的值;(Ⅱ)求函数5()cos2sin sin2f x x A x=+的值域.解:(Ⅰ)因为ππ42A<<,且πsin()410A+=,πcos()410A+=-.ππππcos()cossin()sin4444A A+++31021025=-⋅+=.所以3cos5A=.………6分(Ⅱ)由(Ⅰ)可得4sin5A=.212sin2sinx x=-+2132(sin)22x=--+,x∈R.因为sin[1,1]x∈-,所以,当1sin2x=时,()f x取最大值32;当sin1x=-时,()f x取最小值3-.所以函数()f x的值域为3[3,]2-.8.(2011年朝阳期末理15)已知△ABC中,2sin cos sin cos cos sinA B C B C B=+.(Ⅰ)求角B的大小;(Ⅱ)设向量(cos,cos2)A A=m,12(, 1)5=-n,求当⋅m n取最小值时,)4tan(π-A值.解:和差角公式逆用所以2sin cos sin()sin()sinA B B C A A=+=π-=. ……… 3分因为0A p<<,所以sin0A¹.所以1cos2B=. ……… 5分3Bπ=. …………7分(Ⅱ)因为12cos cos25A A⋅=-+m n,………………… 8分所以2212343cos2cos12(cos)5525A A A⋅=-+-=--m n. …10分所以当3cos5A=时,⋅m n取得最小值.同角关系或三角函数定义……12分所以tan11tan()4tan17AAAπ--==+. …………… 13分9.(2011年石景山期末理15)已知函数23cossinsin3)(2-+=xxxxf()Rx∈.(Ⅰ)求)4(πf的值;(Ⅱ)若)2,0(π∈x,求)(xf的最大值;(Ⅲ)在ABC∆中,若BA<,21)()(==BfAf,求ABBC的值.解:(Ⅰ)234cos4sin4sin3)4(2-+=ππππf21=. 4分(Ⅱ)2)2cos1(3)(xxf-=+232sin21-xxx2cos232sin21-=)32sin(π-=x.…6分2π<<xΘ,32323πππ<-<-∴x.∴当232xππ-=时,即125π=x时,)(xf的最大值为1.…8分(Ⅲ)Θ)32sin()(π-=xxf,若x是三角形的内角,则π<<x令21)(=xf,得解得4π=x或127π=x.……10分由已知,BA,是△ABC的内角,BA<且21)()(==BfAf,∴4π=A,127π=B,∴6π=--π=BAC.…11分又由正弦定理,得221226sin 4sinsin sin ==ππ==C A AB BC . ……13分 10、(2011东城一模理15)(本小题共13分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 分,且满足2cos cos c b Ba A-=. (Ⅰ)求角A 的大小;(Ⅱ)若a =ABC 面积的最大值. 解:(Ⅰ)因为2cos cos c b Ba A-=, 所以(2)cos cos c b A a B -⋅=⋅由正弦定理,得(2sin sin )cos sin cos C B A A B -⋅=⋅.边化角 整理得2sin cos sin cos sin cos C A B A A B ⋅-⋅=⋅. 所以2sin cos sin()sin C A A B C ⋅=+=. 在△ABC所以1cos 2A =,3A π∠=.(Ⅱ)由余弦定理2221cos 22b c a A bc +-==,a = 所以2220220b cbc bc +-=≥- 均值定理在三角中的应用 所以20bc ≤,当且仅当b c=时取“=” . 取等条件别忘 所以三角形的面积1sin 2S bc A =≤. 所以三角形面积的最大值为 ……………………13分11、(2011丰台一模理15). 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc .(Ⅰ)求角A 的大小;(Ⅱ)设函数2cos 2cos 2sin 3)(2x x x x f +=,当)(B f 取最大值23时,判断△ABC的形状.解:(Ⅰ)在△ABC 中,因为b2+c 2-a 2=bc 可得cos A =12.(余弦定理或公式必须有一个,否则扣1分) ……3分 ∵, (或写成A 是三角形内角) ……………………4分 ∴3A π=.……………………5分 (Ⅱ)2cos2cos 2sin 3)(2x x x x f +=11cos 222x x =++ …7分 1sin()62x π=++, ……9分∵3A π=∴2(0,)3B π∈(没讨论,扣1分)…10分 ∴当62B ππ+=,即3B π=时,()f B 有最大值是23. …11分 又∵3A π=, ∴3C π= ∴△ABC 为等边三角形. ……13分12、(2011海淀一模理15). (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ; (Ⅱ)求ABC ∆的面积. 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B C B C B C ++=-, …………………1分代入得到,1123tan()111123B C ++==-⨯ . …………………3分 因为180A B C =--o , …………………4分角关系 ………5分 (II )因为0180A <<o o ,由(I )结论可得:135A =o . …………………7分因为11tan tan 023BC =>=>,所以090C B <<<o o . …………8分所以sin B =sin C =. …………9分 由sin sin a cA C=得a = …………………11分 所以ABC ∆的面积为:11sin 22ac B =. ………………13分 13、(2011石景山一模理15).在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且274sin cos222A B C +-=. (Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的最大值.解:(Ⅰ)∵ A 、B 、C 为三角形的内角, ∴ π=++C B A .∵ 三角形中角的大小关系∴ …………2分 ∴ 27)1cos 2(2cos 142=--+⋅C C .即 021cos 2cos 22=+-C C . ……4分∴ 21cos =C . 又∵ π<<C 0 , ∴ 3π=C . …7分(Ⅱ)由(Ⅰ)得 32π=+B A .∴ A A A sin 32cos cos 32sinsin ⋅-⋅+=ππ)6sin(3cos 23sin 23π+=+=A A A .…10分 ∵ 320π<<A ,∴ 6566πππ<+<A .∴ 当26ππ=+A ,即 3π=A 时,B A sin sin +取得最大值为3.…………13分。

高三导数及其应用测试题及答案解析

高三导数及其应用测试题及答案解析

高三数学章末综合测试题导数及其应用一、选择题:本大题共12小题,每小题5分,共60分.1.曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角面积为( ) A.19 B.29 C.13 D.232.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1) D.⎝⎛⎭⎫-∞,-12 3.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( )A .-2B .-1C .1D .24.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( ) A .4 B .-14 C .2D .-125.已知f (x )=x 3-ax 在(-∞,-1]上递增,则a 的取值范围是( ) A .a >3 B .a ≥3 C .a <3D .a ≤36.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =xf ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( ) A .f (1)与f (-1) B .f (-1)与f (1) C .f (2)与f (-2)D .f (-2)与f (2)7.若函数f (x )=13x 3+12f ′(1)x 2-f ′(2)x +3,则f (x )在点(0,f (0))处切线的倾斜角为( )A.π4B.π3C.2π3D.3π48.下图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )9.若函数f (x )在R 上满足f (x )=e x +x 2-x +sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是( )A .y =2x -1B .y =3x -2C .y =x +1D .y =-2x +310.