倒谱分析
基于MATLAB的语音倒谱分析

基于MATLAB的语音倒谱分析语音倒谱分析是一种通过对语音信号进行倒谱变换来提取语音特征的方法。
MATLAB作为一种常用的科学计算软件,具有丰富的信号处理工具箱,可以用于实现语音倒谱分析。
语音倒谱分析的基本原理是将语音信号分解为一系列频率低通滤波器的输出,然后对滤波器输出进行离散傅立叶变换(DFT),得到倒谱系数。
倒谱系数反映了语音信号的频谱特征,可用于语音识别、语音合成、语音增强等应用。
在MATLAB中进行语音倒谱分析的步骤如下:1. 读取语音信号:使用`audioread`函数读取语音文件,得到语音信号的波形数据和采样率。
例如:```matlab[x, fs] = audioread('speech.wav');```2. 预处理语音信号:通常需要对语音信号进行预处理,例如去除噪声、端点检测等。
这可以使用MATLAB的信号处理工具箱实现。
例如,使用`medfilt1`函数对语音信号进行中值滤波去噪:```matlabx = medfilt1(x, 3); % 使用中值滤波去噪```3. 分帧:将语音信号分为若干帧,每帧包含N个采样点。
通常选择帧长为20-40毫秒左右,帧移为10-20毫秒。
可以使用`buffer`函数实现:```matlabframeLength = round(fs * 0.025); % 帧长为25msframeShift = round(fs * 0.01); % 帧移为10msframes = buffer(x, frameLength, frameLength-frameShift,'nodelay');```4. 加窗:对每一帧的数据应用窗函数,以减小频谱泄漏效应。
常用的窗函数有汉明窗(hamming window)和黑曼窗(hanning window)。
可以使用`hamming`或`hanning`函数实现:```matlabwindow = hamming(frameLength); % 汉明窗```5. 计算功率谱:对窗函数加权的每一帧信号进行离散傅立叶变换(DFT),得到每帧的功率谱。
语音信号的倒谱分析

因为
ˆ X ' (Z ) X ' (Z ) X (Z )
求复倒谱的一种有效的递推算法
ˆ Z[nx(n)] Z (nx(n))Z[ x(n)]
ˆ n( x(n)) {nx(n)} x(n)
n 1
l ˆ ˆ x(n) ( ) x(l ) x(n l ) x(n) x(0) l 0 n 可推导出: ˆ x ( n)
i 1
P
ˆ e(n) s(n) s(n) s(n) ai s(n i) ai s(n i)
i 1 i 0
P
P
线性预测原理
线性预测是目前分析语音信号的最有效的方法之一,分 析的结果是得到一组信号的全极点模型参数,所以又称 为信号参数模型法。 这个方法的基本思想是将被分析信号模型化,即用有限 数目的模型参数来描述信号中的信息,具体来说,将被 分析信号s(n)视为某系统(即模型)的输出,而系统的 输入,在s(n)为确定性信号是采用单位取样序列。在s(n) 为随机信号是采用白噪声序列。
Linear
Prediction
1947年维纳提出; 1967年板仓等人应用于语音分析与合成;
语音信号处理与分析的核心技术
提供了预测功能;
提供了声道模型和声道模型的参数估计方法;
基本思想:
语音样本之间存在相关性,一个语音信号的样本可 以用过去若干个样本的线性组合来逼近;
ˆ s ( n) a i s ( n i )
g jZ
j 0
Q
j
, A( Z ) ai Z i
i 0
P
