光栅莫尔条纹原理
光栅的工作原理

光栅的工作原理常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。
图4-9是其工作原理图。
当使指示光栅上的线纹与标尺光栅上的线纹成一角度来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。
在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。
相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带。
这些与光栅线纹几乎垂直,相间出现的亮、暗带就是莫尔条纹。
莫尔条纹具有以下性质:(1) 当用平行光束照射光栅时,透过莫尔条纹的光强度分布近似于余弦函数。
(2) 若用W表示莫尔条纹的宽度,d表示光栅的栅距,θ表示两光栅尺线纹的夹角,则它们之间的几何关系为W=d/sinθ(4—15)当角很小时,取sinθ≈θ,上式可近似写成W=d/θ(4—16)若取d=0.01mm,θ=0.01rad,则由上式可得W=1mm。
这说明,无需复杂的光学系统和电子系统,利用光的干涉现象,就能把光栅的栅距转换成放大100倍的莫尔条纹的宽度。
这种放大作用是光栅的一个重要特点。
(3) 由于莫尔条纹是由若干条光栅线纹共同干涉形成的,所以莫尔条纹对光栅个别线纹之间的栅距误差具有平均效应,能消除光栅栅距不均匀所造成的影响。
(4) 莫尔条纹的移动与两光栅尺之间的相对移动相对应。
两光栅尺相对移动一个栅距d,莫尔条纹便相应移动一个莫尔条纹宽度W,其方向与两光栅尺相对移动的方向垂直,且当两光栅尺相对移动的方向改变时,莫尔条纹移动的方向也随之改变。
图4-9 光栅工作原理点击进入动画观看光栅工作原理示意根据上述莫尔条纹的特性,假如我们在莫尔条纹移动的方向上开4个观察窗口A,B,C,D,且使这4个窗口两两相距1/4莫尔条纹宽度,即W/4。
由上述讨论可知,当两光栅尺相对移动时,莫尔条纹随之移动,从4个观察窗口A,B,C,D可以得到4个在相位上依次超前或滞后(取决于两光栅尺相对移动的方向)1/4周期(即π/2)的近似于余弦函数的光强度变化过程,用La,Lb,LC,LD表示,见图4-9(c)。
莫尔条纹

莫尔条纹机电科学与工程系电子信息工程莫尔条纹是十八世纪法国研究人员莫尔先生首先发现的一种光学现象。
所谓莫尔条纹,是两条线或两个物体之间以恒定的角度和频率发生干涉的视觉结果,当人眼无法分辨这两条线或两个物体时,只能看到干涉的花纹。
数控方面的莫尔条纹是由光栅固定在机床活动部件上,读数头装在机床固定部件上,并且两者相互平行放置,在光源的照射下形成明暗相见的条纹。
莫尔条纹具有如下特点:变化规律,两片光栅相对移过一个栅距,莫尔条纹移过一个条纹距离。
由于光的衍射与干涉作用,莫尔条纹的变化规律近似正(余)弦函数,变化周期数与光栅相对位移的栅距数同步;放大作用,在两光栅栅线夹角较小的情况下,莫尔条纹宽度W和光栅栅距ω、栅线角θ之间有下列关系(θ的单位为rad,W的单位为mm),由于倾角很小,sinθ很小,则W=ω /θ,若ω=0.01mm,θ=0.01rad,则上式可得W=1,即光栅放大了100倍;均化误差作用,由若干光栅条纹共用形成莫尔条纹,例如每毫米100线的光栅,10mm宽度的莫尔条纹就有1000条线纹,这样栅距之间的相邻误差就被平均化了消除了由于栅距不均匀、断裂等造成的误差。
莫尔条纹现象是由于信号取样频率接近感光器分辨率所致,通常解决方法用一个低通滤镜把高于感光器分辨率的信号挡住,其副作用就是降低成像分辨率。
因此在设计低通滤镜时设计师要在分辨率和莫尔条纹之间做一个妥协选择。
因为D70的CCD前面使用效果比较弱的低通滤镜,所以在提高成像分辨率也造成了莫尔条纹出现几率的增大,此现象也广泛出现于其他DSLR上。
根据莫尔条纹的形成原理制成了光栅尺位移传感器,其工作原理是,当使指示光栅上的线纹与标尺光栅上的线纹成一角度来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。
在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。
相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带。
莫尔条纹的形成原理