如图,函数f (x )的导函数y =f ′(x )的图像,则下面判断正确的是( ) A .在(-2,1)内f (x )是增函数 B .在(1,3)内f (x )是减函数新 课标 第 一 网 C .在(4,5)内f (x )是增函数 D .在x =2时,f (x )取到极小值11.已知函数f (x )=x 3-px 2-qx 的图像与x 轴相切于(1,0)点,则f (x )的极大值、极小值分别为( ) A.427、0 B .0、427 C .-427、0 D .0、-42712.若函数y =f (x )的图像在点P 处的切线方程为x -y +2=0,则f (1)+f ′(1)=( ) w w w .x k b 1.c o m A .1 B .2 C .3D .4二、填空题:本大题共4个小题,每小题5分,共20分.13.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________.14.已知函数f (x )=ln x +2x ,g (x )=a (x 2+x ),若f (x )≤g (x )恒成立,则实数a 的取值范围是__________.15.设函数y =ax 2+bx +k (k >0)在x =0处取得极值,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线x +2y +1=0,则a +b 的值为__________.16.已知函数f (x )的导函数的图像如图所示,则下列说法正确的是__________. ①函数f (x )在区间(-3,1)内单调递减;②函数f (x )在区间(1,7)内单调递减; ③当x =-3时,函数f (x )有极大值;④当x =7时,函数f (x )有极小值. 三、解答题:本大题共6小题,共70分.17.(10分)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ).(1)若函数f (x )在x =1处有极值为10,求b 的值; (2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值. 18.(12分)已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围. 19.(12分)已知函数f (x )=2mx -m 2+1x 2+1(x ∈R ). (1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当m >0时,求函数f (x )的单调区间与极值. 20.(12分)已知函数f (x )=(a -12)x 2+ln x (a ∈R ).(1)当a =1时,求f (x )在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方,求a 的取值范围.21.(12分)设函数f (x )=ln x ,g (x )=ax +bx,函数f (x )的图像与x 轴的交点也在函数g (x )的图像上,且在此点有公共切线. (1)求a ,b 的值; (2)对任意x >0,试比较f (x )与g (x )的大小.22.(12分)设函数f (x )=ax 3-2bx 2+cx +4d (a ,b ,c ,d ∈R )的图像关于原点对称,且x =1时,f (x )取极小值-23. (1)求a ,b ,c ,d 的值; (2)当x ∈[-1,1]时,图像上是否存在两点,使得过两点处的切线互相垂直?试证明你的结论; (3)若x 1,x 2∈[-1,1],求证:|f (x 1)-f (x 2)|≤43.一、选择题:本大题共12小题,每小题5分,共60分.1.曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角面积为( ) A.19 B.29 C.13 D.23解析:y ′=x 2+1,当x =1时,k =y ′|x =1=2,∴切线方程为y -43=2(x -1).当x =0时,y =-23,当y =0时,x =13.∴三角形的面积S =12×|-23|×13=19.答案:A2.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1)D.⎝⎛⎭⎫-∞,-12 解析:由y =4x 2+1x ,得y ′=8x -1x 2. 令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 在⎝⎛⎭⎫12,+∞上递增. 答案:B3.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( )A .-2B .-1C .1D .2解析:据已知可得f ′(x )=sin x +x cos x ,故f ′⎝⎛⎭⎫π2=1.由两直线的位置关系可得-a2×1=-1,解得a =2. 答案:D4.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( ) A .4B .-14C .2D .-12解析:∵f (x )=g (x )+x 2,∴f ′(x )=g ′(x )+2x ,X k b 1 . c o m f ′(1)=g ′(1)+2=2+2=4. 答案:A5.已知f (x )=x 3-ax 在(-∞,-1]上递增,则a 的取值范围是( ) A .a >3 B .a ≥3 C .a <3D .a ≤3解析:由f (x )=x 3-ax ,得f ′(x )=3x 2-a , 由3x 2-a ≥0对于一切x ∈(-∞,-1]恒成立, 3x 2≥a ,∴a ≤3.若a <3,则f ′(x )>0对于一切x ∈(-∞,-1]恒成立. 若a =3,x ∈(-∞,-1)时,f ′(x )>0恒成立. x =-1时,f ′(-1)=0,∴a ≤3. 答案:D6.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =xf ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( ) A .f (1)与f (-1) B .f (-1)与f (1) C .f (2)与f (-2)D .f (-2)与f (2)解析:由y =xf ′(x )的图像知±2是y =f ′(x )的两个零点,设f ′(x )=a (x -2)(x +2).当x >2时,xf ′(x )=ax (x -2)(x +2)>0,∴a >0.由f ′(x )=a (x -2)(x +2)知,f (-2)是极大值,f (2)是极小值,故选D. 答案:D7.若函数f (x )=13x 3+12f ′(1)x 2-f ′(2)x +3,则f (x )在点(0,f (0))处切线的倾斜角为( )A.π4 B.π3 C.2π3D.3π4解析:由题意,得f ′(x )=x 2+f ′(1)x -f ′(2), 令x =0,得f ′(0)=-f ′(2), 令x =1,得f ′(1)=1+f ′(1)-f ′(2), ∴f ′(2)=1,∴f ′(0)=-1,即f (x )在点(0,f (0))处切线的斜率为-1, ∴倾斜角为3π4.答案:D8.下图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )解析:由y =f ′(x )的图像知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )图像上任意一点切线的斜率在(0,+∞)也单调递减,故可排除A ,C.又由图像知,y =f ′(x )与y =g ′(x )的图像在x =x 0处相交,说明y =f (x )与y =g (x )的图像在x =x 0处的切线斜率相同,故可排除B.故选D. 答案:D9.若函数f (x )在R 上满足f (x )=e x +x 2-x +sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是( ) A .y =2x -1 B .y =3x -2 C .y =x +1D .y =-2x +3解析:令x =0,解得f (0)=1.对f (x )求导,得f ′(x )=e x +2x -1+cos x ,令x =0,解得f ′(0)=1,故切线方程为y =x +1. 答案:C10.如图,函数f (x )的导函数y =f ′(x )的图像,则下面判断正确的是( )A .在(-2,1)内f (x )是增函数B .在(1,3)内f (x )是减函数新 课 标 第 一 网C .在(4,5)内f (x )是增函数D .在x =2时,f (x )取到极小值解析:在(-2,1)上,导函数的符号有正有负,所以函数f (x )在这个区间上不是单调函数;同理,函数f (x )在(1,3)上也不是单调函数,在x =2的左侧,函数f (x )在⎝⎛⎭⎫-32,2上是增函数.