g j 和ai都是实数,且a0 1。如果能有一种算法,可能根据已知的s (n) 正确的估计出这些参数,那么未知的系统V(Z)便可求得。由于 E ( Z )V ( Z ) S ( Z ),根据V ( Z )和S ( Z )便可以求得E(Z),从而全部解决 解卷的的问题。
共振峰 倒谱法

共振峰倒谱法
共振峰是指在声音或信号频谱中出现较高振幅的频率区域。
这些共振峰通常对应于声音源或信号中的共振频率,即在该频率下共振现象特别明显。
倒谱法是一种用于分析信号频谱的方法。
它将频谱转化为倒谱系数,通过对这些倒谱系数进行分析,可以得到信号的特征参数,例如共振峰频率、带宽等。
在使用倒谱法进行分析时,首先需要获取信号的频谱。
一种常见的做法是使用傅里叶变换将信号从时域转化为频域。
然后,将频谱对数化,并应用倒谱变换得到倒谱系数。
倒谱系数可以通过对频谱进行对数变换来得到。
常见的做法是取频谱的对数幅度,并进行倒谱变换。
这样可以将信号的频谱转化为倒谱系数,并对其进行分析。
倒谱法常用于语音信号分析、音乐信号分析等领域。
通过分析倒谱系数,可以提取信号的共振峰特征,并用于声音识别、音乐分析等应用中。
倒谱计算与分析

《视频语音处理技术》倒谱计算与分析学院名称:计算机与信息工程学院专业名称:计算机科学与技术年级班级:姓名:学号:计算机与信息技术学院综合性、设计性实验报告一、 实验目的:对语音信号进行同态分析可得到语音信号的倒谱参数。
语音的倒谱是将语音的短时谱取对数后再进行IDFT 得到的,所以浊音信号的激励反映在倒谱上是同样周期的冲激,借此,可从倒谱波形中估计出基音周期。
对倒谱进行低时窗选,通过语音倒谱分析的最后一级,进行DFT 后的输出即为平滑后的对数模函数,这个平滑的对数谱显示了特定输入语音段的谐振结构,即谱的峰值基本上对应于共振峰频率,对于平滑过的对数谱中的峰值进行定位,即可估计共振峰。
对于倒谱计算与分析的设计实验可作如下训练: 1、复倒谱的几种计算方法: 2、最小相位信号法和递归法; 3、基音检测; 4、共振峰检测。
二、实验仪器或设备:windowsXP 下的Matlab 编程环境 三、总体设计(设计原理、设计方案及流程等)1.复倒谱的几种计算方法:在复倒谱分析中,z 变换后得到的是复数,所以取对数时要进行复对数运算。
这时存在相位的多值性问题,称为“相位卷绕”。
设信号为则其傅里叶变换为对上式取复对数为 则其幅度和相位分别为:)()()(21n x n x n x *=)()()(21ωωωj j j e X e X e X ⋅=)(ln )(ln )(ln 21ωωωj j j e X e X e X +=)(ln )(ln )(ln 21ωωωj j j e X e X e X +=)()()(21ωϕωϕωϕ+=)()()(21ωϕωϕωϕ+=上式中,虽然 , 的范围均在 内,但 的值可能超过范围。
计算机处理时总相位值只能用其主值 表示,然后把这个相位主值“展开”,得到连续相位。
所以存在下面的情况:(K 为整数) 此时即产生了相位卷绕。
下面介绍几种避免相位卷绕求复倒谱的方法。
最小相位信号法这是解决相位卷绕的一种较好的方法。
倒谱分析

图
图
图
(2).倒频谱的应用
分离信息通道对信号的影响
图2.26对数功率谱关系图。
在机械状态监测和故障诊断中,所测得的信号,往往是由故障源经系统路径的传输而得到的响应,也就是说它不是原故障点的信号,如欲得到该源信号,必须删除传递通道的影响。
如在噪声测量时,所测得之信号,不仅有源信号而且又有不同方向反射回来的回声信号的混入,要提取源信号,也必须删除回声的干扰信号。
若系统的输入为x(t),输出为y(t),脉冲响应函数是h(t),两者的时域关系为: y(t)=x(t)*h(t)
频域为: Y(f)=X(f)*H(f)或Sy(f)=Sx(f)*|H(f)|2
对上式两边取对数,则有:
(2.11)