应用莫尔条纹进行测量的优点
将光栅常数非常小的、高精度的、人眼 不能直接观察的光栅放大,可以用人眼 或仪器直接观察到莫尔条纹,测量精度 可以达到1μm; 条纹呈周期变化,便于读数和消除随机 误差; 光栅尺可以印在塑料薄膜上,成本低, 使用方便.
光栅传感器
工作原理:
利用光栅的莫尔条纹现象实现几何量的测量:光 栅的相对移动使透射光强度呈周期性变化,光 电元件把这种光强信号变为周期性变化的电信 号,由电信号的变化即可获得光栅的相对移动 量。
(3)测量微小角度
将式(2)做微分运算,并改写成有限变量 的形式
( 5)
根据式(5)可以动光栅与静光栅之间角度的微小 变化量。例如,光栅常数为d=0.002mm,两块光 栅的角度为θ=0.01°,当动光栅与静光栅之间 的角度发生Δθ=1″的变化量时,莫尔条纹宽 度从11.459变到11.149,莫尔条纹的变化量为 Δm=0.31,这一变化量是很容易测量的。
要求标准光栅的光栅常数与被测光栅的光栅常数接近但不等转动标准光栅和被测光栅之间的角度使莫尔条纹间距达到最大此时0代入公式1则用这种方法还可以看出被测光栅的间隔是否均匀如果不均匀则莫尔条纹会发生弯曲
莫尔条纹的形成原理
两块参数相近的透射光栅以小角度叠加, 产生放大的光栅。
莫尔条纹演示
条纹间距的计算
( 2)
用这种方法还可以看出被测光栅的间隔是否均 匀,如果不均匀,则莫尔条纹会发生弯曲。
(2)测量微小位移
当两块光栅的光栅常数相等时,根据公式 (1),有
利用三角函数关系
,有
( 3)
当θ非常小时,可以将式(2)进一步简 化为
m≈d/θ
( 4)
编码器莫尔条纹技术原理

编码器莫尔条纹技术原理
莫尔条纹是一种通过光学编码的技术,常用于编码器中。
编码器是一种用来确
定运动的装置,它将物体的位置或运动转换成电信号。
莫尔条纹技术通过条纹的变化来实现编码,使得编码器能够准确地测量物体的位置和速度。
莫尔条纹是由一组黑白相间的平行条纹组成。
这些条纹的密度会随着位置的变
化而改变。
当一个光源照射到条纹上时,光会被反射或散射。
由于条纹的不规则性,反射或散射的光会在接收器中形成一系列明暗变化的信号。
编码器的工作原理基于光栅盘和光传感器之间的相互作用。
光栅盘是一种具有
莫尔条纹的旋转盘,它被放置在物体上,而光传感器则固定在编码器上。
当物体移动时,光栅盘也随之旋转,通过光传感器检测条纹的变化。
根据信号的变化,编码器可以计算出物体的运动速度和位置。
编码器莫尔条纹技术的优点在于其精确度和稳定性。
由于莫尔条纹的密度具有
高度变化的特点,能够提供高分辨率的位置测量。
此外,莫尔条纹技术还可以有效地抵抗光线的干扰和机械震动的影响,从而提高了编码器的可靠性。
总之,编码器莫尔条纹技术是一种基于光学编码的高精度测量技术。
通过利用
莫尔条纹的变化来实现位置和速度的测量,编码器能够准确地反映物体的运动状态。
莫尔条纹技术的高分辨率和稳定性使得它在工业领域中具有广泛的应用前景。
数控技术莫尔条纹光栅作用