在x =2的右侧,函数f (x )在(2,4)上是减函数,所以在x =2时,f (x )取到极大值;在(4,5)上导函数的符号为正,所以函数f (x )在这个区间上为增函数. 答案:C11.已知函数f (x )=x 3-px 2-qx 的图像与x 轴相切于(1,0)点,则f (x )的极大值、极小值分别为( ) A.427、0 B .0、427C .-427、0D .0、-427解析:f ′(x )=3x 2-2px -q ,由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1.∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0,得x =13,或x =1.从而求得当x =13时,f (x )取极大值427;当x =1时,f (x )取极小值0.故选A.答案:A12.如右图,若函数y =f (x )的图像在点P 处的切线方程为x -y +2=0,则f (1)+f ′(1)=( ) w w w .x k b 1.c o m A .1 B .2 C .3D .4解析:由图像知f (1)=3,f ′(1)=1,故f (1)+f ′(1)= 3+1=4. 答案:D第Ⅱ卷 (非选择 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________. 解析:设P (a ,a 2-a +1),y ′|x =a =2a -1∈[]-1,3, ∴0≤a ≤2.从而g (a )=a 2-a +1=⎝⎛⎭⎫a -122+34. 当a =12时,g (a )min =34;a =2时,g (a )max =3. 故P 点纵坐标范围是⎣⎡⎦⎤34,3.答案:⎣⎡⎦⎤34,314.已知函数f (x )=ln x +2x ,g (x )=a (x 2+x ),若f (x )≤g (x )恒成立,则实数a 的取值范围是__________. 解析:设F (x )=f (x )-g (x ),其定义域为(0,+∞),则F ′(x )=1x +2-2ax -a =-(2x +1)(ax -1)x ,x ∈(0,+∞).当a ≤0时,F ′(x )>0,F (x )单调递增,F (x )≤0不可能恒成立. 当a >0时,令F ′(x )=0,得x =1a ,或x =-12(舍去).当0<x <1a 时,F ′(x )>0;当x >1a 时,F ′(x )<0.故F (x )在(0,+∞)上有最大值F ⎝⎛⎭⎫1a ,由题意F ⎝⎛⎭⎫1a ≤0恒成立,即ln 1a +1a -1≤0.令φ(a )=ln 1a +1a -1,则φ(a )在(0,+∞)上单调递减,且φ(1)=0,故ln 1a +1a -1≤0成立的充要条件是a ≥1. 答案:[1,+∞)15.设函数y =ax 2+bx +k (k >0)在x =0处取得极值,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线x +2y +1=0,则a +b 的值为__________.解析:∵f (x )=ax 2+bx +k (k >0),∴f ′(x )=2ax +b .又f (x )在x =0处有极值,故f ′(0)=0,从而b =0.由曲线y =f (x )在(1,f (1))处的切线与直线x +2y +1=0垂直,可知该切线斜率为2,即f ′(1)=2,∴2a =2,得a =1.∴a +b =1+0=1. 答案:116.已知函数f (x )的导函数的图像如图所示,则下列说法正确的是__________.(填写正确命题的序号) ①函数f (x )在区间(-3,1)内单调递减; ②函数f (x )在区间(1,7)内单调递减; ③当x =-3时,函数f (x )有极大值; ④当x =7时,函数f (x )有极小值.解析:由图像可得,在区间(-3,1)内f (x )的导函数数值大于零,所以f (x )单调递增;在区间(1,7)内f (x )的导函数值小于零,所以f (x )单调递减;在x =-3左右的导函数符号不变,所以x =-3不是函数的极大值点;在x =7左右的导函数符号在由负到正,所以函数f (x )在x =7处有极小值.故②④正确. 答案:②④三、解答题:本大题共6小题,共70分.17.(10分)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ). (1)若函数f (x )在x =1处有极值为10,求b 的值;(2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值. 解析:(1)f ′(x )=3x 2+2ax +b ,则⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10⇒⎩⎪⎨⎪⎧ a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.当⎩⎪⎨⎪⎧ a =4,b =-11时,f ′(x )=3x 2+8x -11,Δ=64+132>0,故函数有极值点; 当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3(x -1)2≥0,故函数无极值点; 故b 的值为-11.(2)方法一:f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 则F (a )=2xa +3x 2+b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立. ∵x ≥0,F (a )在a ∈[-4,+∞)上单调递增或为常数函数,∴得F (a )min =F (-4)=-8x +3x 2+b ≥0对任意的x ∈[0,2]恒成立,即b ≥(-3x 2+8x )max , 又-3x 2+8x =-3⎝⎛⎭⎫x -432+163≤163, 当x =43时,(-3x 2+8x )max =163,得b ≥163,故b 的最小值为163.方法二:f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 即b ≥-3x 2-2ax 对任意的a ∈[-4,+∞),x ∈[0,2]都成立,即b ≥(-3x 2-2ax )max . 令F (x )=-3x 2-2ax =-3⎝⎛⎭⎫x +a 32+a 23, ①当a ≥0时,F (x )max =0,于是b ≥0; ②当-4≤a <0时,F (x )max =a 23,于是b ≥a 23.又∵⎝⎛⎭⎫a 23max =163,∴b ≥163. 综上,b 的最小值为163.18.(12分)已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围.解析:(1)f ′(x )=3x 2-x +b ,因f (x )在(-∞,+∞)上是增函数,则f ′(x )≥0,即3x 2-x +b ≥0, ∴b ≥x -3x 2在(-∞,+∞)恒成立.设g (x )=x -3x 2,当x =16时,g (x )max =112,∴b ≥112.(2)由题意,知f ′(1)=0,即3-1+b =0,∴b =-2.x ∈[-1,2]时,f (x )<c 2恒成立,只需f (x )在[-1,2]上的最大值小于c 2即可.因f ′(x )=3x 2-x -2, 令f ′(x )=0,得x =1,或x =-23.∵f (1)=-32+c ,f (-23)=2227+c ,f (-1)=12+c ,f (2)=2+c ,∴f (x )max =f (2)=2+c ,∴2+c <c 2,解得c >2,或c <-1, 所以c 的取值范围为(-∞,-1)∪(2,+∞). 19.(12分)已知函数f (x )=2mx -m 2+1x 2+1(x ∈R ).(1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当m >0时,求函数f (x )的单调区间与极值. 解析:(1)当m =1时,f (x )=2x x 2+1,f (2)=45,又因为f ′(x )=2(x 2+1)-4x 2(x 2+1)2=2-2x 2(x 2+1)2,则f ′(2)=-625.所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -45=-625(x -2),即6x +25y -32=0. (2)f ′(x )=2m (x 2+1)-2x (2mx -m 2+1)(x 2+1)2=-2(x -m )(mx +1)(x 2+1)2.令f ′(x )=0,得到x 1=-1m ,x 2=m .∵m >0,∴-1m<m .