式(2.72)关系如图(2.26)所示,源信号为具有明显周期特征的信号,经过系统特性logGk(f)的影响修正,合成而得输出信号logGy(f)。
对于(2.72)式进一步作傅里叶变换,即可得幅值倒频谱:
(2.12)
即:
(2.13)
以上推导可知,信号在时域可以利用x(t)与h(t)的卷积求输出;在频域则变成X(f)与H(f)的乘积关系;而在倒频域则变成Cx(q)和Ch(q)相加的关系,使系统
特特性Ch(q)与信号特性Cx(q)明显区别开来,这对清除传递通道的影响很有用处,而用功率谱处理就很难实现。
图(2.26b)即为相应的倒频谱图。
从图上清楚地表明有两个组成部分:一部分是高倒频率q2,反映源信号特征;另一部分是低倒频率q1,反映系统的特性。
两部分在倒频谱图上占有不同的倒频率范围,根据需要可以将信号与系统的影响分开,可以删除以保留源信号。
倒频谱分析 (DEMO)

倒频谱分析倒频谱分析也称为二次频谱分析,是近代信号处理科学中的一项新技术,是检测复杂谱图中周期分量的有用工具。
它对于分析具有同族谐频或异族谐频、多成分边频等复杂信号,找出功率谱上不易发现的问题非常有效。
实数倒谱又分为功率倒频谱、幅值倒频谱和类似相关函数的倒频谱。
工程上经常使用的是功率倒频谱和幅值倒频谱。
在语言分析中语音音调的测定、机械振动中故障监察和诊断以及排除回波(反射波)等方面均得到广泛的应用。
若一个测量信号)s(t)x(=,则当两个分量y+tt)(ty是由两个分量)(tx与)(t(s叠加而成的,即)的能量分别集中在不同的频率段时,可用频域分析中的线性滤波或功率谱分析;当所要提取的分量以一定的形状作周期性重复而其中一分量是随时间变化的噪声时,可用时域分析中的信号平均法或相关分析。
这些方法都可有效地处理线性叠加信号。
但是有的信号不是由其分量的线性叠加,例如机床的输出信号是)(ty,激发振动的输入信号是切削力)tty+xhy是(t=即输出)(th描述的,则有)(t(t(x,而机床的动力特性是由脉冲响应))()输入)h的卷积,这是用处理线性叠加信号的方法就不够了。
另外、对于一个(tx与脉冲响应力)(t复杂的功率谱图,有的很难直观看出它的一些特点和变化情况。
而倒谱分析则能很好地处理这类问题,使故障诊断更加便利。
倒频谱是频域函数的傅里叶再变换,与相关函数不同只差对数加权。
对功率谱函数取对数的目的,是使再变换以后的信号能量格外集中,同时还可解析卷积(褶积)成分,易于对原信号的识别。
功率倒谱主要定义为时间信号的功率谱取对数再进行傅里叶逆变换。
通过上述分析可知,倒谱分析技术可适用于:(1)机械故障诊断,对于机械故障信号在频谱图上,出现难以识别的多族调制边频时,采用倒频谱分析技术,可以分解和识别故障频率,分析和诊断产生故障的原因和部位。
在齿轮箱的振动分析中,倒谱分析技术有广泛的应用。
(2)语音和回声分析,求解卷积问题。
语音信号的同态滤波和倒谱分析

单击此处添加副标题
演讲人姓名
LPC系数 a1,a2,… ap
声道模拟 滤波器H(z) 线性预测滤波器Hl(z)
u(n)
线性预测滤波器Hl(z)
x(n)
2.同态信号处理的基本原理
01.
进行如下处理:
02.
特征系统D*[] 完成将卷积信号转化为加性信号的运算。
添加标题
逆特征系统D*-1[] ,恢复为卷积性信号。
添加标题
进行如下处理:
a.第一步和第三步的运算相同。 b.第二步不同,前者是对数运算,后者是指数运算。
(3)特征系统D*[]和逆特征系统D*-1[]的区别
Z
exp
Z-1
Z
ln
Z-1
x(n)
x(n)
^
x(n)
^
x(n)
添加标题
特征系统 D*[]
添加标题
x(n)
添加标题
验证一个时域信号经过同态处理,是否回到时域?
ln(.)