数控技术莫尔条纹光栅作用嘿,大家好,今天咱们聊聊一个有意思的话题,就是数控技术中的莫尔条纹光栅。
这玩意儿听起来挺高大上的,但其实它的作用就像在生活中加点调味料,让一切变得更好。
莫尔条纹光栅,这个名字一听就有点复杂,其实它就是一种用来测量位置和运动的工具,简简单单就能帮助机械设备实现精确的运动。
想象一下,就像你玩游戏时,角色每一步的走位都得准确无误,不然就可能掉进坑里,哈哈。
莫尔条纹光栅是怎么运作的呢?它是通过一种光的干涉现象来工作的。
你可以把它想象成在阳光下,水面泛起的波纹,一波接一波地荡漾开来。
光栅的表面上有一系列均匀的条纹,当光线照射到这些条纹上时,会产生一些干涉图案。
这样一来,设备就能“看见”这些图案,从而精准地判断出自己的位置和运动轨迹。
就像你用手机导航一样,能清楚知道自己在哪里。
这种技术的妙处在于,它能达到非常高的分辨率,简直是无与伦比!用它来进行数控加工,设备的运动就能像小兔子一样灵活自如。
想象一下,机床在高速运转的时候,哪怕是微小的误差也会导致最终产品的质量不佳。
莫尔条纹光栅正是能够在这时候发挥它的“神力”,将误差降到最低,确保每一个零件都能完美无瑕,简直是精益求精的代名词。
说到这里,有人可能会问,莫尔条纹光栅的应用范围到底有多广呢?嘿,别说,真是数不胜数!从汽车制造到航空航天,从电子产品到医疗器械,几乎无处不在。
你可以想象,飞在天上的飞机、跑在地上的汽车,背后都有这些光栅在默默地为它们服务。
它们就像隐形的守护者,确保一切都在正确的轨道上运转。
这也让人感慨,现代科技的进步真是快得惊人啊,跟不上都来不及了!再说说这玩意儿的优势吧,除了高精度以外,莫尔条纹光栅还具有抗干扰能力。
生活中,我们常常会遇到噪音和干扰,特别是在一些复杂的环境中。
而这种光栅则像个“超能战士”,能有效抵御外部干扰,保持稳定的性能。
就好比你在吵闹的街道上,依然能专心听自己喜欢的音乐,简直是太厉害了!不过,光栅的维护也是不可忽视的。
光栅产生莫尔条纹的原理

光栅产生莫尔条纹的原理
光栅产生莫尔条纹的原理可能是由于两个空间频率相近的周期性光栅图形叠加,通过遮光效应、衍射效应和干涉效应等多种原理形成的。
1. 遮光效应:当两个光栅相互重叠时,由于它们的线条间隙不同,会产生明暗相间的条纹,即莫尔条纹。
这种条纹是由于光栅线条的遮光和透光作用相互叠加造成的。
2. 衍射效应:光通过光栅时会发生衍射,两个光栅的衍射波相互叠加,形成莫尔条纹。
这种效应在光栅间距较小时尤为明显。
3. 干涉效应:当两个光栅的线条非常细小且接近时,它们的衍射波会相互干涉,形成明暗相间的莫尔条纹。
这种效应通常需要光源具有较好的相干性。
莫尔条纹的特点是它们对光栅的位移非常敏感。
当光栅相对移动时,莫尔条纹也会相应地移动,这种现象被广泛应用于精密测量技术中,如光栅尺位移传感器。
通过计算莫尔条纹的变化,可以精确地测量出物体的位移和速度。
莫尔条纹形成原理及其特点

莫尔条纹形成原理及其特点
莫尔条纹是两个线或物体之间以恒定的角度和频率发生干涉的视觉结果。
它是光栅位移精密测量的基础,由两个空间频率相近的周期性光栅图形叠加形成。
当偏振光通过晶体时,会发生双折射现象,导致光线振动面发生旋转。
如果晶体中存在多个方向的结晶,则各个方向对偏振光的旋转角度不同,因此形成的干涉条纹也就呈现出不同的颜色和宽度。
莫尔条纹的特点有:
1. 颜色变化:莫尔条纹的颜色和亮度随晶体中不同方向的结晶特性而变化。
2. 条纹宽度:莫尔条纹的宽度通常与晶体的厚度有关,可以反映出晶体中的厚度变化。
3. 形状:莫尔条纹的形状通常呈现为交错的带状图案,在不同角度下呈现出不同的形态和方向。
此外,莫尔条纹在材料学和地质学等领域中有着重要的应用价值,例如确定晶体结构、检测物质缺陷、判别矿物种类以及评估材料性质等。
以上内容仅供参考,如需更专业的解释,建议咨询物理学家或查阅物理书籍。
莫尔条纹演示实验报告(3篇)