当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎫-∞,-1m-1m ⎝⎛⎭⎫-1m ,m m (m ,+∞)f ′(x ) - 0 + 0 - f (x )递减极小值递增极大值递减从而f (x )在区间⎝⎛⎭⎫-∞,-1m ,(m ,+∞)内为减函数,在区间⎝⎛⎭⎫-1m ,m 内为增函数, 故函数f (x )在点x 1=-1m 处取得极小值f ⎝⎛⎭⎫-1m ,且f ⎝⎛⎭⎫-1m =-m 2,函数f (x )在点x 2=m 处取得极大值f (m ),且f (m )=1.20.(12分)已知函数f (x )=(a -12)x 2+ln x (a ∈R ).(1)当a =1时,求f (x )在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方,求a 的取值范围.解析:(1)当a =1时,f (x )=12x 2+ln x ,f ′(x )=x +1x =x 2+1x.对于x ∈[1,e]有f ′(x )>0, ∴f (x )在区间[1,e]上为增函数, ∴f (x )max =f (e)=1+e 22,f (x )min =f (1)=12.(2)令g (x )=f (x )-2ax =(a -12)x 2-2ax +ln x ,则g (x )的定义域为(0,+∞).在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方等价于g (x )<0在区间(1,+∞)上恒成立. ∵g ′(x )=(2a -1)x -2a +1x=(2a -1)x 2-2ax +1x=(x -1)[(2a -1)x -1]x,①若a >12,令g ′(x )=0,得极值点x 1=1,x 2=12a -1,当x 2>x 1=1,即12<a <1时,在(x 2,+∞)上有g ′(x )>0,此时g (x )在区间(x 2,+∞)上是增函数,并且在该区间上有g (x )∈(g (x 2),+∞),不符合题意; 当x 2≤x 1=1,即a ≥1时,同理可知,g (x )在区间(1,+∞)上,有g (x )∈(g (1),+∞),也不符合题意; ②若a ≤12,则有2a -1≤0,此时在区间(1,+∞)上恒有g ′(x )<0,从而g (x )在区间(1,+∞)上是减函数.要使g (x )<0在此区间上恒成立,只需满足g (1)=-a -12≤0⇒a ≥-12, 由此求得a 的取值范围是⎣⎡⎦⎤-12,12. 综上可知,当a ∈⎣⎡⎦⎤-12,12时,函数f (x )的图像恒在直线y =2ax 下方. 21.(12分)设函数f (x )=ln x ,g (x )=ax +b x,函数f (x )的图像与x 轴的交点也在函数g (x )的图像上,且在此点有公共切线.(1)求a ,b 的值;(2)对任意x >0,试比较f (x )与g (x )的大小.解析:(1)f (x )=ln x 的图像与x 轴的交点坐标是(1,0),依题意,得g (1)=a +b =0.①又f ′(x )=1x ,g ′(x )=a -b x 2, 且f (x )与g (x )在点(1,0)处有公共切线,∴g ′(1)=f ′(1)=1,即a -b =1.②由①②得,a =12,b =-12. (2)令F (x )=f (x )-g (x ),则F (x )=ln x -⎝⎛⎭⎫12x -12x =ln x -12x +12x, ∴F ′(x )=1x -12-12x 2=-12⎝⎛⎭⎫1x-12≤0. ∴F (x )在(0,+∞)上为减函数.当0<x <1时,F (x )>F (1)=0,即f (x )>g (x );当x =1时,F (1)=0,即f (x )=g (x );当x >1时,F (x )<F (1)=0,即f (x )<g (x ).22.(12分)设函数f (x )=ax 3-2bx 2+cx +4d (a ,b ,c ,d ∈R )的图像关于原点对称,且x =1时,f (x )取极小值-23. (1)求a ,b ,c ,d 的值;(2)当x ∈[-1,1]时,图像上是否存在两点,使得过两点处的切线互相垂直?试证明你的结论;(3)若x 1,x 2∈[-1,1],求证:|f (x 1)-f (x 2)|≤43. 解析:(1)∵函数f (x )的图像关于原点对称,∴对任意实数x 有f (-x )=-f (x ),∴-ax 3-2bx 2-cx +4d =-ax 3+2bx 2-cx -4d , 即bx 2-2d =0恒成立,∴b =0,d =0,∴f (x )=ax 3+cx ,f ′(x )=3ax 2+c ,∵当x =1时,f (x )取极小值-23, ∴3a +c =0,且a +c =-23, 解得a =13,c =-1. (2)当x ∈[-1,1]时,图像上不存在这样的两点使结论成立. 假设图像上存在两点A (x 1,y 1),B (x 2,y 2),使得过此两点处的切线互相垂直,则由f ′(x )=x 2-1知,两点处的切线斜率分别为k 1=x 12-1,k 2=x 22-1, 且(x 12-1)(x 22-1)=-1.(*)∵x 1,x 2∈[-1,1],∴x 12-1≤0,x 22-1≤0. ∴(x 12-1)(x 22-1)≥0.此与(*)相矛盾,故假设不成立.(3)f ′(x )=x 2-1,令f ′(x )=0,得x =±1.当x ∈(-∞,-1)或x ∈(1,+∞)时,f ′(x )>0, 当x ∈(-1,1)时,f ′(x )<0,∴f (x )在[-1,1]上是减函数,且f (x )max =f (-1)=23,f (x )min =f (1)=-23. ∴在[-1,1]上,|f (x )|≤23, 于是x 1,x 2∈[-1,1]时,|f (x 1)-f (x 2)|≤|f (x 1)|+|f (x 2)|≤23+23=43.。

高三数学综合测试卷(六)(解析版)

高三数学综合测试卷(六)(解析版)

高三数学综合测试卷(六)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,则4334iz i +=−在复平面内对应的点为()A. ()0,iB. (),0iC. ()0,1D. ()1,0【答案】C 【解析】【分析】利用复数除法运算计算求得z i ,由此得到对应点坐标.【详解】()()()()4334432534343425i i iiz i ii i +++====−−+,z ∴对应的点为()0,1.故选:C . 【点睛】本题考查复数对应点的坐标的求解,涉及到复数的除法运算,属于基础题.2. 已知集合{}{}220,,2,Ax xx x R B x x k k Z =+−≤∈==∈,则A B 等于A. {0,1}B. {2,0}−C. {1,0}−D. {}4,2−−【答案】B 【解析】【分析】:先解A 、B 集合,再取并集.【详解】:先解{}{}220,21,2,2,0,2Ax xx x R x B x x k k Z x =+−≤∈⇔−≤≤==∈⇔=−,故选B3. 已知函数()37sin f x x x x =−−+,若()()220f a f a +−>,则实数a 的取值范围是A. (),1−∞B. (),3−∞C. ()1,2−D. ()2,1−【答案】D 【解析】【分析】先研究函数()f x 奇偶性与单调性,再根据奇偶性与单调性化简不等式()()220f a f a +−>,解得实数a 的取值范围.【详解】因为()()37sin ,f x x x x f x −=+−=−2()37cos 0f x x x =−−+<′ ,所以()f x 为奇函数,且在R 上单调递减,因为()()220f af a +−>,所以()()()2222,2,21f a f a f a a a a >−−=−<−−<<,选D.【点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.4. 直线1y kx =+与曲线()1f x a nx b =+相切于点(1,2)P ,则a b +=A. 1B. 4C. 3D. 2【答案】C 【解析】【详解】分析:求出函数()f x 的导函数,得到1f ′()的值,由直线1y kx =+与曲线()1f x a nx b =+相切于点()1,2P 列关于a b k ,,的方程组,求出a b ,的值后得答案.详解:由()1f x a nx b =+,得()af x x′=1f a ∴′=(). 再由直线1y kx =+与曲线()1f x a nx b =+相切于点()1,2P ,,得11,1,22k a k k b a b b+∴====== 3a b ∴+=.故选C.点睛:本题考查了利用导数研究曲线在某点处的切线方程,曲线在某点处的导数,就是在该点处的切线的斜率,是中档题.5. 太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数2sin4y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为() A.18B.19C.116D.118【答案】A 【解析】【分析】根据正弦型函数最小正周期可得圆O 半径,利用几何概型面积型公式计算可得结果. 