MFCC
DCT Y(l)
4.MFCC的应用
预处理
语音识别系统框图
特征 提取
模型库
测度 估计
单击此处添加文本具体内容
现有语音识别系统采用的最主要的两种语音特征包括:(1)线性预测倒谱参数(2)MFCC参数 后处理 输入 输出
MFCC系数考虑到了人耳的听觉特性,具有较好的识别性能。但是,由于它需要进行快速傅立叶变换,将语音信号由时域变换到频域上处理,因此其计算量和计算精度要求高,必须在DSP上完成。
1.Mel频率尺度
线性频率f
Mel频率 Mel(f)
Mel频率带宽随频率的增长而变化,在1000Hz以下,大致呈线性分布,带宽为100Hz左右,在1000Hz以上呈对数增长。将频谱通过24个三角滤波器,其中中心频率在1000Hz以上和以下的各12个。滤波器的中心频率间隔特点是在1000Hz以下为线性分布,1000Hz以上为等比数列分布。
语音信号的同态滤波和倒谱分析课件

倒谱分析的应用
倒谱分析在语音识别领域中应 用广泛,用于提取语音特征, 提高识别准确率。
Hale Waihona Puke 倒谱分析还可以用于语音合成 ,通过对倒谱系数的调整和重 构,实现语音信号的合成。
此外,倒谱分析在语音降噪、 语音增强等领域也有广泛应用 。
语音信号的同态滤波 和倒谱分析课件
目录
• 语音信号的同态滤波 • 语音信号的倒谱分析 • 语音信号的同态滤波与倒谱分析的比较 • 语音信号处理的其他方法 • 语音信号处理的应用前景
01
语音信号的同态滤波
同态滤波的定义
同态滤波是一种信号处理方法,它通过非线性变换将输入信号分解为两部分:包 络信号和调制信号。包络信号表示信号的幅度变化,调制信号表示信号的相位变 化。
01
倒谱分析是一种语音信号处理技 术,通过对语音信号的倒谱变换 ,提取出语音信号的特征信息。
02
倒谱分析通过将语音信号的频谱 转换为倒谱,实现了对语音信号 的频域和时域特征的综合分析。
倒谱分析的原理
倒谱分析基于对语音信号的短时傅里 叶变换(STFT)和逆变换,通过对 频谱取对数后再进行逆变换,得到倒 谱系数。
质量。
05
语音信号处理的应用前景
语音识别
语音识别技术是实现人机语音交互的 关键技术,能够将人的语音转换为文 字或命令,从而实现人机交互。
随着人工智能技术的不断发展,语音 识别技术在智能家居、智能客服、智 能车载等领域的应用越来越广泛,为 人们的生活和工作带来了便利。
语音合成
语音合成技术是将文字转换为语音的技术,广泛应用于语音导航、语音播报、虚拟人物等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倒谱分析
(1).倒频谱的数学描述
倒频谱函数CF(q)(power cepstrum)其数学表达式为:
(2.6)
CF(q)又叫功率倒频谱,或叫对数功率谱的功率谱。
工程上常用的是式(2.6)的开方形式,即:
(2.7)
C0(q)称为幅值倒频谱,有时简称倒频谱。
倒频谱变量q的物理意义
为了使其定义更加明确,还可以定义:
(2.8)
即倒频谱定义为信号的双边功率谱对数加权,再取其傅里叶逆变换,联系一下信号的自相关函数:
看出,这种定义方法与自相关函数很相近,变量q与τ在量纲上完全相同。
为了反映出相位信息,分离后能恢复原信号,又提出一种复倒频谱的运算方法。
若信号x(t)的傅里叶变换为X(f):
(2.9)
x(t)的倒频谱记为:
(2.10)
显而易见,它保留了相位的信息。
倒频谱与相关函数不同的只差对数加权,目的是使再变换以后的信号能量集中,扩大动态分析的频谱范围和提高再变换的精度。
还可以解卷积(褶积)成分,易于对原信号的分离和识别。
(2).倒频谱的应用
分离信息通道对信号的影响
图2.26对数功率谱关系图。