第1篇一、实验目的1. 理解莫尔条纹的原理;2. 观察并分析莫尔条纹的特点;3. 掌握莫尔条纹在光学测量中的应用。
二、实验原理莫尔条纹是两条或两条以上等间距的平行线或两个物体之间以恒定角度和频率发生干涉的视觉结果。
当人眼无法分辨这两条线或两个物体时,只能看到干涉的花纹,这种光学现象中的花纹就是莫尔条纹。
莫尔条纹的特点包括:条纹间距的固定性、颜色一致性、方向性等。
三、实验仪器与材料1. 实验仪器:莫尔条纹演示装置、光源、屏幕、尺子、游标卡尺;2. 实验材料:透明薄膜、刻度尺、白纸。
四、实验步骤1. 准备工作:将透明薄膜贴在刻度尺上,使刻度尺与透明薄膜平行;2. 光源照射:将光源照射到透明薄膜上,使光线透过透明薄膜;3. 观察现象:将白纸放在透明薄膜的另一侧,观察并记录莫尔条纹的形状、间距、颜色等特点;4. 测量条纹间距:使用尺子测量莫尔条纹的间距,并记录数据;5. 测量角度:使用游标卡尺测量透明薄膜与刻度尺之间的角度,并记录数据;6. 分析结果:根据实验数据,分析莫尔条纹的特点及其在光学测量中的应用。
五、实验结果与分析1. 实验结果:通过实验观察,发现莫尔条纹呈现出明暗相间的条纹,条纹间距固定,颜色一致,且具有一定的方向性。
2. 分析结果:(1)莫尔条纹的间距固定:根据实验数据,莫尔条纹的间距与透明薄膜的刻度间距一致,说明莫尔条纹的间距是固定的。
(2)莫尔条纹的颜色一致:实验中观察到的莫尔条纹颜色一致,说明在同一颜色范围内,莫尔条纹的颜色是一致的。
(3)莫尔条纹的方向性:通过改变透明薄膜与刻度尺之间的角度,发现莫尔条纹的方向也随之改变,说明莫尔条纹具有方向性。
六、结论1. 通过本实验,成功演示了莫尔条纹的形成过程,掌握了莫尔条纹的特点;2. 莫尔条纹在光学测量中具有广泛的应用,如位移测量、角度测量等;3. 本实验有助于加深对光学现象的理解,提高学生的实践能力。
七、实验拓展1. 尝试使用不同厚度的透明薄膜进行实验,观察莫尔条纹的变化;2. 探究莫尔条纹在光学干涉测量中的应用,如波长测量、相位测量等;3. 研究莫尔条纹在光学器件中的应用,如光栅、全息图等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光栅组、移动平台
实验步骤
1、安装好主光栅与指示光栅,使两光栅保持平行,光栅间间隙要尽量小,微调主光栅角度,使莫尔条纹清晰可见。
2、旋动移动平台螺旋测微仪,向前或向后,观察莫尔条纹上下移动与指示光栅位移方向的关系。
3、人工微位移测量:当指示光栅位移一个光栅距时,莫尔条纹就移动一个条纹距。调节位移平台,仔细记数条纹移动数目,根据实验二十测得的光栅距,与位移条纹数相乘,此即为指示光栅的位移距离,实验时可与螺旋测微仪的转动刻度相对照。(事实上光栅莫尔条纹记数所测得的位移精度远高于螺旋测微仪的精度)。
(1)判向作用:当指示光栅相对于固定不动的主光栅左右移动时,莫尔条纹将沿着近于栅线的方向上下移动,由此可以确定光栅移动的方向。
(2)位移放大作用:当指示光栅沿着与光栅刻线垂直方向移动一个光栅距D时,莫尔条纹移动一个条纹间距B,当两个等距光栅之间的夹角θ较小时,指示光栅移动一个光栅距D,莫尔条纹就移动KD的距离。K=B/D≈1/θ。B=D/2sinθ/2≈d/θ,这样就可以把肉眼看不见的栅距位移变成清晰可见的条纹位移,实现高灵敏的位移测量。
光栅莫尔条纹原理
作者:佚名来源:本站原创点击:774更新时间:2006-7-14
实验原理
如果把两块光栅距相等的光栅平行安装,并且使光栅刻痕相对保持一条纹的宽度B为:
B=P/sinθ其中P为光栅距。
光栅刻痕重合部分形成条纹暗带,非重合部分光线透过则形成条纹亮带。光栅莫尔条纹的两个主要特征是