【详解】2sin4y x π=的最小正周期为284T ππ==,∴圆O 半径为42T=; ∴在大圆内随机取一点,则此点取自阴影部分的概率2221148p ππ×==×.故选:A . 【点睛】本题考查几何概型面积型的概率问题的求解,关键是能够利用正弦型函数的最小正周期求得大圆半径. 6. 函数2sin ()ln2sin −=+xf x x x的部分图象可能是( )A.B.C.D.【答案】A 【解析】【分析】先由奇偶性的概念,判断()f x 是偶函数,排除C 、D ;再由0,2x π ∈,()f x的正负,排除B ,进而可得出结果.【详解】因为()()12sin 2sin 2sin ln ln ln 2sin 2sin 2sin x x x f x x x x f x x x x −+−−−=−=−==−++,所以()f x 是偶函数,图象关于y 轴对称,故排除C 、D ;当0,2x π∈时,[]sin 0,1∈x ,2sin 012sin −<<+x x ,2sin ln 02sin −<+x x , 即()0f x <,故排除B ,选A .【点睛】本题主要考查函数图像的识别,熟记函数的奇偶性,三角函数的图象及其性质,对数函数的性质等,即可,属于常考题型.7. 2020年春节期间,因新冠肺炎疫情防控工作需要,M 、N 两社区需要招募义务宣传员,现有A 、B 、C 、D 、E 、F 六位大学生和甲、乙、丙三位党员教师志愿参加,现将他们分成两个小组分别派往M 、N 两社区开展疫情防控宣传工作,要求每个社区都至少安排1位党员教师及3位大学生,且B 由于工作原因只能派往M 社区,则不同的选派方案种数为()A. 60B. 90C. 120D. 150【答案】A 【解析】【分析】将问题分为N 社区选派4人和5人两种情况,分别计算出两种情况下的选派方案种数,根据分类加法计数原理可求得结果.【详解】将选派方案分为N 社区选派4人和5人两种情况,当N 社区选派4人时,必由1名党员教师,3位大学生构成,共有:133530C C =种选派方案; 当N 社区选派5人时,必由2名党员教师,3位大学生构成,共有:233530C C =种选派方案;由分类加法计数原理可知:不同的选派方案种数有303060+=种.故选:A . 【点睛】本题考查分类加法计数原理的应用,关键是能够将所给问题进行准确分类;本题易错点是忽略每个社区大学生人数的最低要求,造成求解错误.8. 已知{}n a 的前n 项和241n S n n =−+,则1210a a a +++= A. 68B. 67C. 61D. 60【答案】B 【解析】【分析】首先运用11,1,2n n n S n a S S n −= = −≥ 求出通项n a ,判断n a 的正负情况,再运用1022S S −即可得到答案.【详解】当1n =时,112S a ==−;当2n ≥时,()()()22141141125n n n a S S nn n n n − =−=−+−−−−+=−,故2,125,2n n a n n −==−≥;所以,当2n ≤时,0n a <,当2n >时,0n a >.因此,()()()12101234101022612367a a a a a a a a S S +++=−+++++=−=−×−= .故选:B . 【点睛】本题考查了由数列的前n 项和公式求数列的通项公式,属于中档题,解题时特别注意两点,第一,要分类讨论,分1n =和2n ≥两种情形,第二要掌握()12n n n a S S n −=−≥这一数列中的重要关系,否则无法解决此类问题,最后还要注意对结果的处理,分段形式还是一个结果的形式.9. 已知抛物线C :216y x =的焦点为F ,其准线l 与x 轴交于点A ,若抛物线C 上存在一点B 使AB =,则AB =()A.B. 8C. D. 4【答案】A 【解析】【分析】过B 作准线l 的垂线,垂足为C ,结合抛物线定义、长度和平行关系可得4BAF ABC π∠=∠=,在ABF △中,利用余弦定理可构造方程求得结果.【详解】过B 作准线l 的垂线,垂足为C ,则由抛物线定义可知:BF BC =AB = AB ∴=BC l ⊥,4ABC π∴∠=,//BC x 轴,4BAF ABC π∴∠=∠=,在ABF △中,由余弦定理得:2222cos BFAF AB AF AB BAF =+−⋅∠, 由抛物线方程知:8AF =,2264216BFBF BF ∴=+−,解得:8BF =,AB ∴=故选:A .【点睛】本题考查抛物线中的线段长度的求解问题,涉及到抛物线定义和余弦定理的应用;解题关键是能够根据抛物线定义和长度关系确定角的大小.10. 已知()1f x x =+,()ln g x x =,若12()()f x g x =,则21x x −的最小值为 A. 1B. 2C. 2ln 2−D. 2ln 2+【答案】B 【解析】【分析】设()()12f x g x t ==,所以11x t =−,2t x e =,所以211t x x e t −−+,构建新函数,研究单调性与最值即可.【详解】设()()12f x g x t ==,所以11x t =−,2t x e =,所以211t x x e t −−+,令()1th t e t −+,则()'1t h t e =−,所以()h t 在(),0−∞上单调递减,在()0,+∞上单调递增,所以()()min 02h t h ==.故选B【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.11. 已知MN 是正方体内切球的一条直径,点Р在正方体表面上运动,正方体的棱长是2,则PM PN ⋅的取值范围为() A. []0,4B. []0,2C. []1,4D. []1,2【答案】B 【解析】【分析】利用向量的线性运算和数量积运算律可得21PM PN PO ⋅=− ,根据正方体的特点确定PO最大值和最小值,即可求解【详解】设正方体内切球的球心为O ,则1OMON ==, ()()()2PM PN PO OM PO ON PO PO OM ON OM ON ⋅=+⋅+=+⋅++⋅,因为MN 是正方体内切球的一条直径,所以0OM ON +=,1OM ON ⋅=−,所以21PM PN PO ⋅=− ,又点Р在正方体表面上运动,所以当P 为正方体顶点时,PO 最大,当P 为内切球与正方体的切点时,PO最小 ,且最小为1; 所以2012PO ≤−≤ ,所以PM PN ⋅的取值范围为[]0,2,故选:B11*. 在正三棱锥−P ABC 中,M 、N 分别是PC 、BC 中点,AM MN ⊥,PA =,则三棱锥−P ABC 的外接球的表面积为()A. 12πB.C. 36πD.【答案】C 【解析】【分析】由线面垂直的判定方法可证得PB ⊥平面PAC ,由线面垂直性质和正三棱锥的特点可知,,PA PB PC 两两互相垂直,由此可将三棱锥补为正方体,求解正方体的外接球表面积即为所求结果.【详解】取AC 中点D ,连接,PD BD ,,M N 分别为,PC BC 中点,//MN PB ∴,又MN AM ⊥,PB AM ∴⊥,三棱锥−P ABC 为正三棱锥,PA PC ∴=,BA BC =,又D 为AC 中点,PD AC ∴⊥,BD AC ⊥,又,PD BD ⊂平面PBD ,AC ∴⊥平面PBD ,PB ⊂ 平面PBD ,AC PB ∴⊥,,AC AM ⊂ 平面PAC ,AC AM A ∩=,PB ∴⊥平面PAC ,,PA PC ⊂ 平面PAC ,PB PA ∴⊥,PB PC ⊥,则由正三棱锥特点得PC PA ⊥,∴可将三棱锥−P ABC 补成以,,PA PB PC 为棱的正方体,则正方体的外接球即为三棱锥−P ABC 的外接球,∴外接球半径1632R =×=,∴外接球的表面积2436S R ππ=.故选:C .【点睛】本题考查三棱锥外接球表面积的求解问题,关键是能够根据垂直关系得到三棱锥顶点处的两两垂直关系,进而通过补为正方体的方式来进行求解.12. 已知定义在R 上的函数()f x ,其导函数为()f x ′,若()()2sin f x f x x =−−,且当0x ≥时,()cos 0f x x ′+<,则不等式()sin cos 2f x f x x x π+>+−的解集为()A. ,2π−∞B. ,2π +∞C. ,4π−∞−D. ,4π−+∞【答案】C 【解析】【分析】令()()sin g x f x x =+,可根据已知等式验证出()g x 为偶函数,同时根据导数得到()g x 的单调性;将所求不等式转化为()2g x g x π+>,根据单调性可得到2x x π+<,解不等式求得结果.【详解】令()()sin g x f x x =+,则()()sin g x f x x −=−−,()()2sin f x f x x =−− ,()()sin sin f x x f x x ∴+=−−,()()g x g x ∴−=,()g x ∴为定义在R 上的偶函数;当0x ≥时,()()cos 0g x f x x ′′=+<,()g x ∴在[)0,∞+上单调递减, 又()g x 为偶函数,()g x ∴在(],0−∞上单调递增.