在机械状态监测和故障诊断中,所测得的信号,往往是由故障源经系统路径的传输而得到的响应,也就是说它不是原故障点的信号,如欲得到该源信号,必须删除传递通道的影响。
如在噪声测量时,所测得之信号,不仅有源信号而且又有不同方向反射回来的回声信号的混入,要提取源信号,也必须删除回声的干扰信号。
若系统的输入为x(t),输出为y(t),脉冲响应函数是h(t),两者的时域关系为: y(t)=x(t)*h(t)
频域为: Y(f)=X(f)*H(f)或Sy(f)=Sx(f)*|H(f)|2
对上式两边取对数,则有:
(2.11)
式(2.72)关系如图(2.26)所示,源信号为具有明显周期特征的信号,经过系统特性logGk(f)的影响修正,合成而得输出信号logGy(f)。
对于(2.72)式进一步作傅里叶变换,即可得幅值倒频谱:
(2.12)
即:
(2.13)
以上推导可知,信号在时域可以利用x(t)与h(t)的卷积求输出;在频域则变成X(f)与H(f)的乘积关系;而在倒频域则变成Cx(q)和Ch(q)相加的关系,使系统特特性Ch(q)与信号特性Cx(q)明显区别开来,这对清除传递通道的影响很有用处,而用功率谱处理就很难实现。
图(2.26b)即为相应的倒频谱图。
从图上清楚地表明有两个组成部分:一部分是高倒频率q2,反映源信号特征;另一部分是低倒频率q1,反映系统的特性。
两部分在倒频谱图上占有不同的倒频率范围,根据需要可以将信号与系统的影响分开,可以删除以保留源信号。
用倒频谱诊断齿轮故障
对于高速大型旋转机械,其旋转状况是复杂的,尤其当设备出现不对中,轴承或齿轮的缺陷、油膜涡动、磨擦、陷流及质量不对称等现象时,则振动更为复杂,用一般频谱分析方法已经难于辩识(识别反映缺陷的频率分量),而用倒频谱,则会增强识别能力。
如一对工作中的齿轮,在实测得到的振动或噪声信号中,包含着一定数量的周期分量。
如果齿轮产生缺陷,则其振动或噪声信号还将大量增加谐波分量及所谓的边带频率成分。
什么叫边带频率,它又是如何产生的?
设在旋转机械中有两个频率w1 与w2 存在,在这二频率的激励下,机械振动的响应呈现出周期性脉冲的拍,也就是呈现其振幅以差频( (w2 -w1)设w2>w1 )进行幅度调制的信号,从而形成拍的波形,这种调幅信号是自然产生的。
例如调幅波起源于齿轮啮合频率(齿数×轴转数)w0的正弦载波,其幅值由于齿轮之偏心影响成为随时间而变化的某一函数Sm(t) ,于是:
(2.75)
假设齿轮轴转动频率为wm ,则可写成:
(2.76)
其图形如图(2.27a)所示,看起来象一周期函数,但实际上它并非是一个周期函数,除非w0 与wm成整倍数关系,这在实际应用中,这种情况并不多见。
根据三角半角关系, (2.76)式可写成:
(2
.77)
从(2.77)式不难看出,它是由w0,(w0 +wm)与(w0-wm )三个不同的正弦波之和,具有如图2.27b)之频谱图。
这里(w0 -wm )与(w0 +wm )之差频与和频通称为边带频率。
假如上例中对于一个具有四个轮幅的100个齿的齿轮,其轴准转数为50转/秒,而其啮合频率5000Hz。
其幅值(啮合力的大小) 则由每转四次的周期为200HZ所调制(因为有四个轮幅的影响)。
所以在测得的振动分量中,不仅有明显的轴转数50HZ及啮合频率(5000HZ) 外,还有4800HZ及5200HZ的边带频率。
实际上,如果齿轮缺陷严重或多种故障存在,以致许多机械中经常出现的不对准、松动、及非线性刚度等原因,或者出现拍波截断等原因时,则边带频率将大量增加。
在一个频谱图上出现过多的频差,难以识别,而倒频谱图则有利于识别,如图2.28所示。
图(a)是一个减速箱的频谱图,图(b)是它的倒频谱图。
从倒谱图上清楚地看出,有两个主要频率分量:117.6Hz(85ms)及48.8Hz(20.5ms)。