由()sin cos 2f x f x x x π+>+−得: ()cos sin sin 222f x x f x x f x x πππ +++++>+,即()2g x g x π+> ,2x x π∴+<,解得:4x π<−,即不等式的解集为,4π−∞−.故选:C . 【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到构造函数、利用导数确定函数的单调性等知识;解题关键是能够通过构造函数的方式将不等式转化为函数值的比较,再根据单调性转化为自变量之间的大小关系.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知()0,0O ,()1,2A ,()3,1B −,若向量m OA ∥,且m 与OB 的夹角为钝角,写出一个满足条件的m 的坐标为______.【答案】()1,2−−【分析】根据向量的共线和向量乘法的坐标计算公式即可求解. 【详解】根据题意可得:()1,2OA =,()3,1OB=− ,设(),m x y =,因为向量m OA∥,且m 与OB的夹角为钝角,所以123(1)03(1)y xx y y x ⋅=⋅⋅+−⋅< ⋅≠−⋅所以0x <,不妨令1,x =−所以2,y =−()1,2m =−− ,故答案为:()1,2−−.14. 在812x x−的展开式中,下列说法正确的是 (选出所有正确选项)①.常数项是1120②.第四项和第六项的系数相等 ③.各项的二项式系数之和为256④.各项的系数之和为25615. 已知函数()()()sin 0f x x ωϕω=+>满足14f π =,02f =π,且()f x 在区间,43ππ上单调,则ω取值的个数有______个.【答案】3【解析】【分析】根据最大值点和零点可确定()21T k Z k π=∈+,由此得到42k ω=+;根据单调性可知6T π>,解出012ω<<,由此得到ω所有可能的取值.【详解】()max 1f x = ,()2442T kT k Z ππ∴−=+∈,解得:()21T k Z k π=∈+, 即()221k Z k ππω=∈+,()42k k Z ω∴=+∈;()f x 在,43ππ上单调,342T ππ∴−<,即6T π>,26ππω∴>,解得:012ω<<,2ω∴=,6或10,ω∴取值的个数有3个.故答案为:3. 【点睛】本题考查根据正弦型函数的单调性、周期性求解参数值的问题;关键是能够通过最值点和零点确定周期、根据单调性确定周期所处的范围.16.设函数()f x 是定义在整数集Z 上的函数,且满足()01f =,()10f =,对任意的x ,y ∈Z 都有()()()()2f x y f x y f x f y ++−=,则()3f =______;()()()()22222122023122023f f f f 2++⋅⋅⋅+=++⋅⋅⋅+______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分17. 在ABC 中,D 是BC 中点,5AC =,2AD =,229cos 4cos 50ABD ADB ∠−∠−=. (Ⅰ)求sin sin ABDADB∠∠及AB ;(Ⅱ)求角C 的余弦值.【答案】(Ⅰ)sin 2sin 3ABD ADB ∠=∠,3AB =;(Ⅱ.【解析】【分析】(Ⅰ)利用同角三角函数平方关系可化简已知等式得到sin 2sin 3ABD ADB ∠=∠,利用正弦定理角化边可得32AD AB =,从而求得AB ;(Ⅱ)设2BC x =,在ABD △和ACD 中利用余弦定理可构造方程求得x ,在ACD 中利用余弦定理可求得结果.【详解】(Ⅰ)由题意得:()()2291sin 41sin 50ABD ADB −∠−−∠−=,229sin 4sin ABD ADB ∴∠=∠, ()0,ABD π∠∈ ,()0,ADB π∠∈,sin 0ABD ∴∠>,sin 0ADB ∠> 3sin 2sin ABD ADB ∴∠=∠,即sin 2sin 3ABD ADB ∠=∠,由正弦定理得:32AD AB =,即322AB ×=,3AB ∴=;(Ⅱ)设2BC x =,则BD DC x ==,在ABD △中,2223222cos x x ADB +−⋅⋅⋅∠…①, 在ACD 中,2225222cos x x ADC +−⋅⋅⋅∠2422cos x x ADB =++⋅⋅⋅∠…②,①+②得:()225924x +=+,解得:x =CD =,在ACD 中,cos C=. 【点睛】本题考查解三角形的相关问题的求解,涉及到余弦定理解三角形、正弦定理角化边的应用等知识,属于常考题型.18. 如图,在斜三棱柱111ABC A B C 中,AB ⊥侧面11BB C C ,2BC =,14BB =,AB =160BCC ∠=°. (Ⅰ)求证:平面11A C B ⊥平面ABC ;(Ⅱ)若E 为1CC 中点,求二面角11A EB C −−的正切值.【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】【分析】(Ⅰ)根据勾股定理、线面垂直性质和线面垂直的判定定理可证得1C B ⊥平面ABC ,由面面垂直的判定定理可证得结论;(Ⅱ)以B 为坐标原点建立空间直角坐标系,根据二面角的向量求法可求得结果.【详解】(Ⅰ)证明:2BC = ,14CC =,160BCC ∠=,由余弦定理可得:1BC =, 22211BC BC CC ∴+=,190CBC ∴∠= ,即1C B CB ⊥,又AB ⊥面11BB C C ,1C B ⊂平面11BB C C ,1C B AB ∴⊥,又AB CB B = ,,AB BC ⊂平面ABC ,1C B ∴⊥平面ABC ,1C B ⊂ 平面11A C B ,∴平面11A C B ⊥平面ABC ; (Ⅱ)由(Ⅰ)知,直线BC 、1BC 、BA 两两垂直,则以B 为坐标原点可建立如下图所示的空间直角坐标系:则()0,0,0B ,()2,0,0C,()10,C,()12,B −,()E,(00A ,,(AE →∴=,(12,AB →=−, 设平面1AEB 的一个法向量为(),,n x y z →=,则1020n AE x n AB x ⋅=+−= ⋅=−+−= ,令x =则3y =,4z =,)4n →∴,AB ⊥ 侧面11BB C C ,∴平面11EB C 的一个法向量为()0,0,1m →=,cos ,n m n m n m →→→→→→⋅∴<>==⋅tan ,n m →→∴<>= 二面角11A EB C −−为钝二面角,∴二面角11A EB C −−的正切值为. 【点睛】本题考查立体几何中面面垂直关系的证明、空间向量法求解二面角的问题,涉及到勾股定理、线面垂直的判定与性质定理、面面垂直的判定定理等知识的应用;易错点是忽略二面角为钝二面角,造成所求三角函数值的符号出现错误.19. 某市教学研究室为了对今后所出试题的难度有更好的把握,提高命题质量,对该市高三理科数学试卷的得分情况进行了调研.从全市参加考试的理科考生中随机抽取了100名考生的数学成绩(满分150分),将数据分成9组:[)60,70,[)70,80,[)80,90,[)90,100,[)100,110,[)110,120,[)120130,,[)130140,,[]140,150,并整理得到如图所示的频率分布直方图.用统计的方法得到样本标准差20σ=,以频率值作为概率估计值.(Ⅰ)根据频率分布直方图,求抽取的100名理科考生数学成绩的平均分x 及众数y ;(Ⅱ)用频率估计概率,从该市所有高三理科考生的数学成绩中随机抽取3个,记理科数学成绩位于区间[)100,120内的个数为Y ,求Y 的分布列及数学期望()E Y ;(Ⅲ)从该市高三理科数学考试成绩中任意抽取一份,记其成绩为X ,依据以下不等式评判(P 表示对应事件的概率):①()0.6827P X µσµσ−<<+≥,②()220.9545P X µσµσ−<<+≥, ③()330.9973P X µσµσ−<<+≥,其中x µ=.评判规则:若至少满足以上两个不等式,则给予这套试卷好评,否则差评.试问:这套试卷得到好评还是差评? 【答案】(Ⅰ)平均分105x =,众数105y =;(Ⅱ)分布列详见解析,6()5E Y =;(Ⅲ)得到好评. 【解析】【分析】(Ⅰ)利用频率分布直方图估计平均数和众数的方法可直接求得结果; (Ⅱ)根据频率分布直方图计算可知理科数学成绩位于[)100,120内的概率为25,则23,5Y B,由此计算出Y 的每个取值对应的概率,由此得到分布列;由二项分布数学期望计算公式计算可得()E Y ; (Ⅲ)计算每个区间取值所对应的概率与3σ原则所对应的概率之间的大小关系,从而得到结论. 【详解】(Ⅰ)650.06750.06850.1950.141050.221150.181250.16x ×+×+×+××+×=+×+1350.061450.02105+×+×=;众数:1001101052y+=;(Ⅱ)用频率估计概率,可得从该市所有高三考生的理科数学成绩中随机抽取1个,理科数学成绩位于[)100,120内的概率为20.220.180.405+==,则随机变量Y 服从二项分布23,5Y B,故3323()(0,1,2,3)55kkk P Y k C k −==××=.由题意知:Y 所有可能的取值为0,1,2,3,()332705125P Y ∴=== ;()2132354155125P Y C ==×=;()2232336255125P Y C ==×= ;()32835125P Y ===;Y ∴的分布列为:数学期望()26355E Y =×=; (Ⅲ)记该市高三考生的理科数学成绩为X ,由(Ⅰ)可知,105x µ==,又20σ=,则1052085µσ−=−=,10520125µσ+=+=,210522065µσ−=−×=, 2105220145µσ+=+×=,310532045µσ−=−×=,3105320165µσ+=+×=,()()0.0585120.140.220.180.085P X P X µσµσ∴−=++++<<+=<<=0.670.6827<, ()()226514510.030.010.960.9545P X P X µσµσ−<<+=<<=−−=>, ()()334516510.9973P X P X µσµσ−<<+=<<=>,符合②③,不符合①,∴这套试卷得到好评.【点睛】本题考查利用频率分布直方图估计总体数据特征、二项分布的分布列与数学期望的求解、正态分布的实际应用等知识;求解分布列和数学期望的关键是能够明确随机变量所服从的分布类型,进而计算出每个取值对应的概率.20. 如图,已知12MF F △的两顶点坐标()11,0F −,()21,0F ,圆E 是12MF F △的内切圆,在边1MF ,2MF ,12F F 上的切点分别为P ,Q ,R ,1MP =.(Ⅰ)求证:12MF MF +为定值,并求出动点M 的轨迹C 的方程; (Ⅱ)过1F 的斜率不为零直线交曲线C 于A 、B 两点,求证:11F A F BBA ⋅为定值.【答案】(Ⅰ)证明详见解析,曲线C 的方程为221(0)43x y y +=≠;(Ⅱ)详见解析. 【解析】【分析】(Ⅰ)利用切线长相等可求得124MF MF +=;根据椭圆定义可知动点M 的轨迹C 是以1F ,2F 为焦点,长轴长为4的椭圆(不含椭圆与x 轴的交点),进而求得结果;(Ⅱ)设AB 的方程为1x my =−,与椭圆方程联立得到韦达定理的形式,利用弦长公式求得AB ,根据平面向量数量积运算求得11F A F B →→⋅,进而求得1134F A F B AB ⋅=. 【详解】(Ⅰ)由题意得:MP MQ =,11F P F R =,22F Q F R =12121224MF MF MP PF M MP Q F F Q F =+∴=+++=+,2121MF MF F F +> , ∴动点M 的轨迹C 是以1F ,2F 为焦点,长轴长为4的椭圆(不含椭圆与x 轴的交点),设曲线C 方程为:()222210,0x y a b y a b+=>>≠,则24a =,解得:2a =,又1c =,b ∴=,∴曲线C 的方程为()221043x y y +=≠; (Ⅱ)证明:由(Ⅰ)得:()11,0F −,设()11,A x y ,()22,B x y , 直线AB 的斜率不为零,∴可设AB 的方程为1x my =−,联立221143x my x y =− +=消去x 并整理得:()2234690m y my +−−=, 则()()22236363414410m m m ∆=++=+>,221634y y m m ∴++=,122934y y m =−+,2AB y =−=∴()2212134m m +=+, ()()121212112111F A F B x x y y my my y y →→+++⋅+⋅()()2212291134m m y y m +=+=−+, 1193124A F A FB B →→−⋅∴==−,1134F A F B AB ⋅∴=,综上可得:11F A F B B A ⋅为定值34. 【点睛】本题考查动点轨迹方程的求解、椭圆中的定值问题的求解;求解动点轨迹方程的关键是能够确定动点满足椭圆的定义,进而得到轨迹方程;求解定值问题的常用方法是将直线与椭圆方程联立,得到韦达定理的形式,将韦达定理代入所求式中,化简得到定值.21. 已知函数()()22ln 2f x ax a x x −+++,()()1ln g x a x =−.(Ⅰ)若0a >,讨论函数()f x 的单调性;(Ⅱ)若对任意的[)1,x ∞∈+,都有()()f x g x ≥,求实数a 的取值范围. 【答案】(Ⅰ)分类讨论,详见解析;(Ⅱ)2,3 +∞.【解析】【分析】(Ⅰ)求导后,分别在02a <<、2a =和2a >三种情况下求得()f x ′的正负,由此可确定()f x 单调性;(Ⅱ)令()()()hx f x g x =−,分别在23a ≥、023a <<和0a ≤三种情况下,利用导数确定()h x 单调性和最值,进而确定符合题意的取值范围.【详解】(Ⅰ)由题意得:()f x 定义域为()0,∞+,则()()()()()2111220x ax ax a x xxf x −−=−++=>′,①当02a <<时,由()0f x '>可得:102x <<或1x a >;由()0f x ′<可得:112x a <<;()f x ∴的单调增区间为10,2 ,1,a +∞,单调递减区间为11,2a; ②当2a =时,则()()2210x f x x−′=≥,此时()f x 的单调递增区间为()0,∞+;③当2a >时,由()0f x '>可得:10x a<<或12x >;由()0f x ′<可得:112x a <<;()f x ∴的单调增区间为10,a,1,2 +∞,单调递减区间为11,2a; 综上所述:当02a <<时,()f x 在10,2 ,1,a+∞上单调递增,在11,2a上单调递减; 当2a =时,()f x 在()0,∞+上单调递增; 当2a >时,()f x 在10,a,1,2 +∞上单调递增,在11,2a上单调递减. (Ⅱ)令()()()hx f x g x =−,则()()()222ln 2h x ax a x a x −++−+,()()222ah x ax a x−′∴=−++()()()2222122ax a x ax ax a xx−++−−+−=,①当23a ≥时,令()0h x ′=,解得:11x =,222a x a −=,2231022a aa a−−−=≤,21x x ∴≤, ∴当1x ≥时,()0h x ′≥,()h x ∴在[)1,+∞上单调递增,()()10h x h ∴≥=,满足题意;②当023a <<时,由①知:21x x >, ∴当21,2a x a − ∈ 时,()0h x ′<,()h x ∴在21,2a a − 上单调递减, 则当21,2a x a −∈时,()()10h x h <=,不合题意; ③当0a ≤时,220ax x +−<,则()0h x ′<,()h x ∴在[)1,+∞上单调递减,∴当()1,x ∈+∞时,()()10h x h <=,不合题意;综上所述:实数a 的取值范围为2,3 +∞.【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、恒成立问题的求解;求解恒成立问题的关键是能够通过讨论导函数零点的位置确定函数在所给区间内的单调性,进而得到函数最值. (二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. 在直角坐标系xOy 中,曲线1C的参数方程为3cos 13sin x y αα=+=+ (α为参数),以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为cos 16πρθ−=. (Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设曲线1C 与曲线2C 交于M 、N 两点,点P 为曲线1C 上动点,当点P 到曲线2C 的距离最大时,求PMN 的面积.【答案】(Ⅰ)1C的普通方程为(()2219x y +−=,2C20y +−=;(Ⅱ) 【解析】【分析】(Ⅰ)根据参数方程化普通方程、极坐标化直角坐标的方法可直接化简得到结果;(Ⅱ)由垂径定理可求得MN ,根据圆上点到直线距离的最大值可求得三角形高为3d +,由此求得三角形面积.【详解】(Ⅰ)由3cos 13sin x y αα==+ 消除参数α得1C的普通方程为:(()2219x y −+−=; 由cos 16πρθ−=1cos sin 12ρθρθ+=,2C ∴20y +−=; (Ⅱ)由(Ⅰ)知:圆心)1C ,则1C 到直线2C 的距离1d,MN ∴=; 点P 到直线的最大距离为34d+=,142PMN S ∴=×=△ 【点睛】本题考查极坐标与参数方程相关知识,涉及到极坐标化直角坐标、参数方程化普通方程、圆上点到直线距离的最值的求解、直线被圆截得弦长的求解等知识,属于常考题型. 23. 已知函数()()230f x x x a a =−++>.(Ⅰ)若1a =,求不等式()3f x ≥的解集; (Ⅱ)若()232f x a a ≥−+恒成立,求实数a 的取值范围.【答案】(Ⅰ)(]5,1,3 −∞+∞;(Ⅱ)(]0,2. 【解析】【分析】(Ⅰ)分别在32x ≥、312−≤<x 和1x <−三种情况下分类讨论得到不等式,解不等式求得结果;(Ⅱ)将问题转化为()2min 32f x a a ≥−+,利用绝对值三角不等式可求得()min 32f x a =+,由此构造不等式求得结果.【详解】(Ⅰ)由题意得:()332,232314,1232,1x x f x x x x x x x−≥=−++=−+−≤<−+<−, ①当32x ≥时,由323x −≥得:53x ≥,53x ∴≥; ②当312−≤<x 时,由43x −+≥得:1x ≤,11x ∴−≤≤;③当1x <−时,由323x −+≥得:13x ≤−,1x ∴<−;综上所述:不等式()1f x ≥的解集为(]5,1,3 −∞+∞; (Ⅱ)()232f x a a ≥−+恒成立等价于()2min 32f x a a ≥−+, ()332322f x x x a x x x a =−++=−+−++ ()333222x x a x a x a≥−++≥+−−=+,等号成立条件是32x =, ()min 32f x a ∴=+,23322a a a ∴+≥−+,解得:02a ≤≤,又0a >,02a ∴<≤,∴实数a 的取值范围为(]0,2.【点睛】本题考查分类讨论求解含绝对值不等式、绝对值不等式中的恒成立问题的求解,求解恒成立问题的关键是将问题转化为变量与函数最值之间的大小关系的问题,属于常考题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年度第一学期高三数学(理)函数与三角函数综合测试试卷命题人:周扬本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分为150分,考试用时为120分钟.第Ⅰ卷(选择题,共40分)一、选择题:(本大题共8小题,每小题5分,共40分)1、函数243,[0,3]y x x x=-+∈的值域为 ( )A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]2、下列函数中,值域为(),0-∞的是()A.2y x=-B.131()3y x x=-< C.1yx= D.y=3、7cos()6π-的值为()A.12- B.12C.2- D.24.已知31sin()23πα+=,则cos2α=()A.79-B.79C.13-D.135.将函数)26cos(xy-=π的图像向右平移12π个单位后所得的()图像的一个对称轴是A.6π=x B.4π=x C.3π=x D.12xπ=6、在ABC△中,若60,45,A B BC︒︒∠=∠==AC=().A.B. D.27.已知2)2sin()cos()sin()2sin(=-+--+-xxxxπππ,则)43tan(π+x的值为()A.2B.2-C.21D.21-8.已知函数()sin()(,A0,0,||)2f x A x x Rπωφωφ=+∈>><的图象(部分)如图所示,则ω,φ分别为()A.ωπ=,3πφ=B.2ωπ=,3πφ=C.ωπ=,6πφ=D.2ωπ=,6πφ=第II卷(非选择题,共110分)二、填空题(本大题共6小题,每小题5分,共30分)9. 计算(cos1)x dxπ+=⎰π.10.函数ln()(0)xf x xx=>的单调递增区间是(0,]e.11、函数y=的定义域是___(,2]-∞-_____12、已知△ABC中,a=4,b=43,∠A=30°,则∠B等于_60°或120°.13、ABC∆中,若1,3ABCa C S∆===b=14、关于函数()cos2cosf x x x x=-,下列命题:①若1x,2x满足12x xπ-=,则()()12f x f x=成立;②()f x在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增;③函数()f x的图像关于点,012π⎛⎫⎪⎝⎭成中心对称;④将函数()f x的图像向左平移127π个单位后将与2sin2y x=的图像重合.其中正确的命题序号①③④(注:把你认为正确的序号都填上)三、解答题:(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.)15.已知函数()sin(),4f x A x x Rπ=+∈,且53()122fπ=;(1)求A的值;(2)若3()()2f fθθ+-=,(0,)2πθ∈,求3()4fπθ-;【答案】(1)由已知,5523sin sin1212432f A Aππππ⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭,所以A=(2)由(1)知,()4f x x π⎛⎫=+ ⎪⎝⎭,所以:()()4444sin cos cos sin sin cos cos sin 44443cos 42f f ππθθθθππθθππππθθθθπθθ⎛⎫⎛⎫+-=++-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭⎫⎫+-⎪⎪⎭⎭===解得cos θ=,又因为0,2πθ⎛⎫∈ ⎪⎝⎭,所以sin θ=.所以()33444f πππθθπθθ⎛⎫⎛⎫-=-+=-== ⎪ ⎪⎝⎭⎝⎭.16、已知函数21()cos sin cos 2222x x x f x =-- (1)求函数()f x 的最小正周期和单调递增区间;(2)若()10f α=,求sin 2α的值.解:(1)由已知,……………………………4分所以的最小正周期为,单调递增区间为37[2,2]44k k ππππ++. ……………………………6分 (2)由(1)知,所以. ……………………8分所以,……………………………12分或由得:……………………8分两边平方得:,所以。

……………………12分17、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+. (Ⅰ)求A 的大小;(Ⅱ)如果cos B =,2b =,求△ABC 的面积. 解:(Ⅰ)因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==, 3分 又因为 (0,π)∈A ,所以 π3A =. 6分 (Ⅱ)因为cos =B ,(0,π)∈B ,所以sin B ==. 8分 由正弦定理sin sin =a b A B , 得 sin 3sin ==b Aa B. 10分因为 222b c a bc +=+, 所以 2250--=c c , 解得1=±c 12分因为 0>c ,所以1=c . 故△ABC的面积1sin 22S bc A ==. 14分18、已知函数b xax x f ++=ln )(,当1=x 时,)(x f 取得极小值3. (Ⅰ)求b a ,的值;(Ⅱ)求函数)(x f 在⎥⎦⎤⎢⎣⎡2,21上的最大值和最小值.解:(Ⅰ)因为()21xax x f -=' 2分所以()()⎩⎨⎧=+=-⇒⎩⎨⎧=='3013101b a a f f 4分 解得⎩⎨⎧==21b a 6分(Ⅱ)因为()21ln ++=x x x f 所以()22111xx x x x f -=-='所以()10=⇒='x x f当1=x 时,)(x f 取得极小值即最小值:()()31min ==f x f因为()04ln 4ln ln 2ln 2232212323>=-=-=-⎪⎭⎫ ⎝⎛e e f f当21=x 时,)(x f 取得最大值()2ln 421max -=⎪⎭⎫⎝⎛=f x f 19.(本题满分14分)已知函数2()2cos1sin (01)f x x x x ωωωω=-+<<,直线()3x f x π=是图象的一条对称轴.(1)试求ω的值:(2)已知函数)(x g y =的图象是由y=()f x 图象上的各点的横坐标伸长到原来的2倍,然后再向左平移23π个单位长度得到,若6(2),(0,),sin 352g ππααα+=∈求的值。

20、已知函数,.(1)若,判断函数是否存在极值,若存在,求出极值;若不存在,说明理由;(2)设函数,若至少存在一个,使得成立,求实数a 的取值范围;解:(1)当时,,其定义域为(0,+∞).因为,…………………………1分所以在(0,+∞)上单调递增,…………………………2分所以函数不存在极值. …………………………3分(2)由存在一个,使得成立,等价于,即成立…………………………4分令,等价于“当时,”.…………………………5分因为,且当时,,所以在上单调递增,…………………………7分故,因此. …………………………8分。

相关文档
最新文档